ON UNICITY OF CAPACITY FUNCTIONS

Akio Osada

Abstract

Sario's capacity function of a closed subset γ of the ideal boundary is known to be unique if γ is of positive capacity. The present paper will determine the number of capacity functions of γ in terms of the Heins harmonic dimension when γ has zero capacity, under the assumption that γ is isolated. This includes the special case where γ is the ideal boundary.

1. Capacity functions. Denote by β the ideal boundary of an open Riemann surface R in the sense of Kerékjártó-Stoïlow. We consider a fixed nonempty closed subset $\gamma \subset \beta$ which is isolated from $\delta=\beta-\gamma$. Throughout this paper D will denote a fixed parametric disk about a fixed point $\zeta \in R$ with a fixed local parameter z and the uniqueness is always referred to this fixed triple (ζ, D, z). Here we do not exclude the case where $\gamma=\beta$.

For a regular region $\Omega \supset \bar{D}$ we denote by γ_{Ω} the part of $\partial \Omega$ which is "homologous" to γ. The remainder $\delta_{\Omega}=\partial \Omega-\gamma_{\Omega}$ consists of a finite number of analytic Jordan curves $\delta_{\Omega j}$. For a regular exhaustion $\left\{R_{n}\right\}_{n=0}^{\infty}$ with $R_{0} \supset \bar{D}$ and nonempty $\gamma_{R_{0}}$, set $\gamma_{n}=\gamma_{R_{n}}$ and $\delta_{n j}=\delta_{R_{n} j}$. Then there exists a unique function $p_{r_{n}} \in H\left(R_{n}-\zeta\right)$ satisfying
(a) $p_{r_{n}}|D=\log | z-\zeta \mid+h_{n}(z)$ with $h_{n} \in H(\bar{D})$ and $h_{n}(\zeta)=0$,
(b) $p_{\gamma_{n}} \mid \gamma_{n}=k_{n}(\gamma)$ (const.) and $p_{\gamma_{n}} \mid \delta_{n j}=d_{n j}$ (const.) so that $\int_{\delta_{n j}} * d p_{\gamma_{n}}=0$, which is called a capacity function of γ_{n} (Sario [6]). It is known that $k_{n}(\gamma)$ increases with n and the limit $k(\gamma)$ is independent of the choice of $\left\{R_{n}\right\}_{n=0}^{\infty}$. We call $e^{-k(\gamma)}$ the capacity of γ and denote it by cap γ. When cap $\gamma>0, p_{\gamma_{n}}$ converges to a functions p_{r}, which is independent of the choice of the exhaustion (Sario [6]). Even when cap $\gamma=0$, we can also choose a subsequence of $\left\{p_{r_{n}}\right\}$ which converges to a function p_{r}. Such functions p_{r} will be called capacity functions of γ (Sario [6]). As mentioned above there exists only one capacity function when cap $\gamma>0$.

It is the purpose of this paper to determine the number of capacity functions p_{γ} when cap $\gamma=0$.
2. The harmonic dimension of γ. Let R, β, γ and δ be as in 1. Furthermore we suppose that γ is of zero capacity. For a regular region $\Omega \supset \bar{D}$ we denote by $V_{a_{i}}$ components of $R-\bar{\Omega}$ whose derivations are contained in γ and by $W_{\Omega j}$ the remaining components. Here an ideal boundary component will be called a derivation of $V_{\Omega i}$ when it is contained in the closure of $V_{a i}$ in the compactification of R. Here-
after we always choose Ω so large as to make the derivations of $W_{\Omega}=U_{j} W_{\Omega j}$ contain in δ. Therefore W_{Ω} is always a neighborhood of all of δ.

We consider the normal operator $L_{1}^{(\Omega)}$ with respect to $R-\bar{\Omega}$ associated with the partition $P=\gamma+\sum_{j} \delta_{j}$ of β where δ_{j} is a component of δ (Ahlfors-Sario [1]).

Let q be a harmonic function in $R-\zeta$. Then q will be called of L_{1}-type at δ when $q=L_{1}^{(\Omega)} q$ in W_{Ω} for an admissible Ω. It is easy to see that this property depends only on δ, i.e., if $q=L_{1}^{(\Omega)} q$ in W_{Ω}, then $q=L_{1}^{\left(\Omega^{\prime}\right)} q$ in W_{Ω}, for every admissible Ω^{\prime}.

We denote by $H P_{0}\left(V_{\Omega}\right)$ the family of functions u such that u is a positive harmonic function in $V_{\Omega}=\bigcup_{i} V_{\Omega i}$ with boundary values zero at $\gamma_{\Omega}=\partial V_{\Omega}$. We may extend u to be identically zero in W_{Ω}. Moreover we consider the following two families of functions. The first family N_{Ω} consists of $u \in H P_{0}\left(V_{\Omega}\right)$ such that $\int_{r_{\Omega}} * d u=2 \pi$ where γ_{Ω} is positively oriented with respect to Ω. The second family is the family F of $q \in H(R-\zeta)$ having the following properties:
(c) $q|D=\log | z-\zeta \mid+h(z)$ with $h \in H(\bar{D})$ and $h(\zeta)=0$,
(d) q is of L_{1}-type at δ,
(e) q is bounded from below near γ.

In addition to the obvious fact that N_{Ω} and F are convex, they are related to each other as follows.

Lemma. There exists a bijective map T of N_{Ω} onto F satisfying (f) $T(\lambda u+(1-\lambda) v)=\lambda T u+(1-\lambda) T v$ for $u, v \in N_{\Omega}, 0<\lambda<1$,
(g) $T u-u$ is bounded in V_{Ω}.

For the proof let $u \in N_{\Omega}$ and denote by L the direct sum of $L_{1}^{(\Omega)}$ and the Dirichlet operator with respect to D (Sario [5]). Take the singularity function s_{u} on $(R-\bar{\Omega}) \cup(D-\zeta)$ defined by $s_{u}=u$ in $R-\bar{\Omega}$ and $s_{u}=\log |z-\zeta|$ in $D-\zeta$. Since the total flux of s_{u} is zero, the equation $p-s_{u}=L\left(p-s_{u}\right)$ has a unique solution p_{u} on R, up to an additive constant. Normalize p_{u} so as to satisfy (c) and set $T u=p_{u}$. Obviously $T u \in F$. Since γ is of zero capacity, T is clearly injective. The property in (f) and (g) follows easily from the definition of T.

To see the surjectivity let $q \in F$. We denote by $B q$ the bounded harmonic function in V_{Ω} with the boundary values $q \mid \gamma_{\Omega}$ at γ_{Ω}. Set $u=q-B q$ in V_{Ω} and $u=0$ in W_{Ω}. Since q is of L_{1}-type at \dot{o} and bounded from below near $\gamma, u \in N_{\Omega}$. Therefore we have only to show that $q-s_{u}=L\left(q-s_{u}\right)$ in $(R-\bar{\Omega}) \cup(D-\zeta)$. By the definition of $u, q-u=B q$ in V_{Ω} and $L_{1}^{(\Omega)}(q-u)=L_{1}^{(\Omega)} q$ in V_{Ω}. Furthermore $B q-L_{1}^{(\Omega)} q$ is bounded in V_{Ω} and vanishes on γ_{Ω}. Hence $B q=L_{1}^{(\Omega)} q$
in V_{Ω}. On the other hand, $L_{1}^{(\Omega)}(q-u)=L_{1}^{(\Omega)} q$ in W_{Ω}. Consequently $q-u=L(q-u)$ also in W_{Ω}. Finally it is obvious that the same equality holds in $D-\zeta$.
3. We denote by M_{Ω} the set of all minimal function in $H P_{0}\left(V_{\Omega}\right)$ normalized as $\int_{r \Omega} * d u=2 \pi$. Lemma 2 guarantees that the cardinal number of M_{Ω} is independent of the choice Ω. Extending Heins' definition (Heins [3]), we call it the harmonic dimension of γ, which we shall denote by d_{r}.
4. The number of capacity functions. We are now able to state our main result:

Theorem. Suppose that γ is an isolated closed subset of zero capacity in the ideal boundary of R. If the harmonic dimension of γ is 1 , then the capacity function of γ is unique. If the harmonic dimension of γ is greater than 1, there are a continuum of capacity functions of γ.

Denote by C_{γ} the family of all capacity functions of γ, by c_{γ} the cardinal number of C_{r} and also by ψ the cardinal number of the continuum. Then the statement of our theorem can also be summarized in a single formula as follows:

$$
\begin{equation*}
c_{r}=1+\left(d_{t}-1\right) \psi \tag{1}
\end{equation*}
$$

5. Before entering the proof we need two lemmas, which will be used to show that $C_{r}=F$. Let R_{n}, γ_{n} and $\delta_{n j}$ be as in 1. Set $V_{n i}=V_{R_{n} i}$ and $W_{n j}=W_{R_{n} j}$ (see 2). Moreover put $\Omega_{0 n}=R-\bar{V}_{0}-\bar{W}_{n}$ with $V_{0}=\bigcup_{i} V_{0 i}$ and $W_{n}=\bigcup_{j} W_{n j}$.

Lemma. Let $p \in F$. Then there exists a sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ with $p_{n} \in H\left(\Omega_{0 n}-\zeta\right)$ satisfying
(h) $\quad p_{n}|D=\log | z-\zeta \mid+h_{n}(z)$ with $h_{n} \in H(\bar{D})$ and $h_{n}(\zeta)=0$,
(i) $p_{n} \mid \gamma_{0}=p+k_{n}$ (const.) and $p_{n} \mid \delta_{n j}=d_{n i}$ (const.) with

$$
\int_{\delta_{n j}} * d p_{n}=0
$$

(j$)\left\{p_{n}\right\}$ converges uniformly to p on any compact K with

$$
\bar{K} \subset \Omega_{0}=R-\bar{V}_{0}-\zeta
$$

For the proof construct p_{n} with (h) and (i) by the linear operator method of Sario [5]. Denote by D_{ε} a parametric disk about ζ with
radius ε and by α_{ε} its circumference. We orient α_{ε} and γ_{0} negatively with respect to $\Omega_{0 n}-\bar{D}_{\varepsilon}$ and write according to Ahlfors-Sario [1]:

$$
A_{\varepsilon}(p)=\int_{\alpha_{\varepsilon}+\gamma_{0}} p^{*} d p, \quad B_{n}(p)=\int_{\hat{o}_{n}} p^{*} d p, \quad A_{\varepsilon}(p, q)=\int_{\alpha_{\varepsilon}+; 0} p^{*} d q
$$

and

$$
B_{n}(p, q)=\int_{\delta n} p^{*} d q
$$

For $m>n$ we denote by $D_{n, \varepsilon}\left(p_{m}-p_{n}\right)$ and $D_{n}\left(p_{m}-p_{n}\right)$ Dirichlet integrals of $p_{m}-p_{n}$ taken over $\Omega_{0 n}-\bar{D}_{\varepsilon}$ and $\Omega_{0 n}$ respectively. Since $B_{n}\left(p_{n}\right)=0, B_{n}\left(p_{n}, p_{m}\right)=0$,

$$
D_{n, \varepsilon}\left(p_{m}-p_{n}\right)=B_{n}\left(p_{m}\right)+2 A_{s}\left(p_{n}, p_{m}\right)-A_{s}\left(p_{n}\right)-A_{s}\left(p_{m}\right) .
$$

Observing that $B_{n}\left(p_{m}\right)<0$ and letting $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
D_{n}\left(p_{m}-p_{n}\right) \leqq a_{m}-a_{n} \text { where } a_{j}=\int_{r_{0}} p^{*} d p_{j}+2 \pi k_{j} \quad(j=n, m) \tag{2}
\end{equation*}
$$

Moreover we construct another sequence $q_{n} \in H\left(\Omega_{0 n}-\zeta\right)$ satisfying
(h') $\quad q_{n}|D=\log | z-\zeta \mid+h_{n}^{\prime}(z)$ with $h_{n}^{\prime} \in H(\bar{D})$ and $h_{n}^{\prime}(\zeta)=0$,
(i') $q_{n} \mid \gamma_{0}=p+k_{n}^{\prime}$ (const.) and the normal derivative of q_{n} vanishes on δ_{n}. By the same way as above we obtain

$$
\begin{equation*}
D_{n}\left(q_{m}-q_{n}\right) \leqq b_{n}-b_{m} \text { where } b_{j}=\int_{r_{0}} p^{*} d q_{j}+2 \pi k_{j}^{\prime} \quad(j=n, m) \tag{3}
\end{equation*}
$$ and

$$
\begin{equation*}
D_{n}\left(p_{n}-q_{n}\right)=b_{n}-a_{n} \tag{4}
\end{equation*}
$$

From (2), (3) and (4) we see a_{n} is increasing and b_{n} is decresing as n increases and that $a_{n} \leqq b_{n}$. Therefore $\lim _{n} a_{n}$ and $\lim _{n} b_{n}$ exist and are finite. In particular it follows from (2) that p_{n} converges uniformly to p on any compact K with $\bar{K} \subset \Omega_{0}$.
6. The following lemma is easy to see and plays an important role in the proof of our theorem.

Lemma. Let $p \in F$. Then there exist an exhaustion $\left\{R_{n}\right\}_{n=0}^{\infty}$ and a sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ with $p_{n} \in H\left(R_{n}-\zeta\right)$ having the properties (h) of Lemma 5 and
(k) $p_{n} \mid \gamma_{n}=p+k_{n}$ (const.) and $p_{n} \mid \delta_{n j}=d_{n j}$ (const.) with

$$
\int_{\partial_{x_{j}}} * d p_{n}=0,
$$

(1) $\left\{p_{n}\right\}$ converges uniformly to p on any compact K in $R-\zeta$.

Since γ has zero capacity we can see that there exists an Evans potential e_{0} for γ, i.e., a function $e_{0} \in H(R-\zeta)$ satisfying the following conditions (Nakai [4]):
(m) $\quad e_{0}|D=\log | z-\zeta \mid+w(z)$ with $w \in H(\bar{D})$ and $w(\zeta)=0$,
(n) e_{0} is of L_{1}-type at δ,
(o) $\lim _{z \rightarrow r} e_{0}(z)=+\infty$.

Needless to say $e_{0} \in F$.
7. Proof of theorem. Consider $p_{\lambda}=\lambda e_{0}+(1-\lambda) q$ with a fixed $q \in F$ and $0<\lambda<1$. It is clear that $\lim _{z \rightarrow r} p_{\lambda}(z)=+\infty$ and $p_{\lambda} \in F$. Therefore by Lemma 6 we obtain

$$
\begin{equation*}
\left\{p_{\lambda}\right\}_{0<\lambda<1} \subset C_{r} \tag{5}
\end{equation*}
$$

On the other hand, obviously

$$
\begin{equation*}
C_{r} \subset F \tag{6}
\end{equation*}
$$

Moreover observe that $\lambda \rightarrow p_{\lambda}$ is injective if $e_{0} \neq q$.
By the approximation theorem of Heins [2], we can see at once that if $d_{r}=1$, so is the cardinal number of F. It is trivial that the converse is valid. Hence $c_{r}=1$ if and only if $d_{r}=1$.

Suppose that $d_{\gamma} \geqq 2$. Then there exists a $q \in F$ with $q \neq e_{0}$. By the injectivity of $\lambda \rightarrow p_{i}, \psi \leqq c_{\gamma}$. Conversely it follows from (6) that $c_{r} \leqq$ the cardinal number of F which is not greater than ψ. Thus $c_{r}=\psi$. In either case, since $d_{r} \leqq \psi$, we have $c_{r}=1+\left(d_{r}-1\right) \psi$.

The author would like to express his warmest thanks to Professor Nakai for his kind guidance. He is also grateful for the valuable comments of the refree.

References

1. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1960.
2. M. Heins, A lemma on positive harmonic functions, Ann. of Math. 52 (1950), 568-573.
3. -, Riemann surfaces of infinite genus, Ann. of Math. 55 (1952), 296-317.
4. M. Nakai, On Evans patential, Proc. Japan Acad. 38 (1962), 624-629.
5. L. Sario, A linear operator method on arbitrary Riemann surfaces, Trans. Amer. Math. Soc. 72 (1952), 281-295.
6. —, Capacity of the boundary and of a boundary component, Ann. of Math. 59 (1954), 135-144.
7. L. Sario and K. Noshiro, Value distribution theory, D. Van Nostrand, 1966.

Received October 2, 1967 and in revised form February 27, 1968. This is a part of the author's thesis for the partial satisfaction of the degree Master of Science at Nagoya University.

