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ON THE GEOMETRY OF THE UNIT BALL IN THE
SPACE OF REAL ANNIHILATING MEASURES

P.R. AHERN

Our purpose is to study the geometry of the unit ball in
the space of real measures on the boundary of a finite Riemann
surface that annihilate the analytic functions on that surface
with continuous boundary values. We show that the number
of boundary components of the surface (and hence the topol-
ogical type) can be determined from the geometry of this unit
ball. More precisely, if the surface has & boundary components
then this unit ball has 2* — 2 “flat faces” of highest possible
dimension., We also get some information on extreme points
and conclude with an example to show that the linear structure
of this unit ball depends not only on the topology of the surface
but also on some of its conformal structure,

Let R be a finite Riemann surface with boundary I°, and let A
denote the algebra of complex valued functions that are continuous
on B = RU I and holomorphic on R, and let ReA denote the space
of real parts of functions in A. If # is the first Betti number of R
then it is well-known that ReA has codimension 7 in Cx(I"), the space
of continuous real valued functions on I". In other words, the space
N of real measures on I" that annihilate A has dimension n over the
real numbers,

Fix £e R and let dm denote the unique positive measure on I”
such that

w(e) = Sudm

for all » that are continuous on R and harmonic on R. We know
the following, from [4]: if dve N then dv = hdm where h is the
restriction to I of a function that is meromorphic on B and regular
on I'. Moreover there is a meromorphic differential @ on R that is
regular and nonvanishing on I” and real along I", @ has the property
that if Adm e N, hw is holomorphic on R. Also “@w = dm” in the
sense that
S udm = S UwW
r
for every continuous function % on I". Hence if 4 is meromorphic on
R and real along I" then hdm e N because for all fe A

thdm — Srfha) —0
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since hw is a holomorphic differential. Finally we know that w has
a simple pole at £, is otherwise regular on R, and vanishes precisely
at the n critical points of the Greens function for R with pole at &.
If 6 is the divisor of w we have:

LEMMA 1. If h is a real valued function in L'(dm) then hdm e N
if and only if h is meromorphic on R and a multiple of 6= on R.

So we have now identified N with _
N, = {he L*({dm): h is real valued on I", meromorphic on R and
a multiple of ' on R}. Note that if dy = hdm € N then the total

variation of dy is just | |A|dm. Note also that no nonzero element of

N, can vanish on a set of positive measure, dm.

Let D denote the space of holomorphic differentials on R that
are real along I', then D has dimension % over the real numbers. If
he N, then hwe D; since the correspondence % — hw is one to one
and N, and D have the same dimension we see that this correspondence
maps N, isomorphically onto D. Since @ doesn’t vanish on I", hw
vanishes on I" if and only if » vanishes on I".

Before discussing the geometry of the unit ball of N, we need
some elementary geometrical facts. Let N be an n-dimensional vector
space over the real numbers with a norm || |. Let

B={seN: [z <1
S={zeN:|z||=1.

A hyperplane is a translate of an (n — 1) dimension subspace. A hy-
perplane H is said to be a supporting hyperplane if HNS = HN B+ Q.
If H is a supporting hyperplane and H N S has nonempty interior re-
lative to H then that interior is called a face of S. Note that if H
is a hyperplane and H N S has nonempty interior relative to H, then
H is a supporting hyperplane. Note also that if x belongs to a face
then there is a unique supporting hyperplane containing z. If z,ye N
we let [z, y] and (x, y) be the closed and open segments joining « and
9. We omit the proofs of the following two elementary lemmas.

LemMA 2. If F, and F, are faces of S and x,€¢ F,, x,€ F, then
F, = F, if and only if [z, x,] S S.

LeEmMMA 3. If 2, %, +--,2,€8 and are linearly independent and
Yo+ Yn €S[w, Y] S S for i =2,---,m and ze (v, y) 1 =2, +-+, 0

then x lies on a face of S.

Now return to N,, recalling that no nonzero element of N, can
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vanish on a set of positive measure, dm, we can now apply a result
of de Leeuw and Rudin. We include a proof since our statement is
slightly different.

LEMMA 4. (de Leeuw-Rudin [2]) Let h,ge S be linearly inde-
pendent, tf w(h,g) denotes the plane through the origin containing
h and g, then w(h, g) N S contains a line segment one of whose in-
terior points is h tf and only if g/h is bounded on I'.

Proof. Suppose ¢ = g/h is bounded, let a = ng[kldm and then
choose € so small that —1 < ¢(p — a) £ 1, then

S]h—i_—s@——a)h[dm
=§]1:!:s(<p-— Q)| k| dm
=§(1is(go—a))|hldm=1.

Now h + e(@ — a)h = h + eg F eah e (g, h) and & is the midpoint
of the line joining % + &(p — @)k to b — (@ — a)h. On the other hand,
suppose f,, f.€eSNn(g, h) and h = 1/2(f, + f,) this means there is

O;éfen'(g,h)glh—l-f}dm:l
80
J11 fimiiniam =1

S0
1< flh<1l ae. dm

and gf/h[hl dm =0, i.e., f/h not constant. Now f = ag/h + B, since

f/h is not constant & is not zero and hence g/k is bounded.

Now suppose €S, and k doesn’t vanish on I” and ge S with g,
b linearly independent then g/h is bounded on I" so, as in the proof
of the previous lemma, there is an a such that for all sufficiently
small |¢|, 1 — ea)h + ege S. Now let k,g.-++, 9, be a basis for N.
By the same argument there are «,, ---, @, so that (1 — ca;)h + €g;€ S
for all sufficiently small |¢|,7 =2, ---, n. Fix such a small ¢ > 0 and
consider the functions f; = (1 — ca))h + ¢eg;, t =2, .-+, n. First b,
f2+++,f. are linearly independent because the matrix that expresses
these elements in terms of the basis %, g,, -+, ¢, has determinant ¢,
By Lemma 3, h lies on a face of S. On the other hand suppose %
lies on a face FF of S. If g€ F, g ++ h then clearly 7(g, ) N S contains
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a line segment with % as an interior point and so g/k is bounded on
I'. Choose g, *+-, 9,€ F so that h, g,, ---, g, are linearly independent.
Arguing as above we see that g,/h is bounded on I” for t =2, :++,n
and it follows that g/h is bounded on I" for all ge N. Suppose there
were 7€ I" such that h(n) = 0, then it would follow that g(») = 0 for
all ge N. Multiplying by @ we see that this would imply that
(@) = 0 for all zeD. If ¢ is a holomorphic differential on the
doubled surface R of R, then ¢ = 7, + ir, on R where 7, 7,€ D, [1],
so we would have that every holomorphic differential on R vanishes
at 7, that this is not the case follows from the Riemann-Roch theorem
for instance. Now let &, g € S; neither of which vanishes on I" then
each lies on a face, and they lie on the same face if and only if
[7, 9] = S, ie.,

Slth—l—(l—-t)gldm:l

for 0 <¢ <1, but
S[tk-&—(l——t)gldmgtSlhldm—}—(l—t)glg[dm-—-l

and equality holds if and only if » and g have the same sign on I.
Now we have the following theorem.

THEOREM 1. Let h be in the unit sphere S of N, then h lies
on a face if and only if h doesn’t vanish on I'. Moreover, if h,ge S,
neither vanishes on I', then h and g lie on the same face if and only
if h and g have the same sign on I.

Now suppose I" has k£ components Iy, -+, I",. Let 1<s=<k—1,
and pick s of these components I”;, ---,I"; . We want to show that
there exists ke S so that h >0 on I"; U---UT;, and

h<0I— (I U---UTly).

Let u be harmonic on R and u =0 on I'; U--- UL, and u =1
on I' —(I';, U --- UI). We consider the differential 7 = —*du + idu;
in local coordinates = takes the form

ou . 0u .
(—a—y— + 1 %) (dx + idy)

and is therefore holomorphic. Fix a boundary component I"; and con-
sider a conformal map of an annulus

z=re:r, < r <1}
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into R so that {|z| = 1} is carried onto I";. Then in these coordinates

along I';, = has the form —(ou/or)dd. Note that if I';SI"; U --- U,

then —ou/or > 0 and otherwise —ou/or < 0, [6] page 15. Now there

exists h e N, such that hw = 7 and since 7 doesn’t vanish on I" nei-

2T

ther does . Now |\ hw =\ 7= -—S (Oufor)dd. So S hw > 0 if
I, I, 0 r;

;S U UL, and S ho < 0 otherwise. Since | #d =\ ndm

r: I T

and » must have constant sign on each I°; it follows ‘that 2> 0 on

ryJ---uUrl;,and h<0on I'(I; U---U[l;). The components I;,

-«+, I';, can be chosen in 2* — 2 different ways. Combining this with

the fact two elements of S that don’t vanish on I lie on the same

face if and only if they have the same sign on I" we have:

THEOREM 2. If I has k components then S has 2* — 2 faces.

Next we consider the extreme points of B. From the de Leeuw-
Rudin lemma we see that he S is extreme if and only if for every
g € N,, the meromorphic function g/h is either constant or unbounded
on I', this says that » must have a “maximal number at zeros on I,

LEMMA 5. If he S, then h has at most 2n — 2 zeros on I, ©f h
1s extreme then it has at least w — 2 zeros on I'. If kb has 2n — 2
zeros on I then h is extreme.

Proof. Since hw is holomorphic on R, & has at most n poles on
R, and since % is real on I" it can be extended by reflection to the
doubled surface B. On R, h has the same number of zeros as poles
so if Z is the number of zeros of » on I" we have

22 —2P+ k=0 or
k=2P—2Z<2n — 2

since P < » and we know that % vanishes at e R.

Now suppose that h is extreme, and that @ is a function that
has a pole at & and zeros at the zeros of w, then hQ is an extreme
point of the unit ball of H', again by the result of the Leeuw-Rudin,
So we have [3],

Z—P+n—-1=<n/2.
Since Z — P = ——;—k we get
k=n— 2.

Let us assume now that % has 2n — 2 zeros on [I'. Since k =
2P — 2Z and P<n and Z =1, it follows that P=n and Z =1 and
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since h® is holomorphic and @ has exactly n zeros and one pole hw
is nonvanishing. Now if ge N, and g¢/h is bounded on I" then ¢ has
2n — 2 zeros on [ also, so gw is nonvanishing. Therefore, g/h =
gw/hw is holomorphic on R and real on I" and hence is constant. So
it follows from the de Leeuw-Rudin lemma that % is extreme. This
finishes the proof.

If we take an h e S that is not extreme then as we have seen
this means that there is a g € N, such that ¢ is not a constant multiple
of h and g vanishes at each point of I" where % does. If 7 is a point
of I" where g(n) # 0 then

h -Mg is an element of N,
9(7)

that vanishes at » as well as all those points of I” that A vanishes.

i

Of course, there are infinitely many such 7 so we have the following.

LeEMMA 6. If heS is not extreme and h has exactly k zeros on
I, then there are infinitely many distinct elements of S that have
at least k + 2 zeros on I', the zeros of h among them.

Recalling that any element of 5 with 2n — 2 zeros on /I” is ex-
treme we obtain:

COROLLARY. B has infinitely many extreme points.

ExampLiEs. In [3], it was seen that if D is a domain in the
Riemann sphere obtained by removing = + 1 slits on the real axis
then dz/F, zdz/F, ---,2""'dz/F gives a basis for the holomorphic dif-
ferentials on D that are real along the boundary of D. Here F(2)* =
(z —e) +++ (R — €y,1,) Where e, ---, ¢,,., are the end points of the slits.
Also 7 = dz/F is nonvanishing on the boundary of D. Suppose R is
conformally equivalent to such a domain D by means of a map . By
means of the map ¢ we can bring back the differentials ¢, zz, - .-, 2"z
to get a basis for the holomorphic differentials on R, real along I.
This basis takes the form v, @v, « -+, @™*v; where v doesn’t vanish on 7",
So any holomorphic differential on R that is real along I" takes the form
izt ap®)y, where the «, are real. Since @ is real on [ it extends
to give a two to one mapping of E onto the sphere. Since every real
value assumed on R — I' is assumed twice on R — I" it follows that
@ is two to one on I'. Take | <n — 1, pick 7, on one of the slits
¢ =1, --+, 1, not necessarily distinct. Then [, (@ — 7;)v has exactly
2] zeros on [", counting multiplicity. We see also that this differential
is extreme if and only if 2] = 2n — 2,
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Let R be a finite Riemann surface with first Betti number n.
Suppose there is a holomorphic differential ¥ on R that is real along
I' and that @ has 2n — 4 zeros on I" and that ¢ is not extreme. Then
there is another such differential + such that F = 4/p is holomorphic
on I, has a single pole on R and is real on I. So F extends to a
two to one map of B onto the Riemann sphere. Since F' is real along
I’ it follows, [3], that F' is one to one on R, i.e, F gives a conformal
map of R onto a domain on the sphere whose boundary is a finite
number of slits on the real axis.

Consider the case m = 3, there are only two topological types
possible: a plane domain with four boundary components or a torus
with 2 discs removed. In the first case S has fourteen faces, in the
second it has two faces. In the planar case if the domain is equivalent
to the complement of a finite number of slits on the real axis then
as we have seen there are many elements in S that have two zeros
and are not extreme. Neither can such a point be on a face. It
follows that such a point lies on a line segment that doesn’t lie on
any face. On the other hand if our domain is not equivalent to such
a slit domain then every element of S is either extreme or lies on a
face. The reason is that any element of S has either 0, 2, or 4 zeros
on I'. If it has two or four zeros it is extreme and if it has none
it lies on a face.
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