ANALYTIC SHEAF COHOMOLOGY GROUPS OF DIMENSION *n* OF *n*-DIMENSIONAL NONCOMPACT COMPLEX MANIFOLDS

Yum-Tong Siu

In this paper the following question is considered: if X is a σ -compact noncompact complex manifold of dimension n and \mathscr{F} is a coherent analytic sheaf on X, does $H^n(X, \mathscr{F})$ always vanish? The answer is in the affirmative.

This question was first proposed by Malgrange in [6] and in the same paper he gave the affirmative answer for the special case when \mathcal{T} is locally free.

THEOREM. If X is an n-dimensional σ -compact noncompact complex manifold and \mathscr{F} is a coherent analytic sheaf on X, then $H^n(X, \mathscr{F}) = 0.$

Proof. I. For $0 \leq p \leq n$ let $\mathscr{A}^{(0,p)}$ denote the sheaf of germs of $C^{\infty}(0, p)$ -forms on X and \mathscr{O} denote the structure-sheaf of X. Since at a point in a complex number space the ring of C^{∞} function-germs as a module over the ring of holomorphic function-germs is flat ([7], Ths. 1 and 2 bis), the sequence

obtained by tensoring

$$0 \longrightarrow \mathscr{O} \longrightarrow \mathscr{A}^{(0,0)} \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \mathscr{A}^{(0,n-1)} \xrightarrow{\overline{\partial}} \mathscr{A}^{(0,n)} \longrightarrow 0$$

with \mathcal{F} over \mathcal{O} is exact (cf. [8], Th. 3).

The theorem follows if we can prove that

$$\beta_X \colon \Gamma(X, \mathscr{A}^{(0,n-1)} \bigotimes_{\mathcal{O}} \mathscr{F}) \longrightarrow \Gamma(X, \mathscr{A}^{(0,n)} \bigotimes_{\mathcal{O}} \mathscr{F})$$

induced from

$$\bar{\partial}':\mathscr{A}^{(0,n-1)}\bigotimes_{\mathscr{I}}\mathscr{F}\longrightarrow\mathscr{A}^{(0,n)}\bigotimes_{\mathscr{I}}\mathscr{F}$$

is surjective.

II. Suppose $0 \leq p \leq n$ and

$$\mathcal{O}^r \xrightarrow{\phi} \mathcal{O}^s \xrightarrow{\psi} \mathcal{F} \longrightarrow 0$$

is an exact sequence of sheaf-homomorphisms on an open subset U of

X which is biholomorphic to an open subset of C^n . Tensoring the sequence with $\mathscr{H}^{(0,p)}$ over \mathscr{O} , we obtain an exact sequence

Since $\operatorname{Im} \phi'$ and $\operatorname{Ker} \phi'$ are fine sheaves,

$$\Gamma(U,(\mathscr{A}^{(0,p)})^r) \xrightarrow{\widetilde{\phi}} \Gamma(U,\mathscr{A}^{(0,p)})^s) \xrightarrow{\widetilde{\psi}} \Gamma(U,\mathscr{A}^{(0,p)} \bigotimes_{\mathscr{I}} \mathscr{I}) \longrightarrow 0$$

is exact. $\Gamma(U, (\mathscr{M}^{(0,p)})^s)$ is a Fréchet space if it is given the topology of uniform convergence of derivatives of coefficients on compact subsets. Since $\tilde{\phi}$ is defined by a matrix of holomorphic functions, by paragraph 1 of [7], Im $\tilde{\phi}$ is a closed subspace of $\Gamma(U, (\mathscr{M}^{(0,p)})^s)$ (cf. [8], Th. 5). We give $\Gamma(U, \mathscr{M}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ the quotient topology and it becomes a Fréchet space.

Suppose G is an open subset of X. We can find a countable Stein open cover $\{U_k\}_{k=1}^{\infty}$ of G such that U_k is biholomorphic to an open subset of \mathbb{C}^n and on U_k we have an exact sequence of sheaf-homomorphisms

$$\mathcal{O}^{r_k} \xrightarrow{\phi_k} \mathcal{O}^{s_k} \xrightarrow{\psi_k} \mathcal{F} \longrightarrow 0$$
.

We give $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ the smallest topology that makes every restriction map $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}) \to \Gamma(U_k, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ continuous. This topology of $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ is independent of the choices of $\{U_k\}, \{\phi_k\}, \text{ and } \{\psi_k\}.$ $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ is a Fréchet space.

$$\beta_{G}\colon \Gamma(G,\mathscr{A}^{(0,n-1)}\bigotimes_{\mathscr{O}}\mathscr{F})\longrightarrow \Gamma(G,\mathscr{A}^{(0,n)}\bigotimes_{\mathscr{O}}\mathscr{F})$$

induced from

$$\overline{\partial}' \colon \mathscr{A}^{(0,n-1)} \bigotimes_{\cup} \mathscr{F} \longrightarrow \mathscr{A}^{(0,n)} \bigotimes_{\cup} \mathscr{F}$$

is continuous (cf. [8], pp. 21-24).

III. Suppose G is an open subset of X. Denote the strong dual of $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ by $(\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}))^*, 0 \leq p \leq n$. Suppose $T \in (\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}))^*$. The support of T, denoted by Supp T, is defined as the complement in G of the largest open subset H such that, if $a \in \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ and Supp $a \subset H$, then T(a) = 0. Supp T is well-defined, because H exists by partition of unity. Observe that, if $a_k \in \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ and for every compact subset K of $G(\bigcup_{k=m}^{\infty} \operatorname{Supp} a_k) \bigcap K = \varnothing$ for some m depending on K, then $a_k \to 0$ in $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$. We have:

(1) If V is a bounded subset of (Γ(G, 𝒴^(0,p) ⊗_𝔅 𝖅))*, then there is a compact subset K of G such that Supp T⊂K for T∈V. IV. Suppose G is an open subset of X. Fix

$$T \in (\Gamma(G, \mathscr{M}^{(0,n)} \bigotimes_{\mathcal{O}} \mathscr{F}))^*$$

and let $\operatorname{Supp} T\beta_G = K$. Let \widehat{K} denote the union of K together with all the components of G - K relatively compact in G. We are going to prove that $\operatorname{Supp} T \subset \widehat{K}$. Let L be a component of G - K not relatively compact in G. We need only prove that $L \cap \operatorname{Supp} T = \emptyset$. Suppose the contrary. Since L is not relatively compact in $G, L \not\subset \operatorname{Supp} T$ (Supp T is compact by (1)). Supp T has a boundary point x_0 in L. We would have a contradiction if we can prove: (2) Every boundary point x of Supp T is a boundary point of

Supp $T\beta_{g}$.

To prove (2) we suppose that x is a boundary point of Supp T and x is not a boundary point of Supp $T\beta_{G}$. Since Supp $T\beta_{G} \subset$ Supp T, $x \in X -$ Supp $T\beta_{G}$. On some connected open neighborhood D of x in X - Supp $T\beta_{G}$ we have a sheaf-epimorphism $\theta: \mathcal{O}^{s} \to \mathcal{F}$. Tensoring it with $\mathscr{A}^{(0,p)}$ over \mathcal{O} , we obtain a sheaf-epimorphism $\theta'_{p}: (\mathscr{A}^{(0,p)})^{s} \to \mathscr{A}^{(0,p)} \otimes_{\mathcal{O}} \mathcal{F}$. $\tilde{\theta}_{p}: \Gamma(D, (\mathscr{A}^{(0,p)})^{s}) \to \Gamma(D, \mathscr{A}^{(0,p)} \otimes_{\mathcal{O}} \mathcal{F})$ induced by θ'_{p} is surjective.

Let $\{N_k\}_{k=1}^{\infty}$ be a sequence of compact subsets of D such that $N_k \subset \operatorname{Int} N_{k+1}$ and $\bigcup_{k=1}^{\infty} N_k = D$. Let $\Gamma_{N_k}(D, (\mathscr{A}^{(0,p)})^s)$ be the set of all elements of $\Gamma(D, (\mathscr{A}^{(0,p)})^s)$ having supports contained in N_k . Give $\Gamma_{N_k}(D, \mathscr{A}^{(0,p)})^s)$ the topology induced from $\Gamma(D, (\mathscr{A}^{(0,p)})^s)$. Give $\Gamma_*(D, (\mathscr{A}^{(0,p)})^s) = \bigcup_{k=1}^{\infty} \Gamma_{N_k}(D, (\mathscr{A}^{(0,p)})^s)$ the topology as the strict inductive limit of $\{\Gamma_{N_k}(D, \mathscr{A}^{(0,p)})^s\}$. $\Gamma_*(D, (\mathscr{A}^{(0,p)})^s)$ and its topology are independent of the choice of $\{N_k\}$.

For $a \in \Gamma_*(D, (\mathscr{A}^{(0,p)})^s)$, since $\operatorname{Supp} \tilde{\theta}_p(a) \subset D$ is compact, $\tilde{\theta}_p(a)$ can be trivially extended to an element $(\tilde{\theta}_p(a))' \in \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$. The map $\xi_p: \Gamma_*(D, (\mathscr{A}^{(0,p)})^s) \to \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ defined by $\xi_p(a) = (\tilde{\theta}_p(a)))'$ is a continuous linear map.

(3) If $b \in \Gamma(G, \mathscr{M}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ and Supp b is a compact subset of D, then $b \in \operatorname{Im} \xi_p$.

The following diagram is commutative:

Since $\operatorname{Supp}(T\beta_G) \cap D = \emptyset$, $T\xi_n \overline{\delta} = T\beta_G \xi_{n-1} = 0$. $T\xi_n$ can be represented by an s-tuple of distribution-(n, 0)-forms on D (cf. the argument on p. 42, [2]). $T\xi_n \overline{\delta} = 0$ implies that $T\xi_n$ can be represented by an s-tuple of holomorphic (n, 0)-forms on D. Since $\operatorname{Supp} T\xi_n \subset \operatorname{Supp} T$ and $D \not\subset \operatorname{Supp} T$, the s-tuple of holomorphic forms representing $T\xi_n$ must be identically zero. Hence $T\xi_n = 0$. By (3) Supp T is disjoint from all compact subsets of D. x is not a boundary point of Supp T.

Hence (2) is proved. We have:

(4) Supp $T \subset (\text{Supp } T\beta_G)$ for $T \in (\Gamma(G, \mathscr{A}^{(0,n)} \otimes_{\mathscr{O}} \mathscr{F}))^*$. Denote the transpose of β_G by $(\beta_G)^*$. (4) implies that

(5) $(\beta_g)^*$ is injective,

because every component of G is noncompact.

V. By Lemma 3, [6], we have:

(6) For every point x of X there is an open neighborhood U of x in X such that $H^{n}(W, \mathscr{F}) = 0$ for every open subset W of U.

Suppose K is a compact subset of X. By (6) we can find two finite collections $\mathfrak{A}, \mathfrak{B} = \{B_k\}_{k=1}^m$ of relatively compact open Stein subsets of X such that (i) both \mathfrak{A} and \mathfrak{B} cover K; (ii) intersections of subcollections of \mathfrak{A} and intersections of subcollections of \mathfrak{B} are Stein; (iii) the closure of any member of \mathfrak{A} is contained in some member of \mathfrak{B} ; and (iv) for any open subset W of any $B_k, 1 \leq k \leq m, H^n(W, \mathscr{F}) = 0$.

Let G and H be respectively the union of all the members of \mathfrak{A} and \mathfrak{B} . Define inductively $G_0 = G$ and $G_k = G_{k-1} \cup B_k, 1 \leq k \leq m$. $H^n(G_k, \mathscr{F}) \to H^n(G_{k-1}, \mathscr{F}) \oplus H^n(B_k, \mathscr{F}) \to H^n(G_{k-1} \cap B_k, \mathscr{F})$ is exact (Part a of §17, [1]). $H^n(G_{k-1} \cap B_k, \mathscr{F}) = 0$ implies that the restriction map $H^n(G_k, \mathscr{F}) \to H^n(G_{k-1}, \mathscr{F})$ is surjective for $1 \leq k \leq m$. Since $H = G_m$, the restriction map $H^n(H, \mathscr{F}) \to H^n(G, \mathscr{F})$ is surjective. $H^n(G, \mathscr{F})$ is finite-dimensional (cf. Proof of Th. 11, §17, [1]). Since $H^n(G, \mathscr{F}) \approx \operatorname{Coker} \beta_G$, Im β_G is closed. Im $(\beta_G)^*$ is weakly closed ([5], Préliminaires, §3, Th. 2). Therefore we have:

(7) Every compact subset K of X has an open neighborhood G in X such that $\text{Im}(\beta_g)^*$ is weakly closed.

VI. By (5) and Th. 2, §3, Préliminaires, [5], the theorem follows if we can prove that the intersection of $\operatorname{Im}(\beta_X)^*$ with every weakly compact sebset of $(\Gamma(X, \mathscr{A}^{(0,n-1)} \otimes_{\mathscr{T}} \mathscr{F}))^*$ is weakly compact. Suppose V is a weakly compact subset of $(\Gamma(X, \mathscr{A}^{(0,n-1)} \otimes_{\mathscr{T}} \mathscr{F}))^*$. V is strongly bounded ([3], Th. 3). By (1) there exists a compact subset K of X such that

(8) Supp $S \subset K$ for $S \in V$.

 \hat{K} is compact ([5], Chap. IV, §3, Lemma 3). By (7) there exists an open neighbourhood G of \hat{K} in X such that Im $(\beta_{g})^{*}$ is weakly closed. By (4) and (8) we have:

(9) Supp $T \subset \hat{K}$ if $T \in (\Gamma(X, \mathscr{A}^{(0,n)} \otimes_{\mathscr{O}} \mathscr{F}))^*$ and $T\beta_X \in V$.

Let g be a C^{∞} function on G having compact support and being identically one on some neighborhood of \hat{K} . Suppose $0 \leq p \leq n$. Let $\sigma_p: \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}) \to \Gamma(X, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ be defined by trivial extension after multiplication by g. σ_p is continuous. Let $\rho_p: \Gamma(X, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}) \to \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ be the restriction map. (10) If $R \in (\Gamma(X, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}))^*$ and $\operatorname{Supp} R \subset \hat{K}$, then $R\sigma_p \rho_p = R$.

To prove that $\operatorname{Im} (\beta_x)^* \cap V$ is weakly compact, it suffices to prove that it is weakly closed. Suppose $\{S_i\}_{i \in I}$ is a net in $\operatorname{Im} (\beta_x)^* \cap V$ converging weakly to $S \in V$. By (8) Supp $S \subset K$. $S_i = T_i \beta_X$ for some $T_i \in (\Gamma(X, \mathscr{N}^{(0,n)} \bigotimes_{\mathscr{O}} \mathscr{F}))^*$. By (9) Supp $T_i \subset \hat{K}$. Supp $T_i \sigma_n \subset \hat{K}$ and Supp $S\sigma_{n-1} \subset \hat{K}$. The following diagram is commutative:

$$\Gamma(X, \mathscr{A}^{(0,n-1)} \bigotimes \mathscr{F}) \xrightarrow{\beta_X} \Gamma(X, \mathscr{A}^{(0,n)} \bigotimes \mathscr{F})$$

$$\rho_{n-1} \downarrow \qquad \rho_n \downarrow$$

$$\Gamma(G, \mathscr{A}^{(0,n-1)} \bigotimes \mathscr{F}) \xrightarrow{\beta_G} \Gamma(G, \mathscr{A}^{(0,n)} \bigotimes \mathscr{F}).$$

Take $a \in \Gamma(G, \mathscr{A}^{(0,n-1)} \bigotimes_{\mathscr{O}} \mathscr{F})$. Let $b = \sigma_{n-1}(a) \in \Gamma(X, \mathscr{A}^{(0,n-1)} \bigotimes_{\mathscr{O}} \mathscr{F})$. Then $\rho_{n-1}(b) = ga$. Since $\hat{K} \cap \operatorname{Supp} \beta_G(a - ga) = \emptyset$,

$$T_i\sigma_n\beta_G(a) = T_i\sigma_n\beta_G(ga) = T_i\sigma_n\beta_G\rho_{n-1}(b) = T_i\sigma_n\rho_n\beta_X(b) = T_i\beta_X(b)$$

by (10). Since $\hat{K} \cap \text{Supp}(a - ga) = \emptyset$,

$$S\sigma_{n-1}(a) = S\sigma_{n-1}(ga) = S\sigma_{n-1}\rho_{n-1}(b) = S(b)$$
.

Since $T_i\beta_X(b) \to S(b)$, $T_i\sigma_n\beta_G(a) \to S\sigma_{n-1}(a)$. Hence $T_i\sigma_n\beta_G \to S\sigma_{n-1}$ in the weak topology of $(\Gamma(G, \mathscr{A}^{(0,n-1)} \otimes_{\mathscr{O}} \mathscr{F}))^*$. Since $\operatorname{Im}(\beta_G)^*$ is weakly closed, there exists $T' \in (\Gamma(G, \mathscr{A}^{(0,n)} \otimes_{\mathscr{O}} \mathscr{F}))^*$ such that $T'\beta_G = S\sigma_{n-1}$. Let $T = T'\rho_n$. Then

$$T\beta_{X} = T' \rho_{n} \beta_{X} = T' \beta_{G} \rho_{n-1} = S \sigma_{n-1} \rho_{n-1} = S$$
.

 $S \in \text{Im } (\beta_x)^* \cap V$. Im $(\beta_x)^* \cap V$ is weakly closed.

The author gratefully acknowledges the encouragements and help from Professor Robert C. Gunning.

References

1. A. Andreotti, and H. Grauert, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France **90** (1962), 193-259.

2. G. DeRham, Variétés Différentiables, Hermann, Paris, 1955.

3. J. Dieudonné and L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier 1 (1950), 61-101.

4. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1966.

5. B. Malgrange, Existence et approximation des solutions des équations aux dérivée partielles et des équations de convolution, Ann. Inst. Fourier 6 (1955-56), 272-355.

6. ____, Faisceaux sur des variétés analytiques-réeles, Bull. Soc. Math. France 85 (1957), 231-237.

7. ____, Division of distiributions IV, Séminaire Schwartz 4, No. 25 (1959-60).

8. Y.-T. Siu, Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy, Math. Z. 102 (1967), 17-29.

Received November 1, 1967.

UNIVERSITY OF NOTRE DAME NOTRE DAME, INDIANA