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NORMALIZERS OF ^-SUBGROUPS IN FINITE GROUPS

GEORGE GLAUBERMAN

In a recent paper, Sims obtained some striking applications
of graph theory to group theory. Using his work, Wong
determined every finite primitive permutation group in which
the stabilizer of a point has some orbit of length three. The
techniques of Sims and Wong can be applied to other situations
that occur in investigations of finite groups. In this paper
we obtain some applications that we will use in studying
weakly closed elements of Sylow 2-subgroups.

THEOREM 1. Suppose P is a subgroup of a finite group G, g eG,
and P Π P9 is a normal subgroup of prime index p in Pg. Let n be
a^positive integer, and let G = < P, P9, , Pgn > . Assume that:

(1) g normalizes no nonidentity normal subgroup of P, and
(2) P Π Z(G) = 1.

Then I JP I — pt for some positive integer t for which t ^ 3n and
t Φ 3w — 1 . Moreover, if n = 2, p — 2, and t = 6, then P contains a
nonidentity normal subgroup of G.

THEOREM 2. Suppose H is a subgroup of a finite group G, P is
a Sylow 2-subgroup of H, O2(H) Φ 1, and H/O2(H) is a dihedral group.
Let S be a Sylow 2-subgroup of G that contains P, and let \P\ — 2\

( I ) Suppose y eS-P,y2 e PC(P), and y normalizes P. Assume
y does not normalize any nonidentity normal subgroup of H contained
in P. Then 2 ^ t ^ 4, and H/K(H) is isomorphic to Z2 xZ2, S4, or

( I I ) Assume the hypothesis of (I), and suppose further that
NS(O2(H)) — P. If t — 2 or t = 3, then S is a dihedral or a semi-
dihedral group. It t = 4, then S is a group of order 32 generated
by elements x,y, and z satisfying

x8 = y2 = z2 = [y, z] = 1 , [x, y] = x6, and [x, z\ — x^.

(III) Suppose P < S and NS(Q) = P for every nonidentity normal
subgroup Q of H that is contained in P. Then H satisfies the con-
clusions of (I) and (II).

Throughout the paper, we will assume that G is a finite group.
We will generally use the notation of [5] and [9]. In particular, if
G denotes a permutation group on a set Ω and aeΩ,Ga will denote
the stabilizer of a in G. Also, Zn1 Dn, and Sn will denote the cyclic
group of order n, the dihedral group of order n, and the symmetric
group of degree n.
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If H is an element or a subgroup of G and if geG, we let
Ha = g~~ιHg. Suppose H is a subgroup of G. We let O2(H) denote
the largest normal 2-subgroup of H and K{H) denote the 2-regular
core, or largest normal subgroup of odd order, of H.

2* Applications of Sims' method* The proof of Theorem 1 de-
pends on the arguments in Sims' paper [5]. The following result is
essentially a restatement of his Proposition 2.6.

LEMMA 1. Let x and g be elements of G. Put x{ = xgί — g~ίxgi

for ί = 0, ± 1 , , and define Hi = < x19 , xi > for each i >̂ 1. Let
Ho = 1. Suppose that x has prime order p and that there exist
positive integers t and n such that

(1) <Ht,g>=G,
(2) \Hi:Hi_1\ = p , l^i^t,and
( 3 ) Ht contains no nonidentity normal subgroup of G and no

nonidentity subgroup of Z(Ht+n).
Then t :g Sn and t Φ 3w —1. Moreover, if n = 2, p = 2, and t = 6,

then Ht contains a nonidentity normal subgroup of HQ.

Proof. Let s = ί + 1. Suppose l ^ i ^ t . By (1) and (2), G =
< χl9 g > = < Hi, g > and | Jff< | = p*. By (3), # does not normalize
H^ Now the proof of Lemma 2.7 of [5] remains valid; that lemma
states that H{ is Abelian whenever 1 ̂  i < (2s + l)/3 = (2ί + 3)/3.

Assume that t > 3n or that £ = 3w — 1. Note that in the latter
case, t + n is odd. Let i = (t + n + l)/2 if £ + n is odd, and i =
(t + n + 2)/2 if ί + w is even. Then 1 ̂  i <Z t and 2i - 1 > t + n.
Therefore Ht Π Z(H2i^) = 1. Since

fl.w = < fl,, (fl,)'*"1 > and s4 6 Hi n (H,)^-1 ,

Hi is not Abelian. By the previous paragraph, i < (2ί + 3)/3, which
yields a contradiction.

Now suppose w = 2, p = 2, and ί = 6. On pages 85-86 of [5],
Sims proves that

[xif Xj] = 1 for I i — j I < 3

\Xl, Xξ>\ = Xs y [X2j ^ β j = *^4 > L*^3> ^ 7 J : = *^8 >

and

for some integers c, d. Therefore,



NORMALIZERS OF p-SUBGROUPS IN FINITE GROUPS 139

Thus H8 = <xlf , #8 > normalizes < x3, xiy x6, x6 >. This completes
the proof of Lemma 1.

Suppose G is a transitive permutation group on a set Ω. Let
aeΩ, and let A be an orbit of Ga on Ω. By Propositions 4.1 and 4.2
of [5], there exist A(β) and A'(β) for each jSefl such that:

(1) A(β) and A'(β) are orbits of Gβ on fl and Λ(α) = A,
(2) A(a)9 = 4(α*) and Λ'(α:)' = Λ'(α*) for all # e G, and
( 3) /3 e A(a) if and only if a e Λ'{β).
Let £7 = {(β, 7)\βeΩ,ye A(β)}. Then (Ω, E) is called the graph

of Λ. It is undirected if Λ(α) = Λ'(α:) and is directed if A{a) Φ A'{a).
By Proposition 4.3 of [5], G acts as a group of automorphisms of the
graph of A and is transitive on both the points and the edges.

LEMMA 2. Suppose g eG and a9 e A. Then the graph of A is
connected if and only if < Ga, g > = G.

Proof. Let H = < Ga, g> and Γ = {ah \ h e H}. Then A =
{α:** |a?eG«}. By the proof of Theorem 7.4 of [7], Γ = Ω it and only
if H = G. For every αfe e Γ,

Similarly,

A'(ah) = /t'(α)Λ - {αff-la;fe I a? e Gβ} S Γ .

Thus, if the graph of A is connected, then Γ = β.
Conversely, assume that ϋ = G. Let Φ be the connected com-

ponent of α in Ω. Since G acts as a group of automorphisms on the
graph of A, each element of Ga maps Φ onto itself. Similarly,
Φ9 = Φ because a9eΦ9 f) A(a) QΦ9 f]Φ. Thus, Φ = ΦH = ΦG = Ω.
This completes the proof of Lemma 2.

Let us assume the notation of Lemma 2. Suppose t ^ 1. Define
a ί-αrc to be an ordered (ί + l)-tuple of points of Ω, say, X =
(α:0, α l f , a^), such that α i + 1 e Λ(#i), 0 ̂  i < ί. Any ί-arc of the form
(al9 •• ,^ ί,7) is called a successor of X, and any ί-arc of the form
(7, oc0, , QCt-i) is called a predecessor of X.

LEMMA 3. Assume the hypothesis of Lemma 2. Suppose t ^ 1
emcϋ £Λe graph of A is connected. Let X and Y be t-arcs. Then there
exists a sequence X = Xo, , Xr = F o/ ί-αrcs ŝ c/̂  ίfeαί X̂  is α
successor of X^u 1 ̂  i ^ r.

REMARK. For t = 1, this is equivalent to Proposition 3.1 of [5].

Proof. Let X = (α0, « „ . . . , αf) and Γ - (/30, ft, , ft). By
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Proposition 3.1 of [5], there exists a finite sequence at = y0, y19 , y8 = βQ

such that 7i e Λ(y^ for i = 1, 2, , s. Let r = s + t9 and let τ< = &_.
for i = s + 1, s + 2, , s + ί. Define Xo = X,

X; = («<, ai+1, , at9 y19 , 7<) (1 ̂  i ^ ί - 1) ,

and

Xt+i = (7<f 7<+1, , 7 ί + ί ) (0 ^ i ^ S) .

Then the sequence Xo, X19 , Xr satisfies the conclusion of the lemma.

Proof of Theorem 1. Clearly, we may assume that G = < P, g > .
By condition (1) of the theorem, G is faithfully represented as a per-
mutation group on the set of all cosets Px,xeG, and P is the stabilizer
in G of the point a = PI. Let h = g"1 and β = α \ Then

Gαi9 - Gβ Π Gβ = Ga n (Ga)8'1 = Pf) P9'1.

Since P Π P9 is normal and of index p in P f f , Gα^ is normal and of
index p in P. Let Λ be the orbit of P on Ω that contains /9. Then
I A I = I βp I = I P: Pβ I = | Ga: Gaβ \ = p. Since Pβ is normal in P and P
is transitive on Λ, Pβ fixes every point of A. Thus P induces a re-
gular group of permutations on A. We define A(y),y e Ω, as above.

Suppose t ^ 1. We define ί-arcs as above. The arguments of
§5 of [5] now give us the following results:

For some t0, G is transitive on the set of all £0-arcs but not on
the set of all (t0 + l)-arcs (Lemma 5.7).

G acts regularly on the set of all £0-arcs, and | P | = | Ga \ = pto

(Lemma 5.12; see Lemma 3 above).
For any £0-arc X = (cc09 a19 , atQ), the stabilizer of aQ, a19 •••,

and (Xto~ι is generated by a single element cc of order p. If Xfc is a
predecessor of X, then < xk, , xk% > has order ^ for 1 fg i ^ tQ.
Moreover,

< α;fe, , xfcί° > = P (Lemma 5.13).

Let t = t0 and let X be the (ί + l)-tuple given by X = (a, ah, , α^).
Since α:fe = β e A, we have ahi+1 = βhί e A(a)hι = A(ahί) for all i. Hence
X is a ί-arc and X A - 1 is a predecessor of X. Let k = g = h~\ and
take x as in the last mentioned result above. Put x{ = xgi for all
i ^ 1. Then

<x19 xt > = P and < xx, a?2, , # ί + % > = < P, Pe

9 . , Pgn > = G .

Now we may apply Lemma 1 to prove Theorem 1.

COROLLARY 1. Suppose P and H are subgroups of G, yeN(P),
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and aeH. Assume that H = < P, Pa > and that P Π Pa is a normal
subgroup of prime index p in P. Let n be a positive integer, and
let G = < H, Hy, , Hyn~ι >. Assume that:

(1) y normalizes no nonidentity normal subgroup of H contained
in P, and

(2 ) P n Z(G) = 1.
Then \P\ — pι for some positive integer t for which t^3n and t^Sn — 1.
Moreover, if n = 2, p = 2, cmcϊ £ = 6, ίfeew P contains a nonidentity
normal subgroup of G.

Proof. We merely verify the hypothesis of Theorem 1 for g = ya.
Now, P n P9 = P Π Pα and < P, P9 > = < P, Pa > = H. Let ^ =
<H,Hg, •--, H9i > for all i ^ 0. Since

iί ί + 1 = < Hi9 (Hi)' > = < Ht, (Hi)"* > = < Hif H\ > ,

we obtain iJ, = < H, Hy, , iί2/* > by induction. Therefore,

G = Hn^= <H,H\ . . . , 1 P % - 1 > - < P,P\ . . . , P ' * > .

Now Theorem 1 applies.

3* Applications of Wong^s method* To obtain Theorem 2 from
Theorem 1, we use the methods of Wong's paper [9] and some known
results about 2-groups.

LEMMA 4. Suppose S is a Sylow 2-subgroup of G and P < S.
Assume that P is a Klein four-group and that CS(P) = P. Then S
is a dihedral or a semi-dihedral group.

Proof. Clearly, Z(S) < P, and P = Z(S) x < t > for some t e P.
Now Cs(t) = CS(P) = P. By a result of Suzuki (Lemma 4, pp. 262-263
of [6]), S must be dihedral or semi-dihedral.

LEMMA 5. Suppose a Sylow 2-subgroup S of G has order 32 and
is generated by elements x, y, and z satisfying

a;8 = y2 = z2 = [y, z] = 1 , [x,y] = z , [x, z] = x* .

Then G has a normal 2-complement.

Proof. For every subgroup H of G, let H2 be the subgroup of
H generated by the elements h2, heH. Since every group of exponent
one or two is Abelian, H/H2 is Abelian.

In page 244 of [9], it is proved that G has a normal subgroup GL

of index two such that
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G, n S = < x\ y, z > = < x2, y > x < z > ~ D8 x Z2.

Let G2 = (G,)2. By a result of Wielandt (Lemma 5(α) of [2]), z$G2.
Now, G2 is characteristic in Gλ and therefore normal in G. Since
[x, y] = z, G/G2 is a non-Abelian 2-group. Thus G/G2 has at least two
generators, and

\G/G2 =

However, S2^Sf]G2 and | S/S2 \ = 4. Therefore,

G*nS = S2= <x\z> =ZAx Z2.

Hence G2 has a Sylow 2-subgroup, S2, that is contained in the center
of its normalizer. By a result of Burnside ([4], p. 203), G2 has a
normal 2-complement. This complement must be a normal 2-comple-
ment for G.

Proof of Theorem 2. (I) Since P is a Sylow 2-subgroup of H,
O2(H) S P. As O2(H/O2(H)) = 1, | H/02(H) \ = 2m for some odd number
m. Therefore, H/02(H) is generated by two conjugates of P/02(H).
Take α e i ί such that i ϊ = < P, Pa >. Then P n P α = O2(fί).

Let G = < H, Hy >, and let Q be the largest normal subgroup of
G contained in P. Take δ e P and C G C ( P ) such that y2 = 6c. Then
ί P 2 = fr» = Hc. Therefore,

H° = Hy2 ^ Gy £ N(Qy), and H ^ ^((Q^)0"1) = iSΓ(Q") .

Hence N(Qy) ^<Gy,H>^<Hy,H>=G. Since | Q*| = | Q |, Q" = Q.
By (I), Q = 1. Thus P n ^(G) = 1. In Corollary 1 we let p = n = 2
and obtain 2 rg ί ^ 4. The proof of Lemma 5 of [9] shows that P
is isomorphic to Z2 x Z2, D8, or D8 x Z2.

Let ikf be a cyclic subgroup of order i | H/02(H) \ in iί, and let
N = O2(H). Then MNhas index two in iϊand CMN(N) - Z(iV) x C^(iV),
so K{H) = CM(N). Thus M/K(H) is isomorphic to a group of auto-
morphisms of N. If ί = 2, then | N\ = 2, M = K(H), and H/K(H) =
P=Z2x Z2.

Suppose t > 2. Then P is non-Abelian and P ' ^ iV. Since P and
y normalize P' and H = PM, M does not normalize P\ Therefore,
M/K(H) Φl. If * = 3, then | jtf| = 4 and | MJK{H) | = 3; therefore
I H/K(H)N\ = 6 and fί/iί(fί) ~ S*. Suppose t = 4. Then | JS/Ί = 8
and the automorphism group of N is not a 2-group. Since Z)8 x C2

has no quaternion subgroups, iVmust be an elementary Abelian group.
The automorphism group of N contains a dihedral group of order 2m',
with m' odd, only if m' = 3. Hence \H/K(H)N\ = 6. The proof of
Lemma 6 of [9] shows that H/K(H) = S4 x Z2.



NORMALIZERS OF ^-SUBGROUPS IN FINITE GROUPS 143

(II) Let T = NS(P). Then P < T. If t = 2, then P = NS(N) =
CS(N), and therefore P = CS{P). If t = 3, then N = Z2 x Z2 and
CS(N) = iVa(iSO Π Cfi(JSΓ) = Cp(iV) = JSΓ. By Lemma 4, S is a dihedral
or semi-dihedral group in each of these cases.

Suppose t = 4. From (I), H does not have a normal 2-complement;
hence, neither does G. Furthermore, P=D8x Z2 and N~Z2xZ2x Z2.
It follows that N has only two images under the automorphism group
of P. Since N8(N) = P,/T/P\ = 2. Thus T= <P,y>. If U ^ S
and P < U, then P < ^ ( P ) and consequently y e T <; Ϊ7. Therefore,
by hypothesis, NS(PQ) = P whenever 1 < Po < P and Po is a normal
subgroup of H. Now by Lemma 8 of [9] and by Lemma 5, S has
the desired form.

(III) In this case, there exists y e NS(P) — P such that y2 e P,
so the results of (I) and (II) may be applied. This completes the
proof of Theorem 2.

COROLLARY 2. Assume the hypothesis of part (II) of Theorem 2.
If t = 2 or t = 3, then G satisfies one of the following conditions:

( i ) G has a normal 2-complement.
(ii) G has a normal subgroup Go of index two, and Go has no

normal subgroup of index two and has a dihedral Sylow 2-subgroup.
(iii) G has a normal subgroup Go of index two, and Go has no

normal subgroup of index two and has a generalized quaternion
Sylow 2-subgroup. (In this case, S must be a semi-dihedral group.)

(iv) G has no normal subgroup of index two, and the elements
of order two in G are all conjugate in G.

If t = 2 and G satisfies (i) or (iii), then CS(K(G)) = 1. If t = 3,
then G cannot satisfy (i) or (iii). If t = 4, G satisfies one of the
following conditions:

(v) G has a normal subgroup G1 of index two, and Gι has no
normal subgroup of index two and has a semi-dihedral Sylow 2-
sub group.

(vi) G has a normal subgroup G2 of index four, and G2 has no
normal subgroup of index two and has a dihedral Sylow 2-subgroup.

Proof. If t = 2 or t = 3, then S is dihedral or semi-dihedral, by
Theorem 2. A dihedral group has no generalized quaternion subgroups.
Therefore, G satisfies one of the conditions (i) through (iv), by Lemma 8
of [3] (for S dihedral) and by Lemma 1 and Theorem 2 of [8] (for S
semi-dihedral).

Let K = K(G). Suppose t = 2, G satisfies (i) or (iii), and CS(K) Φ 1.
Then P= N x Z(S) and Z(S) S Z(H). Since | Z(S) \ = 2 and CS(K)
is normal in S, Z(S)^CS(K). However, Z(S)K/K ^ Z(G/K). (This
requires the Brauer-Suzuki Theorem [1] if (iii) holds.) Therefore,
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Z(S)K = Z(S) x K, so Z(S) is the unique Sylow 2-subgroup of Z(S)K.
As Z(S)K is normal in G, Z(S) is normal in G. Since \Z(S)\ = 2,
Z(S) ^ Z(G). This is impossible, since Z(S) £ Z(H).

Suppose t = 3. Since £Γ does not have a normal 2-complement,
(i) is impossible. Since H' contains the four-group N, (iii) is impossible.

Suppose t = 4. The structure of S is given in Theorem 2. The
argument for Case (V) of ([9], pp. 244-245) proves that G has a normal
subgroup Gx of index two for which S n G i is semi-dihedral. Now
the structure of G± is given by one of the conditions (i) through (iv).
Since H does not have a normal 2-complement, neither does Gx. Suppose
Gi has a normal subgroup G2 of index two. Then G2 is unique and
G2 Π S is a dihedral or a quaternion group. Therefore, G2 is normal
in G. Since | G/G2 \ = 4, G' ^ G2. As ίΓ n AT is a four-group, G 2 ί lS
is not a quaternion group. So G2 Π S is a dihedral group of order
eight. Now G 2 n S ^ NS(H' n JSΓ) = P. This completes the proof of
Corollary 2.

We thank the Sloan Foundation for its support during the pre-
paration of this paper. We also thank Professor I.M. Isaacs for
suggesting the present form of Theorem 1.
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