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SOME ISOPERIMETRIC INEQUALITIES FOR THE
EIGENVALUES OF VIBRATING STRINGS

DAVID C. BARNES

If a string with integrable density function p(x) is fixed
at the points x = 0, x = a then the natural frequencies of
vibration are determined by the eigenvalues of the Sturm-
Liouville System

(1) y" + λp(x)y = 0 y(0) = y(a) = 0 .

These eigenvalues depend on the density function p(x) and we
denote them accordingly by λn(p),

0 < λi(p) < λz(j>) < .

In this work we investigate the nature of the density func-
tions which yield the largest and smallest possible value for
λn(p) assuming that the average value of the density p{x)
defined by

is restricted in some manner.

We assume for example that P(x) is decreasing or that P(x) is
concave (see Theorems 4 and 7 below).

Assuming a string of given mass m and a bounded density function
p(x), 0 < p(x) ̂  H, M. G. Krein [8] has obtained the sharp bounds

where X(t) is the smallest positive root of the equation

VX tan VΎ = t

1 - t

Banks [1], [2], [5] has obtained some improvements of the Krein
inequality by imposing various restrictions on the density function
p(x). Schwarz [12], Nehari [10], [11], Banks [4] and Maki [9] have
obtained additional related results.

Given numbers m, H, a such that m < aH, and an integrable
density functions p(x) defined on [0, a] for which

(2) 0 ^ p(x) ̂  H , [ap(x)dx = m ,

Jo
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then the function p(x) will be said to be of class
EΊ(m, H, a) provided P(x) is decreasing
E2(m, -fiΓ, α) provided P(x) is increasing
Ez(m, H, a) provided P(x) is convex
EJim, H, a) provided P(x) is concave.
These function classes are related to certain classes studied by

Bruckner and Ostrow [6] defined as follows:
A function p(x) which satisfies (2) and

lim p(x) = p(0) = 0

will be said to be of class
Kx{m, H, a) provided p(x) is convex,
K2(m, H, a) provided P(x) is convex,
K3(m, H, a) provided p(x) is starshaped from above at the origin,

that is

p(ax) <: ap(x) for all x e [0, a] and for all a e [0,1] ,

ϋΓ4(m, H, a) provided p(x) is superadditive, that is for any x,y e [0, a]
if x + y e [0, a] then p(x + y) ^ p(x) + p(y) ,

K5(m, H, a) provided P(x) is starshaped from above at the origin,
jff6(m, H, a) provided P(x) is superadditive.
It follows from the work of Bruckner and Ostrow that

( 3 ) K^m, H, a) c Ki+1(™, H, a) i = 1, 2, . . . 5 .

In [6] these class inclusions are shown to hold for continuous functions
which vanish at the orgin. That is, if K{ denotes the class of con-
tinuous functions contained in K^m, H, a) then K{ c Ki+1. Thus the
Baire class generated by Ki is contained in the Baire class generated
by Kί+ί. Making use of the dominated convergence theorem it is easy
to see that the classes ϋΓ^m, H, a) are closed under the operation of
taking pointwise limits. Thus the inclusions (3) hold if p(x) is a Baire
function. This will be sufficient for our work since the functionals
\n(p) are not altered by changing p(x) on a set of measure zero.

We now define corresponding classes of functions for the concave
case. If the function p(x) satisfies (2), it will be said to be of class,

e/̂ m, iJ, a) provided p{x) is concave
J2(m, H, a) provided P(x) is concave,
J3(m, H, a) provided p{x) is starshaped from below at the origin,

that is p(ax) ^ ap(x) for all xe [0, a] and for all ae [0,1],
J4(m, H, a) provided p{x) is subadditive, for any x,ye [0, a] if

x + y e [0, α] then p(x + y) ^ p(x) + p(y),
J5(m, H, a) provided P(x) is starshaped from below at the origin,
J6(m, if, a) provided P(x) is subadditive.
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Note that in this case we do not assume that p(0) = 0.

In Theorems 1, 2, and 3 below we will give a general method
which allows one to calculate the extremal values of Xn(p) whenever
p(x) belongs to one of the above function classes. In some cases
these calculations may be carried through to completion and explicit
numerical bounds are given. In other cases however only general
information concerning the extremal function for Xn(p) is given.

We review briefly the results we shall need from the Sturm-
Liouville theory of differential equations (see [7]). Given the system
(1), then corresponding to each eigenvalue λn(p) there is an eigen-
function un which is uniquely determined except for a multiplicative
factor. It has exactly n + 1 zeros in the interval [0, a] which we
denote by xi9

(4) 0 = x0 < x, < . . < xn = a , un(Xi) = 0 .

We may assume un(x) Ξ> 0 in [0, xλ]. It then follows from (1) that un

is concave in [0, &J, convex in ]x19 x2] etc. Thus in each of the inter-
vals [xt, xi+ί], u2

n(x) will have a unique maximum value which will be
attained for some point aiy

( 5 ) ate (Xi, xi+1) , wiW = max u\{x) .

The point ai may or may not be uniquely determined. It follows that

un{x)u'n{x) ^ 0 if xe [Xi_l9 < |

and

un(x)u'n(x) ^ 0 if x 6 [aiy Xi] ,

In order to investigate the lower bounds on Xn(p) we make use of
the following theorem (compare [11] and [3].)

THEOREM 1. Let p(x) and q(x) be two density functions. Let un

be the nth eigenfunction of (1) corresponding to the eigenvalue Xn(p).

if

( 6 ) πχΓ[ j)(ζ) - q(ζ)]dζ ^ 0 for all x e [0, a]
Jo

then

K(Q) ^ K(P)

Proof. Let x{ be the nodal points of the string with density p(x)
(see (4)). An integration by parts and (6) implies



46 DAVID C. BARNES

S x ' Γ x'

2unu'nx[P(x) - Q(x)]dx = - I '
Therefore

S
xk Cxi

u\p{x)dx ^ I u\q(x)dx .
xk-i J^i-i

Following Banks [1] we fix the string at its nodal points x{. It is
known that [7]

['* uf

n

2dx

KiP) = -~^ i = 1, 2, n .
\ ι u2

np(x)dx

by (7) we have

Cxi Γxi

I (Λ/n KJjth 1 If U/tV

K(P) ^ 7 ^ ^ inf J l < - 1 - —
u2

nq(x)dx yeC'

where ^/(^) = 0 i — 0, 1, 2, n. It follows that

y'2dx
^ "la-A m i

S
" l a - A m i x

X i ~ x

1~ι~n yeC' \ ι y2q(χ)dx

But the quantity on the right is greater than the nth eigenvalue of
a string of density q(x) [7] whence Xn(p) ^ λ,,^).

The upper bounds on the functionals \n(p) are more difficult to
handle. We shall use methods from the calculus of variations. In
order to use these methods we must know that the functional Xn(p)
actually attains its last upper bound.

THEOREM 2. Let E be any one of the function classes E^m, H, a)
for i = 1, 2, 3, 4, K^m, H, a) for ί = 1, 2, 3, 5, 6 or J{(m, H, a) for
i — 1, 2, 3, 5, 6. Let λn(ί>) be the nth eigenvalue of (1). Then there
is a function p(x) e E such that

max Xn(p) = Xn(p) , p(x) e E .
peE

The proof uses a result of Krein [8] which may be stated as
follows: Let M be the set of all measurable functions on [0, a] such
that
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0 ^ p(x) <̂  H , I p(x)dx = m .
Jo

Then there is a function q(x) e M such that

\'pk(Όdζ-+[q(ζ)dζ as iΓ-oo .
Jo Jo

The convergence is uniform in x and

\n(Pk) —• λn(#) = max Xn(p) .
peM

Krein's proof may be modified simply by selecting pk(x) e E (note that
Eξ^M). Thus it is only necessary to show that q(x)eE provided
pk(x) e E.

Suppose for example that pk(x) e E4(m, H, a) so that pk(x) is concave
on the average. Thus the corresponding sequence of average values
{Pk(x)} is a sequence of concave functions which converge uniformly to

Q(x) = —
x

in any interval of the form [ε, a], ε > 0. Thus Q(x) is concave and
q(x)eE4(my H, a). The proof of the other cases pk(x) e E^m, H, a)
i = 1, 2, 3 follows in a like manner. We must consider in more detail
those function classes which are not defined in terms of an integral
relationship. Suppose for example that pk(x) e J3(m, H, a) so that
pk{ax) Ξ> apk(x). It follows that

X — y
^ —2— [pk(ζ)dζ x Φ y .

X — y Jy

If we first let k—^oo and then let y—+x in the above inequality we
find q(ax) ;> aq(x) for almost all x. Clearly we may redefine q(x) on
a set of measure zero so that this inequality holds for all x. With
this new definition of q(x) it follows that q(x) e J3(m, H, a). It is now
easy to complete the proof of Theorem 2 which we leave to the reader.

It is known [2] that the first variation of the functional λn(p)
subject to the condition

m
Jo

is

p(x)dx =
o

S a
u2jp(x)dx ,

o

where un is the wth normalized eigenfunction corresponding to λn(p)
and
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[aδp(x)dx = 0 .
Jo

The following theorem will be used to obtain information about
the upper bounds on Xn(p).

THEOREM 3. Let E be one of the function classes E^m, H, a)
i = 1, 2, 3, 4, K^m, H, a) i = 1, 2, 3, 5, 6 or Jim, H, a) for i = 1, 2, 3,
5, 6. Lei λΛ(p) be the nth eigenvalue of (1) and let un be the cor-
responding normalized eig en function. Suppose that p(x) is the
maximizing function for Xn(p),

max λΛ(2>) = Xn(ρ) .
peE

Suppose also that a mapping of E into E is given by p(x) —* p(x)
which satisfies

unu'n[[p(ζ) - p(ζ)]dζ £ 0 for x e [0, a] .
Jo

Then p(x), the maximizing function of Xn(p), is a fixed point of the
mapping

p(x) = ρ(x) .

Proof. If p(x) is the maximizing function for Xn(p) then there
exists some p(x) such that

(8) unu
f

n\\p{ζ) - p(ζ)]dζ ̂  0 .
Jo

A simple integration by parts yields

(9)

We now take a variation in p(x) given by δp(x) = e[p(x) — p(x)],
0 < ε < 1. We note that p(x) + δp(x) e E. But now

δxn(p) = Xn{p)\au\δp{x)dx > 0 .
Jo

However p(x) is the maximizing function for Xn(p) and thus δXn(p) <̂  0.
Therefore δXn(ρ) = 0. This together with (8) and (9) yields

ttX(k) - P(Q]dζ = 0 for x G [0 a] .
Jo

Since un has only w + 1 simple zeros we obtain
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(10) <\\p(ζ) - P(Q¥ζ = 0 .
JO

We cannot divide by v!n since there may exist a set of positive measure
on which u'n = 0; and indeed such eigenfunctions will play an important
role in the proof of Theorem 4. Let A be the set of points is [0, a]
on which u'n(x) = 0. A is a closed set. Since u" = — ̂ n(P)P(χ)un, Un
is locally concave or convex depending on its sign. Therefore A must
consist of a finite number of closed intervals, some of which may be
only a single point. The complement of A, Ac must therefore be open
and from (10) it follows that p(x) = ρ(x) for almost all x e A\ Suppose
now that x e A0, the interior of A. Thus u"(x) = 0 and from (1) it
follows that p(x) = 0 on A0. It follows that

\ p(x)dx = \ p(x)dx — \ ρ(x)dx = \ p(x)dx ,
JO JAC JAC Jo

where we have used the fact that p(x) and p(x) must have the same
integral over [0, a]. We obtain

\ p(x)dx = 0
J A®

and therefore p(x) = 0 for almost all x e A0. Thus p(x) = p(x) almost
everywhere which completes the proof of Theorem 3.

Finally we note that we may consider the eigenvalue problem

(11) u" + up(t)u - 0 u(0) = u(l) = 0

where p(t) = {ap{at)lm}, 0 S t ^ 1 instead of (1). Denoting the eigen-
values of (11) by μn{p) we see that

(12) μn(p) = maXn(p) and \p(t)dt = 1 .
Jo

Since all the conditions on p(x) which we study here will also be
satisfied by p(t) we see that no loss of generality is involved by con-
sidering a string of unit length and unit mass. The relationship
between the eigenvalues is given by (12).

2* Bounds on Xn(p) in case p(x) e E^m, H, a). As an example
of the preceding ideas we will obtain a sharp upper bound on Xn(p)
whenever p(x) is decreasing on the average, p(x) e E^m, H, a).

THEOREM 4. Let \n(p) be the nth eigenvalue of a vibrating string
with fixed end points and a density function p(x) which is decreas-
ing on the average. If p(x) e E^m, H, a) then
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X ( ) < πVi? Γ 2n - 1 + Vm/aH T
== m 2 L 2w J

inequality is sharp and equality is attained uniquely for a
string of density p(x) e Έx{m, H, a) given by

'H O^x^s

ρ(x) = 0 s < x < t

m/a t ^ x <£ a ,

where

- l)mα ^ = (2n - l)aΉ

(2n - l)Ha + VmHa (2n - l)aH + VmHa

REMARK. We note that Krein's upper bound on Xn(p) (assuming

only that 0 ^ p(x) <; H and I p(x)dx = m) is given by π2n2H/m2. Thus
Jo

if we assume in addition that p(x) is decreasing on the average we
are able to improve this result by the factor indicated in the theorem.

Proof of Theorem 4. Let p(x) e E^m, H, a) and let un be the
normalized eigenfunction corresponding to Xn(p). Let ^ be the nodes
of the string with density p(x) and let a{ be the sequence of maxi-
mizing points for u\ as in (4) and (5). Define constants m* and Mi by

p(x)dx , Mi = \ p(x)dx , m0 = Mo = 0 .

0 JO

Furthermore define constants kίy sif t{ by

j , ^ π h _ rrii m, rrij . __ m<
/v0 — Mi) thi — , Oj_ — τ τ > &i — ^ i - i ~ r : > ^% — •"% , _ .

&i fί Mi-! Mi

We now show that

(13) » ί _ 1 ^Si^eXi^tiXi.

We know that a?ί_1 < at < x{. Thus

Mi^m^Mi and ^ = L ̂  ^L ^ ^ .

The first set of inequalities above implies that x{_γ <̂  s< and ^ ^ xi%

The second set of inequalities implies that s{ ^ at ^ ίi# Therefore (13)
holds.

We now define functions p(x), f(x) and /(«) by
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p(x) = f(x) =

x

Xi^ ^ x ^

Si ^ x ^ ti

ti ^ x ^ Xi

f(x) = [p(ζ)dζ
Jo

according to the definition of s* and ti9 the function /(&) is well defined,
continuous and

f(x) =

It is easy enough to see that f(x)/x is decreasing and that
p(x) e E^m, H, a). This procedure defines a mapping of E^m, H, a)
into itself given by p(x)-+p(x). In order to apply Theorem 3 we
shall show

(14) unu'n[fix) - fix)] ^ 0 , x 6 [0, a] .

Suppose first of all that xe[0, s j . Now if there is some point
α?0e[0, s j such that f(xQ) > f(x0), then an easy generalization of the
mean value theorem shows that /'(ζ) = p(ζ) > /'(ζ) = Jff for some
point ζ G (0, Si). This is a contradiction and we must have fix) <Ξ /(x),
x G [0, s j . We also know that u%^'w ^ 0 in [0, s j . Therefore (14)
holds for x e [0, s j . Now suppose x e [x^19 s j , i = 1,2, ••• n. In this
case also we have 6̂ίl̂ 6'?ι ^ 0. Since p(x) is decreasing on the average
we have

Suppose now that

(15)

Therefore fix) ^ fix) and (14) follows.
Since x ^ a{ it follows that

(16)

Since u ^ Ξ> 0 we obtain (14). We now suppose xe[aifti\. An
argument similar to that used in (16) shown fix) ^ fix). Since how-
ever unu'n ^ 0 in this case we obtain (14). Finally, suppose xe [tif a?J.
In this case an argument similar to that used in (15) will show that
fix) >̂ fix). Since unu'n ^ 0 in this interval, (14) will hold.

Thus a mapping p(x) —• p(x) of E into E is defined which satisfies
the conditions of Theorem 3. Therefore, if p(x) is the maximizing
function for Xn(p) over Eλ(m, H, a) then p(x) = p(x). In order to
simplify the notation, we assume that the original function p(x) which
we started with is the maximizing function, that is p(x) = p(x) = p(x).
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Note that un is now the nth. eigenfunction corresponding to Xn(p).
Now we know p(x) = ρ(x) = 0 if x e (siy i<) and ai9 the maximizing

point for u%, is contained in (si9 ί<). Therefore wΛ is constant in the
interval (si91{) since un satisfies

(17) u'i + \n(p)p(x)un = 0 ^(0) - un(a) = 0 .

We may now replace the above equation by the collection of equations

(18) < + X& = 0 , %f(8<+1) - u'(ti) x G (sίf ti)

(19) u" + λiϊt6 = 0 , u(0) = u'is,) = 0

(20) u" + X—u = 0 , ^ ' ( ί j = w(α) - 0 ,
a

where the 2nd eigenvalue of (18) and the first eigenvalue of (18) and
the first eigenvalue of (19) and (20) are all equal to the wth eigenvalue
of (17) (see [7]). Solving each of these equations in turn yields the
equations for λ,

Xi - U) = — , i = 1, 2, . n - 1 .
Δ

(21) VxHs, =

y,— (a - tn) = — .
α 2

ρ(x)dx = m we obtain
0

βiH + Σ (Si+i - ί*)fcί + (α - ί n ) — = w .

Substituting for s{, ^ from equations (21) we easily obtain

Therefore the largest possible value of Xn(p) will occur when the kt are
as large as possible. We must therefore take k{ = H i = 1, 2, w — 1.
This yields the upper bound on Xn(p) given in Theorem 4. We now
obtain the function p(x). Obviously p(x) must be of the form

p(x) =

\ a

H 0 ^x^ s

0 s < x < t

— t <x<a
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for some choice of s, t with v/Jβ) — nr

n{t) = 0. Solving this system
shows that the eigenvalue λ must satisfy the equation

VxHs = —(2n - 1) .

Solving this equation for s and using the formula for λ already given
we obtain the required formula for s. The formula for t is obtained
in a similar fashion to complete the proof of Theorem 4.

We now consider the lower bound on X^p) whenever p(x) is
decreasing on the average. In this case it is not necessary to assume
that p(x) is bounded above in order to obtain useful lower bounds.
We therefore set H = + °o and assume p(x)eEι(m, oo,α). In case
p(x) is not only decreasing on the average but is actually decreasing,
Banks [1] has given a sharp lower bound on X^p). The following
theorem is a generalization of his result.

THEOREM 5. Let Xι(p) be the first eigenvalue of a vibrating
string having fixed end points and a density function p(x) which is
decreasing on the average. If the total mass is m and the length
of the string is α, so that p(x) e EJjn, °o, a) then

maX^p) ^ λ0

where Xo — 7.88 . The inequality is sharp and equality is attained
for a string of density q(x) given by

at0 ^ x ^ a

where ί0 = .643

Proof. In view of (12) we may assume that m = a = 1. The
general case will follow immediately. Now let p(x)eE1(lf °°,1) and
let u be the eigenf unction of (1) corresponding to λ^p). Let a be
the maximizing point for u2(x), x e [0,1] and define constants Hlt m^ by

p(ζ)dζ , Hι = —^.
o α

Now define a density function ĝ sc) by

(H, O^x^t χ

( 0 t ^ α? ̂  1 , Hι

Note that gt(a?) e 23ί(l, oo 1). We may assume that the eigenf unction
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u is positive in (0,1). We shall show

(22) u'\\p(0 - qt(ζ)]dζ <ί 0 , x e [0,1] .
JO

Define functions f(x), g(x) by

9(x) = \XQt(Odζ f(x) = [p(ζ)dζ x 6 [0, 1] .
Jo Jo

Since p(x) is decreasing on the average it follows that f(x) is starshaped
from below, that is f{ax) ^ ocf(x) for all x, a e [0,1] (see [6] Lemma
3). Now f(a) = g(a) and /(I) = #(1). From this it follows that

^ \"qt(ζ)dζ
Jo

^ [qt(ζ)dζ
Jo

xe[0,a]

xe[a,l].

Taking account of the sign of uf we see that (22) holds. We may
now apply Theorem 1 to obtain X^qt) ^ λ^p). Now the eigenvalue
î(tfi) is a function of t. Banks [1] Theorem 2.1 has calculated the

minimum value of this function. We may apply his results to complete
the proof of Theorem 5.

Now Theorem 5 deals only with the first eigenvalue \(p). In
general it seems to be very difficult to obtain a precise lower bound
on λΛ(p). One can however pin the string down at its nodal points
and consider it to be made up of n separate parts. The nth eigenvalue
Xn(p) will then be equal to the first eigenvalue of each separate part
(see [7]). If one then applies a construction similar to that used in
Theorem 5 to the n parts of the string one obtains.

THEOREM 6. Let Xn(p) be the nth eigenvalue of a vibrating string
with fixed end points and density function p(x) which is decreasing
on the average. If the total mass is m so that p{x)eEι(m, °o,α)
then there is a density function q(x) e E^m, °o, a) such that

Here q(x) has the form

»v k ^ —-̂  *Kj —-s Ok

sk^x^tk k = 1, 2, n .

Uk ^ \ tΛ/ —-ί: ιΛ//j

TΛ,e points xk are the zeros of the eigenfunction un corresponding to
the density p(x). The constants Hk, sk, tk satisfy
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Si = 0 , Hk+1sk+1 = Hktk ,

H=H1^H2^ -.^Hn, ± Hk(tk -sk) = m.
k = l

Banks ([2], Th. 4) has shown that if p(x) is concave then \(p) ^
π2/ma with equality in case p(x) = m/a for all x. The following
theorem generalizes this result.

THEOREM 7. Let Xλ(p) be the first eigenvalue of a vibrating string
with fixed end points and a density function p(x) which is concave
on the average. If the total mass is m so that p(x) e E±(m, H, a) for
some constant H then

maXx{p) ^ π2.

The inequality is sharp and equality is attained if

p(x) = ™L for all x e [0,1] .
a

Proof. Suppose p(x) e E^m, H, a) for some H > 2m/a. Let u be
the eigenfunction corresponding to X^p). If oc is the maximizing point
for %2 we define mlf P(x) and p(x) by

S et

p(ζ)dζ
o

and

P(x) = — + (x ~ a)-
a aa(a - a)

p(χ) + (2xa) .
a aa(a — a)

Obviously P(x) = l/χ[*p(ζ)dζ. Thus p(x) e E4(m, H, a). It follows
from (23) that P(a) = °P(a) = m/a and P{a) = P(a) = mja (where, as
usual, P(x) is the average value of p(x).) In view of the concavity
of P(x) it follows that

P(x) ^ P(x) for x e [0, a]

P(x) ^ P(x) for x e [a,)a] .

Thus we obtain

uuf[P(x) - P(x)] ^ 0 for x e [0, a] .

Therefore Theorem 3 implies that the maximum of X^p) will be attained
for a linear function of the form p(x). We may now apply the result
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of Banks [2] to complete the proof of Theorem 7.

3* Bounds on Xn(p) in case p(x) 6 Ji(m, H, a). As a further
example of the method we consider the minimum value of λx(p) when-
ever p(x) e Jδ(m, oo, α) so that p(x) is starshaped from below on the
average. It turns out that the minimizing function for Jδ(m, oo, a)
actually belongs to J3(m, oo, a). Since Jd(m, oo, α ) g / 4 ( m , oo, α) £
J6(m, oo a) (see [6]) it follows that X^p) has the same minimum value
if p(x) belongs to any one of these three classes.

THEOREM 8. Let Xχ(p) be the first eigenvalue of a vibrating string
having fixed end points and a density function p(x) which is star-
shaped from below on the average. If the total mass is m so that
p(x) 6 J5(m, oo, a) then

where λ0 = 5.96 . The inequality is sharp and equality is attained
uniquely for a density function q(x) e J3(m, oo α) given by

at0 < x ^ a

with t0 = .590 .

Proof. In view of (12) we may assume m = a = 1. Now suppose

p(a?) e J 5(l, oo, 1) and that t& is the first eigenfunction of (1) correspond-

ing to the density p(x). Let a be the maximizing point for u2 and

define

m1=[p(ζ)dζ.
Jo

Furthermore we define a function Q(x) by

Q(χ) =
^x 0<x<t
a2 ~ "

ll/α? t ^ x ^ l

where t is selected so that Q(x) is continuous. Thus we require
mxt

2 = a2. We note that Q(x) is starshaped from below and that it
is the average value of the function
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Now qt(x) is also starshaped from below so that qt{x) e J3(l, co, 1).
If P(x) denotes the average value of p(x) then in follows that P(a) =
Q(a) and P(l) = Q (1) (one can easily show that a ^ t ^ 1.) Since
P(x) and Q(x) are starshaped from below it follows that

P(x) ^ Q(x) x e [0, a]

P(x) ^ Q(x) x e [a, t] .

In case x e [t, 1] we have

P(x) = Mp(ζ)ζ

α; Jo a; Jo

Taking account of the sign of uu', these three inequalities yield

uu'[P(x) - Q(x)] ^ 0 for all x e [0,1] .

We may now multiply this inequality by x and apply Theorem 1 to
obtain X^qt) ^ λ^p), Now λi(gt) is a function of the number t e [0, 1].
In order to complete the proof of Theorem 7 we must calculate its
minimum value.

Since q(x) = 0 for x e [t, I] it follows that λx(g) is the first eigen-
value of the system

(24) u" + λ ±±-u = 0 , M(0) = 0 , u(t) + (1 - t)tt'(t) = 0 .
t>

In order to solve this equation we introduce the function u*(x) defined
to be the solution of

u" + xu = 0 , u(0) = 0 , n'(l) = 1 .

This function is tabulated in [13]. Now the first eigenfunction of

(24) is

(25) u(x) = u*(Zίl2x) , Z = [2λ/£2]2'3

where Z is the smallest positive root of the equation

(26) u*(ZιH) + Z1/2(l - t)u*{Zll2t) = 0 .

We define β = Zll2t and y(β) = 6̂*(/3)/̂ 6*'(/5). Now (26) becomes

u*(β) + (Bjt - β)u*'(β) = 0 .
This equation together with the definition of β and y(β) may be used
in conjunction with (25) to obtain

(27) 2λ = -£L =
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This equation defines λ as a function of β. If we set dX/dβ = 0 and
simplify the resulting equation, making use of the relations

u*"(β) = - βu*(β) and %- = l + βy\β)
dβ

we obtain

(28) β2y\β) + 2y(β) - β = 0 or y(β) + ±^

(note that (27) and t ^ 1 implies y(β) ^ 0). We denote by β0 = 1.915
the smallest positive root of (28). This choice of β will yield the
smallest possible value of λ which will be given by

λ0 - 1/2[1 + BI + (Wl + 1)1/2] = 5.69

This completes proof of Theorem 7. We note that for the higher
eigenvalues Xn(p) the minimizing function for J5(m, oo?α) will not
belong to J3(m, oo, a).

3* Some generalizations* There are obviously many other results
concerning the size of Xn(p) which one may obtain using the method
of Theorem 1, 2, and 3. Space does not permit inclusion of all of
them but the basic ideas involved are the same as those in Theorems
4, 5, 6, 7, and 8.

We now introduce a different type of average value function.
We define the average value of a function p(x) with respect to a
function r(x) by

P(X) = J_Γp(ζ)dζ , P(θ) = limP(x) .
r(x) Jo *->o+

We may now define many different classes of density functions by
placing some restriction on P(x). For example we say that p(x) is
starshaped from below at the origin with respect to x2 provided

(29) P(x) = —["p(ζ)dζ with P(ax) ^ aP(x)

for all xe[0,a], ae [0,1] .

As an example of the results which can be obtained along this line
we give:

THEOREM 9. Let X^p) be the first eigenvalue of a vibrating string
with fixed end points and a density function p(x) which satisfies (29)
above. If the total mass is m then
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mdλ^p) ^ λ0

where λ0 = 5.33 . 7%e inequality is sharp and equality is attained
for the function q(x) given by

(3x2/f0a* 0 ^ x ^ at,
q(x) = \

(0 atQ<x^a

where t0 = .566 .

Proof. In view of (12) we may assume m = a = 1. Suppose p(x)
is some function which satisfies (29) and let u be the first eigenfunc-
tion of (1) corresponding to λ^p). Let a be the maximizing point for

p{ζ)dζ. We now construct functions Q{x) and
o

Qt(x) by

——x υ
a3

4 «=
3x2/t° 0 ^ x ^ ί

0 t < a? ̂  1

where t is selected so that Q(x) is continuous. Thus we require
nut* = α3. Since mγ < 1 we see α < ί. Thus Q(α) = m^α2 = P(a).
Obviously Q(l) = P(l) = 1. Applying (29) with ^ l w e obtain P(a) ^
aP(l) = a. Thus m : ^ α3 so ί g 1. Now it follows that

Q(x) = l/x2\*qt(ζ)dζ
Jo

and Q(x) satisfies (29). We now show

( 3 0 ) P(x) ^ Q(x) x e [0, α]

P(») ^ Q(») » e [α, 1] .

For x e [0, a] we have P(x) = P(x/a a) ^ (x/a)P(a) = Q(x) which is the
first inequality. Now if x e [a, t] then P(a) = P(xa/x) ^ (a/x)P(x).
This implies P(x) ^ Q(»). Finally we suppose α e [ί, 1] so that

\*p(ζ)dζ ^ 1 .
Jo

Division by x2 yields P(x) ^ Q(a?) which proves (30). Taking account
of the sign of uuf we obtain from (30)

uu\P(x) - Q(x)] ^ 0 for all x e [0,1] .

We may now multiply this inequality by x2 and apply Theorem 1 to
obtain XL(p) ^ λ ^ ) . Now λ ^ ) is a function of the number t e [0,1].
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In order to complete the proof of Theorem 9 we must calculate its
minimum value. We shall find it convenient to use functions VΊ(x), V2(x)
defined to be the solution of

F " + x2V = 0 F^O) - F2'(0) = 1 , F/(0) = V2(0) = 0 .

These functions are tabulated in [13].
Now we note that qt(x) = 0 for t ^ x ^ 1. Thus λ ^ ) is the first

eigenvalue of the system

OΛ.2

V" + λ ^ - F - 0 F(0) = 0, V(t) + (1 - tV'(t) = (ί) = 0 .

Solving this differential equation subject to F(0) = 0 gives

u(x) = VJc/Yx) with λ = — ZΨ .
3

Applying the second boundary condition defines Z as a function of £
to be the smallest positive root of the equation

(32) V2{V~Zt) + (V~Z - VZ~t)Vl(V2Γt) = 0 .

Define a number β = V~Z~t and a function τ/(/3) = {F2(/3)/F2'(/3)}.
Equation (32) becomes

(33) t =

Since i ^ l we see y(β) g 0. Thus λ as a function of β is given by

(34) 3λ = βι -

If we set dX/dβ = 0 and simplify the resulting equation making use
of the relation dy/dβ = 1 + /3V we obtain

βV(β) + 3y(iβ) - W = 0

or

1/9

F2'(/3) 2/93

This equation is the condition under which dX/dβ = 0. Its smallest
positive root is β0 = 1.733 (see [13]). Equations (33) and (34) give
the corresponding values λ0 = 5.33 and t0 = .566. This completes
the proof of Theorem 9.
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