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SOME INEQUALITIES FOR STARSHAPED
AND CONVEX FUNCTIONS
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AND FRANK PROSCHAN

Necessary and sufficient conditions are obtained on a

function G of bounded variation such that φ( \x(t)dG(t)) S
[ \) )
\φ(x(t))dG(t) for all increasing x for which x(f0) = 0 for some

specified U, and all convex φ for which φ(0) — 0; the conditions
are otherwise independent of φ and x. Similar results are
obtained when the inequality is reversed. Necessary and
sufficient conditions for both directions of inequality are also
obtained when φ is starshaped and φ(0) = 0.

The relationship to previous results is sketched. Appli-
cations to statistical tolerance limits are indicated.

Several inequalities are known that give necessary and sufficient
conditions for a signed measure μ to satisfy

(1.1)

for all functions φ in a given convex cone. For example, such results
were obtained by Hardy, Littlewood and Pόlya [7] for the cone of
convex functions, and by Karlin and Novikoff [9], Ziegler [17] and
Karlin and Studden [10] for cones of generalized convex functions.

By changing variables in such a result, it is easy to obtain con-
ditions on μ in order that

^ 0

for all φ in the given convex cone, where x is an increasing function.
Generally speaking the conditions so obtained depend upon the function
x. In some applications, x is replaced by a random function (see
Barlow and Proschan [1]). Inequalities are thus required which will
hold for essentially all possible realizations of the random function,
so that those obtained via a change of variables, like (1.2), are not
useful.

In this paper, we consider only measures μ which are the difference
between a measure v and the measure which has unit mass concentrated

at the point \x(t)dv(t). Consequently, all the inequalities that we

obtain have either the form

(1.3) φ(\x(t)dv(t)) ^ \φ{x{t))dv{t)
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or

(1.4) φ(\x(t)dv(tή ^ \ψ(x(t))dv(t) .

For the cone of the convex functions φ satisfying 0(0) = 0 (§3)
and the cone of star shaped functions (§4), conditions on v are given
for (1.3) or (1.4) which are independent of the function x.

For discrete measures and convex functions φ, sufficient conditions
independent of the function x have been obtained by various authors
(see § 5). For more general measures and convex φ, sufficient conditions
have been obtained by Brunk [5]. The relation between our work
and his is discussed in § 3. Related results in higher dimensions have
also been obtained by Brunk [6].

In all of these cases, the direction of the inequality is as in (1.3),
and of course this is also the direction of Jensen's inequality. Thus,
results of the form (1.4) are more novel.

Observe that inequalities of the form (1.2) can be viewed as having
the form of (1.1) where the original cone of functions is extended by
increasing transformations of the variable. We have not found it
convenient to adopt this point of view; instead, the results are obtained
via inequalities of the form (1.1) for the original cones of functions.
These preliminary inequalities are given in § 2.

Throughout this paper, we use "increasing" in place of "nonde-
creasing" and "decreasing" in place of "nonincreasing". We consider
functions defined on intervals [α, &]; although the endpoints a and b
need not be finite, it should always be understood that they are to
be included in an interval only if they are finite.

2* Preliminary inequalities* One of the earliest inequalities of
the form (1.1) is the result of Hardy, Little wood and Pόlya [7] for
convex functions. They observed that a convex function can be ap-
proximated by positive combinations of functions of the form

φ(x) = x , φ(x) = -x , φ(x) = 1 , φ(x) = - 1

and

[x — u, x > u

( 0 , x ^ u,

Their conclusion was that (1.1) holds for all convex φ if and only if
it holds for these special convex φ. The idea of their proof can be
used to obtain several related inequalities that we shall require. These
inequalities all characterize the signed measures μ of bounded variation
that satisfy
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[ φ(x)dμ(x) ̂  0
J[α,δ]

for all functions φ of a given class <g% — oo <: α < 6 ^ oo. The results
are obtained by finding a subclass &f c ^ with the property that for
all 0 e ^ , there exists a sequence {̂ } of positive combinations of
elements of 3ί such that lim{0{(α;) = φ(x). Furthermore the sequence
has the property that Φi(x) is increasing in i if φ(x) >̂ 0 and φi(x) is
decreasing in i if φ(x) ^ 0. From the Lebesgue monotone convergence

theorem, we have that I φ(x)dμ(x) ^ 0 for all φ e & if and only if
J[α»δ]

the inequality holds for all φe^. The following theorems can be
easily proved in this way; in each case, the class ^ is stated in the
hypotheses of the theorem and the class £& can be reconstructed from
the conditions given.

THEOREM 2.1. I φ(x)dμ(x) ^ 0 for all φ convex on [a, b] such
J[α,6]

that φ(c) = 0, a fg c ^ b, with c finite, if and only if

(2.1) \ (x - u)dμ(x) ^ 0 for all u e [c, b) ,

(2.2) ( (u - x)dμ(x) ^ 0 for all u e (α, c] ,

(2.3) ί (x - c)dμ(x) = 0 .
J[a,δ]

If φ satisfies the conditions of Theorem 2.1 and \ φ(x)dμ(x) = 0
J[α,6]

for all measures μ satisfying (2.1), (2.2) and (2.3), then φ(x) = a(x — c).
In fact, by considering measures μ of the form μ{xx} = Θ, μ{x2} = 1 — θ,
μ{θxί + (1 — θ)x2} = —1 (a ^ xλ ^ c ^ x2 ^ 6, 0 < # < 1), we conclude
from I φ(x)dμ(x) = 0 that φ is linear because φ(θxi + (1 — θ)x2) =

θφix,) + (1 - ^)^(a?a).
We remark that without the condition φ(c) = 0, the conditions

(2.1) — (2.3) must be augmented by the requirement that \[α,δ]dμ = 0.

This is essentially the result of Hardy, Littlewood and Pόlya [7]. See
also Karamata [8], Levin and Steckin [12], Brunk [5], and Karlin and
Novikoff [9].

THEOREM 2.2. \ φ(x)dμ(x) Ξ> 0 for all φ convex on [α, b] such

that φ(c) = 0, a ^ c ^ b with c finite, and φ(x) ^ 0, a ^ x ^ 6, if and
only if (2.1) and (2.2) hold.
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Equality I ψ(x)dμ(x) = 0 in Theorem 2.2 is obtained for all
J[α»6]

measures μ satisfying (2.1) and (2.2) if and only if φ(x) = 0 when
a < c < δ, φ(x) = a(x — c) when c = a or c = b. This can be obtained
in the same way as the case of equality in Theorem 2.1.

Without the condition φ(c) = 0, (2.1) and (2.2) are no longer
sufficient, but in this case, the appropriate conditions can be found as
a special case of results due to Ziegler [17]. See also Karlin and
Studden [10].

The remaining theorems of this section are concerned with
starshaped functions. Perhaps the most natural domain for these
functions is [0, oo), where they are considered by Bruckner and Ostrow
[4]. Our original interest in these functions was also on this domain,
where they arise in describing certain classes of probability distri-
butions of importance in reliability theory and elsewhere (see Barlow
and Proschan [1]). However, we consider more general domains here,
and extend the definition in two ways.

DEFINITION 2.3. A real valued function φ on the interval I is said
to be starshaped if φ(ax) ̂  aφ(x) whenever xel, axe I and 0 ^ a ^ 1.

DEFINITION 2.4. A real valued function on the interval I is said
to be a supported starshaped function if it is starshaped, and if,
whenever 0 is an interior point of /, there exists a linear function I
on I such that 1(0) = 0 and l(x) ^ φ(x) for all xel.

Unless 0 is an interior point of /, there is no distinction between
starshaped and supported starshaped functions. If 0 is an interior
point of J, then φ is starshaped on / if and only if

( i ) φ(x)/x is increasing in x < 0, x e I,
(ii) φ(x)/x is increasing in x > 0, x e I,
(iii) 0(0) ^ 0.

On the other hand, if 0 is an interior point of /, φ is a supported
starshaped function on / if and only if

(iv) xλ < x2 and xx Φ 0 Φ x2 implies φ{x^lxt ^ 0(^2)/^
( v ) 0(0) = 0.
When the interval / is of the form [0, 6], then a starshaped

function φ is a generalized convex function in the sense defined by
Karlin and Novikoff [9] and Ziegler [17]; in the notation of Karlin and
Studden [10], n = 0 and uo(x) = x. In this case, theorems similar to
those below are obtainable as special cases of their results.

THEOREM 2.5. l φ{x)dμ(x) ̂  0 for all starshaped φ on [α, 6],
J[α,&]

a <£ 0 ^ 6, such that φ(0) = 0 if and only %f
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(2.4) [ xdμ(x) = \ xdμ(x) = 0 ,
J[α,O] J [0,63

(2.5) \ xdμ(x) ^ 0 for all u , a ^ u < 0 ,

(2.6) ί xdμ(x) ^ 0 for all u , 0 < u g 6 .

THEOREM 2.6. 1 φ(x)dμ(x) ^ 0 /or αiί supported starshaped φ
J[α,δ]

o% [α, δ], α ^ 0 ^ 6, s^cΛ ίλαί ^(0) = 0 if and only if (2.5), (2.6), cmd

(2.7) f xdμ(x) = 0 .
Jίa,b]

3* Inequalities for convex functions* In the following, G
denotes a function of bounded variation on [α, 6], — <χ> ̂ α ^ 0 ^ 6 ^ oo
(the endpoints of the interval are excluded when not finite). We

assume that G(u) = \ dG{x), and use the notation G(%) = 1 dG(x).
J[α,w] Γ J(M,6]

In addition, we assume without further mention that 1 x(t)dG (t) < oo.
J[α,δ]

Occasionally, we find it convenient to use the letter G to denote the

measure determined by G: i.e., we write G{A} = \ dG(x) .
JA

THEOREM 3.1. Let toe[a, b] be fixed.

(3.1) φ(\ x(t)dG(t)) ^ ( φ(x(t))dG(t)
\J[o,δ] / J[o,δ]

/or all convex functions φ such that φ(0) — 0 and all increasing
functions x such that x(tQ) — 0 if and only if

(3.2) 0 ^ G(t) ^l,a^t<t0 and 0 ^ G(t) £l,to^t <b .

REMARK. In this and the following theorems, φ need not be convex
(or even defined) over all of the interval (—°o, oo). But φ must be

convex on an interval containing the point \ x(t)dG(t) and the range
Jίa,b-j

of x(t) for t in the support of G.

Proof. Suppose first that (3.2) holds. Let

G*(z) - G{t: a ^ t ^ b and x(t) ^ }̂ ,

and let H * be the probability distribution degenerate at μ = 1 xdG*(z).
J-oo

Since G* has no mass outside the interval [^(α), $(δ)], (3.1) can be
rewritten as
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(3.1') Γ φ{z)dH*{z) ̂  Γ φ(z)dG*(z) .

J-oo J-oo

Observe that (3.2) can be rewritten as

(3.2') 0 ^ G*(z) rg 1, z ^ 0 and 0 ^ G*(z) ^ 1, z ^ 0 .
By definition of # * , we have that Γ zdG*(z) = Γ zdH*(z). Thus,

J —oo J —oo

by Theorem 2.1, we need only check that

\~G*{z)dz ^ (~JΪ*(z)dz, u ^ 0
Jw J%

and

Γ G*(z)dz ^ Γ H*(z)dz, u ^ 0 .
J-oo J ~oo

Case 1. u ^ 0. If

u^. μ, [°°H*(z)dz = μ-u= [°G*(z)dz - Γ G*(z)dz - w
Ju Jo J-oo

S
o o _ roo _

G*(z)dz ^ I H*(z)dz is equivalent to
w Jw

(° G*(z)dz + u.^ [%G*(z)dz .
-eo Jθ

But this follows from G*(z) ^0,z^0, and G*(z) ^ l , z ^ 0.

If u ^ μ, [~H*(z)dz - 0 so t h a t j ^ G * ^ ^ ^ Γfl"*(«)d2 is equiva-

lent to \ΓG*(z)dz ^ 0. This follows from G*(z) ^ 0, z ^ 0.
Jv

Case 2. w ^ 0. If u ^ ^ , then Γ G*(z)dz ^ Γ H*{z)dz = 0 since

G*(«) ^ 0, z ^ 0, while £Γ*(«) = 0,z <Γμ.

If ^ > μ, \U H*(z)dz = u - μ = w - ΓG*(3)<ZS + Γ G*(«)d« and
J —oo J o J —oo

G*(z)dz ^ I H*(z)dz is equivalent to

[°G*(z)dz - u ^ \°G*(z)dz .
Jθ Ju

But this is a consequence of G*(z) ^ 0, 2 ^ 0, and G*(«) ^ 1, 2 ^ 0.

It remains to show that (3.2) is necessary. Choose tλ ^ ί0.
Let

x(t) = i
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and let φ(z) = z2. Then (3.1) becomes

( dG(t) ^ ( ( dG(t))2 ,

i.e., Git,) ^ [Git,)]2. This implies 0 ̂  G(ίχ) ̂  1.
Next, choose ί2 < 0.
Let

( - 1 , t < t2

1 o, ί > « 8 ,

and again take φ(z) = z2. Then (3.1) becomes G(t2) ^ [GiQ]2, hence
0 ^ Git2) ^ 1.

If ^ is convex, then ψ(x) = 0(#) — ^(0) is convex and satisfies
= 0, so that Theorem 3.1 can be restated without the hypothesis

= 0 as follows:

THEOREM 3.1a. Fix t0 e [α, 6].

(3.3) φ(\ xit)dGit)) - φiO) £ \ [φ(x(t)) - ΦiO)]dGit)

for all convex functions φ and increasing functions x such that xit0) =
0 if and only if (3.2).

If the hypotheses of Theorem 3.1a are augmented by the condition
ΦiO) ^ Φ(O)G(b), then we can replace (3.3) with (3.1). The result so
obtained is a modification of Theorem 3.1 that admits a widened class
of functions φ.

We remark that if G is a probability distribution on [α, 6], then
(3.2) is satisfied and (3.3) reduces to (3.1). Thus we obtain the special
case of Jensen's inequality. The next theorem gives conditions for the
reverse inequality, and here the results are somewhat more novel.

THEOREM 3.2. Fix tQ e [α, &].

(3.4) φ([ x(t)dG(t)) ^ ( φ(x(t))dG(t)
\J[α,δ] / J[α,δ]

for all convex functions φ such that ΦiO) = 0 and all increasing
functions x such that xit0) = 0 if and only if either

there exists s ̂  t0 such that Git) ^ 0, t < s, Git) ^ 1,

s^t <t0 and Git) ^ 0, t ^ ί0 ,

or
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there exists s ^ t0 such that G(t) ^ 0, t < ί0, G(t) Ξ> 1,

to^t<s, and G(t) ^ 0, t ^ s .

Proo/. Let iϊ*(z) = G{ί: a ^ ί ^ 6 and α(£) ̂  2}, and let G* be

S oo

zdH*(z). Then (3.4)
—oo

can be rewritten as

(3.4') ( 0(s)dG*(s) ^ Γ φ{z)dH*{z) .

Suppose that (3.6) holds. We may rewrite it in the following way:

There exists y ^ 0 such that H*(z) ^ 0, z < 0, iϊ*(z) ^ 1,

0 ^ 2 < ?/, a n d B*(z) ^0,z^y.

S oo Γoo

zdG*(z) = \ zdH*(z), we can apply Theorem 2.1 by
checking that

^0, and Γ G*(^)^^(W H*{z)dz, u^O .
J J

Case la. 0 ^ u ^ μ. The condition I G*(z)dz Ξ> \ H*(z)dz be-

S oo J U J U

H*{z)dz, i . e . ,
("ff*(3)efc - Γ H*{z)dz -u^ \~H*{z)dz ,
Jθ J-oo Jit

or

^ w + Γ H*(z)dz .

If u < 7/, this follows from Jϊ*(2) ^ 1, 0 ^ z ^ u and iϊ*(2;) ^ 0,
z < 0 .

If u>y, we employ the condition u^ μ together with \ H*(z)dz rg

0 to conclude μ — u ^ \ H*(z)dz.
Ju

Case 1b. w ^ 0 and u ^ //. Then pG*(z)dz ^ \~H*(z)dz is just

S oo _ J U J U __

H*(z)dz. lί n^y, this is a trivial consequence of H*(z) g 0,
z ^ y. lΐ u ^ y, we observe that w ^ μ is equivalent to

u ^ - H*(z)dz

S O ftt _

H*(z)dz ^ 0 and \ H*(z)dz ^ u, we conclude from this that
S _ - o o Jo

H*(z)dz.
u
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Case 2a. μ^u^O. The condition (* G*(z)dz ^ Γ H*{z)dz be-

comes u - μ ̂  Γ H*{z)dz. But u - // ̂  (Γ^ Γ H*(z)dz.
J-oo J_oo

2b. u < μ and % ̂  0. The condition

Γ G*(z)ds ^ Γ H*{z)dz becomes 0 ̂  Γ H*(z)dz
J-oo J-oo J-oo

which follows from iϊ*(2) ^ 0, z ̂  0.

Now suppose that (3.5) holds. In this case it is possible to prove
(3.4) in a manner analogous to the proof just given under the sup-
position that (3.6) holds. Alternatively, we can use the result that
(3.6) implies (3.4): Let G\x) - G(-x), x\t) = -x(-t), φ\z) = Φ(-z),
αr = - δ , V = - α , and t\ = -t0. Then (3.6) with Gr in place of G and
ίj in place of t0 is equivalent to (3.5) so it implies (3.4) with G, x, φ, a
and b replaced by G\ x\ φ\ αf and 6r respectively. However, (3.4) with
this replacement is equivalent to (3.4) without this replacement.

Next, suppose that (3.4) holds. Choose tx < t0, let x(t) = — 1,
t ^ tu x(t) = 0, t > tlf and let φ(z) = z\ Then (3.4) becomes

( dG(t) < Γ ί ( - l)dG(t)Ί - Γ ί dG{t)Ί ,
J[α,ίl] LJία,^] J LJίa,t{] J

i.e., G(ίi) ^ [Git,)]2. Hence G(^) ^ 0 or G(ίJ ^ 1, ίL < £0. Similarly,
by choosing ίx ^ ί0, a (ί) = 0, t ^ ίj., α?(ί) = 1, t > ^, and φ(z) = z2, we
conclude that G{tx) ^ 0 or G(ίx) ^ 1, tx ^ ί0.

Now let t0 <^ tL < t2 < b and suppose that G(£x) ^ 0. Let

t ^ t,

x(t) = j l , t,<t£ t2

(l + ε, t2 < t ^ δ .

Then ί x(t)dG(t) = G(ίx) - G(ί2) + (1 + ε)G(ί2) = G{tx) + εG(ί2). Since

G(^) ^ 0, we can choose ε sufficiently small that G(£0 + εG(ί2) < 1.

Let φ(z) — z — 1 if z >̂ 1 and ^(«) = 0 for z < 1. Then (3.4) becomes

( εdG(ί) ^ 0, i.e., G(ί2) ^ 0. Similarly, if a ̂  t, < t2 < tQ and we let

x(t) =

— (lJ

re),a<t^t1

— 1, ty <i t ^ t2 ό(z) = i

0 ί > ί 1 0, * > - l

then we can conclude that G(t2) ^ 0 implies G(ίx) ^ 0.
Finally, suppose that a < tL < tQ ̂  t2 < b, and G(ίx) ^ 1, G(ί2) ^ 1.

Choose δ so small that t, < tQ - δ < ί0, and let x(t) = -l/{G(t0 - δ)},
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ί ^ to - d, x(t) = 0, t0 - δ < t ^ ί0> and x(t) = l/{G(tQ)}, t > t0. Then

- 1 + 1 = 0 .*<t)Λ?<t) ( +
[α,6] J[..*o-*] - G ( t 0 ~ δ) J(*o.6] G(t0)

Inequality (3.4) becomes t φ(x(t))dG(t) ^ 0. With 0(z) = | s | , we
J[α,δ]

obtain

f
JΓ

a contradiction .
r..*o-«] G(t 0 )

It follows that either (3.5) or (3.6) must be satisfied.

In the same manner as for Theorem 3.1, it is possible to restate
Theorem 3.2 without the hypothesis ^(0) = 0 as follows:

THEOREM 3.2a.

(3.7) φ(\ x(t)dG(t)) - φ(0) > \ [φ(x(t)) - Φ(O)]dG(t)
\J[α,6] / J[α,δ]

for all convex functions φ and all increasing functions x such that
x(t0) = 0, a tSt tQ :g δ, if and only if either (3.5) or (3.6).

Both Theorems 3.1 and 3.2 were obtained via Theorem 2.1. It
follows from the conditions for equality there that equality holds in
(3.1) (in 3.4) for all x{t) such that x(t0) = 0 and all G satisfying (3.2)
(satisfying (3.5) or (3.6)) if and only if φ(x) = ax. In fact the same
can be said if equality holds for x(t) — t — t0 and all G satisfying the
appropriate conditions. On the other hand, for certain specific x(t),
there may be other cases of equality.

We state several immediate but particularly interesting consequences
of Theorems 3.1 and 3.2.

The condition that 0(0) = 0 may be of special interest for functions
Φ on [0,6], particularly when t0 = 0. In this case, we obtain the
following two special cases.

COROLLARY 3.3.

φ([ x(t)dG(t)) ^ ( φ(x(t))dG(t)
\J[O,δ] / J[O,δ]

for all convex functions φ such that φ(0) = 0 and all increasing
functions x such that x(0) — 0 if and only if 0 ̂  G(t) ^ 1, 0 ̂  t < 6.

COROLLARY 3.4.

φ(\ x(t)dG(t)) ^ ( φ(x(t))dG(t)
\J[O,δ] / J[O,δ]
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for all convex functions φ such that φ(0) = 0 and all increasing
functions x such that x(0) = 0 if and only if there exists s, 0 < s < 6,
such that G(t) ^ 1, 0 ^ t < s and G(t) ^ 0, s ^ t ^ b.

In Theorems 3.1 and 3.2 it is assumed that a point t0 is known
such that x(t0) = 0. The following corollaries are apparently more
general than the theorems, because they assume only that an interval
[t0, to] is known such that x(t) = 0 for some t e [t0, t'o]. This in essence
requires that the inequalities hold for a wider class of functions x(t),
namely those for which x(t) = 0 for some t e [t0, ί{]. We obtain the
conditions of the corollaries as the intersection of conditions of the
theorems over all points where it may be that x(t) — 0.

COROLLARY 3.5. Inequality (3.1) holds for all convex functions φ
such that φ(0) = 0 and all increasing functions x such that x(t) = 0
for some t e [t0, t'o], a ^ tQ ^ t'o ̂  δ, if and only if 0 ^ G(t) fg 1, a ^
t < t[ and 0 ^ G(ί) ̂  1, t0 ^ ί ^ 6.

COROLLARY 3.6. Inequality (3.4) Λoϊds for all convex functions
φ such that 0(0) = 0 and all increasing functions x such that x(t) = 0
for some t e [t0, t'o], a ^ t0 ^ t'o ̂  6, i / α?ιcί only if either there exists
s ^ t'Q such that G(t) ^ 0, t < s, G(t) ^l,s^t<t'o, and G(t) ^ 0, t ^
ί0, or there exists s ^ t0 such that G(t) ^ 0, t < £J, G(0 ̂  1, tQ ^ ί < s
and G(t) ^ 0, ί ^ s.

The special cases of these corollaries in which t0 = α, t'o = 6 are
particularly interesting, though we do not explicitly spell them out.
This case of Corollary 3.5 bears comparison with Theorem 1 of Brunk
[5]. However, Brunk's conditions are of a different nature than ours,
because they depend upon the function x.

Both Theorem 3.1a and Theorem 3.2a yield interesting corollaries
when the condition G(b) — 1 is imposed. In this case (3.3) reduces to
(3.1) and (3.7) reduces to (3.4).

COROLLARY 3.7. (3.1) holds for all convex functions φ and all
increasing functions x such that x(t0) = 0 if and only if (3.2) and
G(b) = 1.

COROLLARY 3.8. (3.4) holds for all convex functions φ and all
increasing functions x such that x(t0) = 0 if and only if G(b) — 1,
and (3.5) or (3.6).

The sufficiency of these conditions follows from Theorems 3.1a and
3.2a. The necessity of G(b) = 1 is obtained with φ(x) = 1 and φ(x) =
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- 1 in (3.1) and (3.4).
With t0 = a, the sufficiency of the conditions in Corollary 3.7 has

been obtained by Brunk [5], Corollary 2.
We point out that in both Theorems 3.1 and 3.2, the necessity of

the conditions was proved using only nonnegative functions φ. This
means that the conditions for the inequalities to hold cannot be relaxed
with the additional hypothesis that φ(x) Ξ> 0. It was with this fact
in mind that we included Theorem 2.2, which is to be compared with
Theorem 2.1.

Finally, we remark that results similar to those of this section
can be obtained for functions φ concave-convex about the origin, φ(x) ^
(2^) — φ(~x) for x ^ 0 and ^(0) = 0. Discrete versions of such results
have been obtained by Lawrence [11].

4* Inequalities for starshaped functions* We retain the con-
vention of § 3, that — o o ^ α ^ O ^ δ ^ o o , and G is a function of

bounded variation on [a, b] such that G(u) = I dG(x). Also, we
r J[O,M]

continue to require I x(t)dG(t) < oo,
J[o,&]

THEOREM 4.1. Fix t0 e [α, 6].

(4.1) φ(\ x(t)dG(t)) rg f φ(x(t))dG(t)
\J[α,δ] / J[α,δ]

for all supported starshaped functions φ such that φ(0) = 0 and all
increasing functions x such that x(t0) = 0 if and only if there exists
tt and t2, a ^ t1 ^ t0 ^ t2 ^ δ, such that

G(u) = 0, u < tγ\ 0 ^ G(u) ^ 1 and G(u) decreasing
(4.2)

%n u, tx ^ u < t0

and

0 fg G(u) ^ 1 and G(u) increasing, t0 ^ u < t2

G(u) = 0,u^tt.

Proof. Let G*(z) = G{t: a ^ t ^ 6 and a?(ί) ^ «}, and let H* be

S CO

zdG*(z). Then (4.1) can be rewritten as
- o o

(4.1') Γ φ(z)dH*(z) ^ Γ
J —CO J —O

and the conditions (4.2), (4.3) can be rewritten as follows: There
exist zγ and z2, zγ ^ 0 ^ z2 such that
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G*(z) = 0,z<z1;0^ G*(z) ^ 1 and G*(z) decreasing

in z, z1 ^ z ^ 0

and

0 ^ G*(z) g 1 and G*(z) increasing in z, 0 g z < z2;

G*(z) = 0fz^z2.

We suppose that (4.2') and (4.3') hold, and verify the conditions of
Theorem 2.6 with μ = G* - H*.

By definition of G* and JET*, we have (2.7).
To check (2.5), we first note that

m == ί~ >τdG*(α;) = ί°°G*(x)dx - Γ
J-oo JO J-oo

Consequently

(4.4) z1 ^ m ^ z2 .

Further, we note that integration by parts yields

( xdG*(x) = uG*(u) - \ G*(x)dx .

To check (2.5), we must show that

( xdG*(x) ^ ( xdH*(x), u ^ 0 .

( a ) If u < zlf then by (4.4), u < m so that

0 - ( xdG*(x) = [ xdH*(x) .

( b) If 2L < w < m ^ 0,

( xdG*(^) - ί xdH*(x) = [ xdG*(x)
J (-«>»«] J(-oo,tt] J(-oo,u]

= itG (it) - ( G*(x)dx ^ wG*(a;) ^ 0 by (4.2') .
J (—00,it]

( c) If zγ < m < u < 0,

xdH*{x)

x - [zG*(x)dx
JO

= 0 .
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Next, we must check (2.6), i.e., \ xdG*(x) ̂  [ xdH*(x), u^O.
J[«,») J[w,βo)

( a ) If 0 ^ u ^ m ^ z2, then

ί xdG*(x) - ( xdH*(x)

- [2G*(x)dx + Γ
Jo Jsj,

^ uG*(u~) - (*G*(α?)da? ^ uG*{u~) - G*(u-)[Udx = 0 .
Jo Jo

( b ) If m < u < z2 and w ^ 0,

xdH*(x)

= ( xdG*(x) = vG*(vr) + [2G*(x)dx ^ 0 .

( c ) If u ^ z2, then

( xdH*{x) = 0 .
)

() (

This concludes the proof that (4.2) and (4.3) imply (4.1). It
remains to show the converse.

Following the proof of Theorem 3.1, we conclude that s2 > t0

implies 0 <£ G(s2) ^ 1, and sλ < t0 implies 0 ^ G(sx) ^ 1.
Next, suppose that t0 < s2 < s2 + δ and that G(s2 + δ) > 0.

Let a (ί) = 1, s2 < ί ^ s2 + δ and let ^(z) =
Iz, z > 1 .

(1 + ε, t > s2 + δ ,

Then for sufficiently large ε,

\x(t)dG(t) = G(s2) - G(s2 + δ) + (l + e)G(s2 + δ)

= G(s2) + εG(s2 + δ)>l,

and (4.1) becomes

(1 + ε)G(s2 + δ) ^ G(s2) + εG(s2 + δ) ,

that is

G(s2 + δ) ^ G(s2) .

This proves (4.3). Condition (4.2) follows similarly with
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, < t ^ s, + δ and φ(z) =

where sί < sx + d < ί0.

THEOREM 4.2. jPίa; ί0 e [α, 6].

(4.5) φ(\ x(t)dG(t)) ^ ( φ(x(t))dG(t)

/or all starshaped functions φ such that φ(0) == 0 αwtZ all increasing
functions x such that x(t0) — 0 if and only if either

there exists txi a Stx^tQ such that G(u) = 0, u < tx;

(4.6) 0 ^ G(u) ^ 1 α?ιcZ G(u) decreasing in u,tλ<ϊ u < £0>

am? G(u) = 0, u ^ ί0 ,

or

there exists t2J tQ ^ t2 ^ δ, ŝ c/z, ίfcaί G(w) = 0, u < t0,

(4.7) 0 ^ G(^) <Ξ: 1 a^c? G(^) increasing, t0 < u < t2f G(u) =

0, u ^ ί2 .

Proof. Though (4.5) can be obtained from Theorem 2.5, we use
Theorem 4.1. If (4.6) or (4.7), then (4.2) and (4.3) and in addition,
G has no mass to the right of t0, or no mass to the left of t0. Thus,
the integrals of the inequality can be extended over [α, t0] (where
x(t) <: 0) or over [t0, b] (where x(t) ^ 0). But on (-oo, 0] or [0, <χ>),
starshaped functions φ are supported starshaped functions and the
inequality follows from Theorem 4.1.

Let x(t) =

- 1 , t S ίi

0, ^ < t ^ t2 where t, < t0 < tz ,

a,t>t2,

and suppose G(^) > 0, G(t2) > 0. Then m = \bχ(t)dG(t) = αG(ί2) -
J α

is strictly positive for some a and strictly negative for some a.
r

According to Theorem 2.5, we must have I x(t)dμ(t) = 0, where
J[a,t0)

μ = G — H and H is a probability distribution degenerate at m. This

is impossible, since m can be strictly positive or strictly negative while

\ x(t)dG(t) is unchanged.
J[α,ί0)

THEOREM 4.3. Fix t0 e [α, 6].
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(4.8) φ(\ x(t)dG(t)) ^ \ φ(x(t))dG(t)

for all supported starshaped functions φ such that φ(0) = 0 and all
increasing functions x such that x(tQ) = 0 if and only if either

there exists tly a ^ tγ ^ t0, such that G(t) = 0,

(4.9) a ^ t < tx\ G(t) >̂ 1 and G(t) is increasing,

t ^ t < t0) G(t) ^ 0, t0 ^ t ^ b ,

or

there exists t2, t0 ^ t2 fj b, such that G(t) ^ 0,

(4.10) a ^ t < to; G(t) ;> 1 and G(t) is decreasing in

t, U ^ t < t2; G{t) = 0, ί2 ^ t ^b .

Proo/. Let H*{z) = G{t: a <*t <*b and α(ί) ^ 2}, and let G* be

S oo

zdH*(z). Then (4.8) can

be rewritten as

(4.8') Γ ^(z)dG*(z) ̂  Γ φ(z)dH*(z)

and (4.10) can be rewritten as

there exists z2 > 0 such that iϊ*(2) ^ 0, 2; < 0;

(4.10') H*(z) ^ 1 and β*(z) is decreasing in z, 0 ^

« < z2; 5*(2) = 0, 2 ^ ^2 .
We show that (4.10') implies (4.8') by applying Theorem 2.6 with
μ - G* - i ϊ*. First, note that

m = Γ zdH*(z) -

H*(z)dz ^ H*{z)dz ^ z2 ,
J-00 Jo

since ΈL*(z) ^ 0, 2 ^ 0, jff*(z) ^ 1, 0 < z < z2, and H*(z) ^Qyz^0.
Clearly (2.7) is satisfied. To verify (2.5), we note by (4.11) t h a t

m ^ O s o (2.5) is ί zdH*(z) ^ 0, u ^ 0. But
J(-oofίt]

\ zdH*(z) = uH*(u) — I H*(z)dz ^ 0
J (— oo, t t] J—co

because H*(z) < 0, z ^ u, H*(u) < 0 and u <; 0.

To verify (2.6), suppose first that u > z2. Then (2.6) becomes

\xdG*{x) ̂  0 which follows from (4.11). If u <; z2 (then u ^ m by
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(4.11)), (2.6) becomes

ί zdG*(z) ^ f zdH*(z) , i.e., ί" zdH*{z) ^ ( zdH*(z) ,
J[u,co) Jίu,Z2) J — CO J[tt,22)

or

( zdH*(z) + [ zdH*(z) ^ 0 .
J (-<*>,0] J(0,tt]

Now

( zdH*(z) = - (° H*(z)dz ^ 0
J(-co,0] J_oo

and

( zdH*(z) = -uH*{u) + \UH*(z)dz ^ 0
J(O,ttj JO

because H*(z) is decreasing in z,0 < z < z2.
The proof that (4.9) implies (4.8) is analogous. Consequently, we

turn to the problem of showing that (4.9) or (4.10) is necessary.
Suppose that (4.8) holds.

A. G(s2) Ξ> 1 or G(s2) fg 0, s2 > tQ; G(sx) ^ 1 or G(sx) ^ 0, sλ < ί0.
To see this, let φ(z) = z2; first let

(0, t < s2 ( — l,t<s1
x(t) = ] ~ 2 , then let E(£) = ] ~ ι .

(1, ί > s2 [ 0,t> s,

Apply (4.8) to obtain [G(s2)]2 ^ G(s2) and [G^)] 2 ^ GίsJ.
Gr(s1)Gr(s2) ^ U it s1 <C to <C s2.

To see this, suppose the contrary, let

0, sx < ί ^

and let

(z, z < 0 (0,2; < 0
ΨΛ } (0, z ^ 0, k s ^ 0 .

Then ί x(t)dG(t) = 0. With ^ = ̂ , (4.8) becomes
J[o,6]

0 ^ -GίsO/l G(sO I , a contradiction if G(sx) < 0

Λvith φ = φ2, (4.8) becomes

0 ^ G(s2)/| G(s2) I , a contradiction if G(s2) > 0 .
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C. If ί, < s2 < s2 + δ ̂  b and G(s2 + δ) ̂ 1 , then_G(s2) ̂  G(s2 + δ).
To see this, suppose the contrary, that G(s2) < G(s2 + δ).

Let a (ί) =

Then

°' * - δ2 ίθ x < 1
1, s2 < t S s2 + δ φ(x) = I '

lie, x > 1 .
1 + ε, t > s2 + δ , v » -

m = Γ*(ί)dG(ί) = [G(s2) - G(s2 + δ)]

- εG(s2 + δ)

and m < G(S2 + δ) for sufficiently small ε > 0. From (4.8), we conclude
that

0 ^ ( φ(l + e)dG(t) = (1 + e)G(s2 + δ)
J(s2 + δ,b]

contradicting G(s2 + δ) ̂  1.
C . If α ̂  sx < Si + δ < ί0, and Gίs^ ^ 1, then G(sx + δ) ̂  G(sx).

The proof of this is analogous to C above.
D. If t0 < s2 < s2 + δ ̂  &, G(s2) ^ 1, and G(s2 + δ) ̂  0, then

G(s2 + δ) = 0.
If we assume the contrary and take x(t), <ρ(x) as in C, we can

choose ε > 0 so that 0 < m < 1. Then (4.8) becomes

0 ^ [G(s2) - G(s2 + δ)] + (1 + e)G(t2 + δ) = G(s2) + εG(s2 + δ) = m ,

contradicting m > 0.
D'. If a ̂  s, < Si + δ < t0, G(s, + δ)^l and G(sx) ̂  0, then G(sx) = 0.
The proof is analogous to D.

THEOREM 4.4. Fix t0 e [α, δ].

(4.13) φ(\ x(t)dG(t)) ^ ( φ(x(t))dG(t)
\J[α,δ] / J[α,δ]

for all starshaped functions φ such that φ(0) and all increasing
functions x such that x(tQ) = 0 if and only if either

there exists tλ ^ t0 such that G(t) = 0, t < ίx; G(ί) ̂  1
(4.14) -

and G(t) is increasing, £x <̂  £ < ίo; G(ί) = 0, t ^ ί0 ,

or

ί/^ere exists t2 ^ ί0 ŝ cfe ί/̂ αί G(ί) >̂ 1 απώ G(ί) is de-

creasing int,totί t < £2; G(£) = 0, ί > t2; G(t) — 0, t < £0
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Proof. Since every supported starshaped function is starshaped,
the conditions (4.9) or (4.10) are necessary for (4.13). Suppose that
(4.10) holds. Then, in order to satisfy (2.5) of Theorem 2.5 we must

S o
xdH*(x) = 0, because, by (4.11), m ^ 0.

But I xdH*{%) = - 1 H*(x)dx = 0 together with H*{x) ^ 0, x < 0,
J —oo J - c o

implies H*(x) = 0, x < 0. Thus (4.14) or (4.15) is necessary; it is
sufficient by Theorem 4.3 since, on [0, oo) or (— °°,0], starshaped
functions φ are supported starshaped functions. If (4.14) or (4.15),
the interval [α, 6] is effectively replaced by [α, t0] or [t0, b].

Only minor modifications of Theorems 4.2 and 4.4 are required to
eliminate the condition 0(0) = 0, provided that x(t) Φ 0 for t Φ ί0. In
this case, the inequalities depend upon 0(0) only through G{tQ}. Since
starshaped functions φ satisfy 0(0) ^ 0, conditions can be imposed on
G{t0} so that the inequalities do not become false even when —0(0) is
arbitrarily large. In the case of Theorem 4.2, the condition G{t0} ^ 0
must be added; in the case of Theorem 4.4, the condition G{t0} ^ 0
is required.

The most natural domain for starshaped functions is [0, b]; on this
domain, a starshaped function is a supported starshaped function.
From Theorem 4.1 or 4.2 we obtain the special case of

COROLLARY 4.5.

φ(\ x(t)dG(t)) ^ [ φ(x(t))dG(t)
\J[0,6] / J[O,δ]

for all starshaped functions φ such that 0(0) = 0 and all increasing
functions x such that x(0) = 0 if and only if there exists t2,0^t2<^b,
such that 0 ^ G(u) ^ 1 and G(u) is increasing, 0 ^ u < t2, and G(u) ~
0,u^> t2.

Similarly from Theorem 4.3 or 4.4 we obtain

COROLLARY 4.6.

φ([ x(t)dG(t)) ^ ( φ(x(t))dG(t)
\J[O,δ] / JΓO,δ]

for all starshaped functions φ such that 0(0) = 0 and all increasing
functions x such that x(0) = 0 if and only if there exists t2, 0 ^ t2 ^ 6,
such that G(t) ^ 1 and G(t) is decreasing in t,0 ^ t < t2; G(t) = 0,
t^ t2.

In the same spirit as Corollaries 3.5 and 3.6, and via the same
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argunments, we obtain from Theorems 4.1 and 4.3 the following
corollaries:

COROLLARY 4.7. (4.1) holds for all supported starshaped functions
φ and all increasing functions x such that x(t) — 0 for some t e [t0, ίj]r

a ίg t0 ^ to fg by if and only if there exists t± and t2, t1 ^ t2, a ^ tx ^ t'or

t0 ^ t2 ^ b, such that G(u) = 0, a ^ u < ίx; 0 ^ G(u) ^ 1 and G(u) de-
creasing in uytι ^ u < ί£; 0 ^ G(w) ^ 1 and G(u) increasing, tQ ^ u <

= 0, ί2 ^ w ^ 6.

COROLLARY 4.8. (4.8) holds for all supported starshaped functions
and all increasing functions x such that x(t) = 0 for some te [tQ, t'Q],
a ^ ί0 ^ ίί ^b if and only if either (i) there exists tl9 a ^ tL ^ ίj,
swcft ίfeαί G(ί) = 0, α ^ ί < ίx; G(ί) ^ 1 α^ώ G(ί) increasing, tx<kt < t'Q;
G(t) ^ 0, ί0 ^ ί ^ 6, o?̂  (ii) ί/^erβ eicisis ί2, ΐ0 ^ ί2 ^ 6, ŝ c/^ ί/^αί G(ί) ̂  1
and G(t) is decreasing, t0 ^ t < ί2; G(ί) = 0, ί2 ^ ί ^ 6; G(ί) ^ 0, a ^
ί < ίj, or (iii) G is a point mass of at least one at some point s e [tQ, t'o].

We remark that (i) guarantees that (4.9) holds and (ii) guarantees
(4.10) holds no matter what t e [tQ> t'o] satisfies x(t) = 0. However (iii)
guarantees (4.9) when t > s and (4.10) when t < s.

Again, the special cases ί0 = α, ίί = b are of particular interest,
and may be easily written out. This case of Corollary 4.8 takes a
particularly simple form because only (iii) is possible.

5* Discrete versions. Some results similar to those of § 3 are
known in the discrete case. One such inequality is due to Szego [14];
it states that if 0 < x1 ^ x2 ^ ^ #2m-i a n d Φ is convex on [0, &2w_i],
then

(5.1) φΓf! (- iy-%] ^ ' Σ 1 (-1)'" V(ay)
L 3=1 J 3=1

Closely related results were obtained by Weinberger [15], Bellman [3],
and Wright [16]. These results were further generalized by Brunk
[5] and Olkin [13], who proved that if 0 g b, ̂  . ^ bn ^ 1, if 0 ^
xι ^ ^ xn, and if φ is convex, then

(5.2) φ\± {-iγ-%όxλ - φ{0) £ ± (-ly-JbAφixj) - φ(0)] .
Li=i J 3=1

Notice that if n = 2m — 1 and b3- = 1, then (5.2) reduces to (5.1).
Theorem 3.1a yields necessary and sufficient conditions on aly α2,

an in order that

(5.3) φ(± a3 xλ -



SOME INEQUALITIES FOR STARSHAPED AND CONVEX FUNCTIONS 39

for all convex functions φ and 0 ^ xι ^ S #*. In addition, discrete
versions of various other results are of interest.

In the following, we assume that φ(Q) — 0, so that (5.3) becomes

(5.4) φ(± ajxλ ^ Σ M(»;)

For various conditions on the xj9 below are listed necessary and
sufficient conditions on the aά in order that (5.4) holds for all convex
functions φ such that 0(0) = 0. Similarly, conditions are listed for its
reversal,

(5.5) φ(± djX^ ^ Σ M(»y)

We use the notation A< = Σ ί aJ a n ^ A{ — Σ * aβ.
A. 0 ^ x, ^ ^ xn:

(5.4) if and only if 0 ^ A, ^ 1,1 ^ i £ m;

(5.5) if and only if there exists j,0 ^ j ^ n such that A{: >̂ 1,

1 ^ i ^ j , A< ^ 0, i + 1 ^ i ^ ^.
B. «,. ^ ^ xn:

(5.4) if and only if 0 ^ A< ^ 1 and 0 ^ 1, ^ 1,1 ^ i ^ n;
(5.5) if and only if A4 ^ 0 and A{ ^ 0, i = 1, 2, , n, or for

somei, 0 <: j" ̂  n, A1 ^ 1, ,AS ^ 1, A i + 1 ^ 0, , An ^
0, and Ai^ A^l ^ i ^ j . Note that this last condition
is equivalent to A1 ^ 0, , Afc_x ^ 0, Ak+1 ^ 1, , An ^
1, and A{ ^ Afc, k ^ i ^ n, for some &, (1 ^ k ^ π).

C. a;,. ^ ^ xk ^ 0 ^ % + 1 ^ ^ xn:
(5.4) if and only if 0 ^ A, ^ 1,1 ^ i ^ k, and 0 ^ 1 , ^ 1,

& + 1 ^ i ^ n;
(5.5) if and only if there exists j ^ k such that ^ ^ 0, i < j

Ai ^ 1, i ^ i ^ fe; Ai ^ 0, i ^ fe + 1, or there exists j ^
k such that A{ ^ 0, i ^ ft; A< ^ 1, A; + 1 ^ i ^ i; A< ^
0, i > i .

D. x1 ^ ^ a?n and % ^ 0 ^ α;z(fc ^ I):
(5.4) if and only if 0 ^ A, ^ 1, i < I, and 0 ^ A< ^ 1, i > k;
(5.5) if and only if there exists 1 ^ j ^ I such that A4 ^ 0,

ί < i; A* ^ 1> i ^ ί < J; A!* <ς 0> * ^ & + 1, or there ex-
ists k ^ j ^ n such that A4 ^ 0, i < Z, A* ^ 1, & + 1 ^
^ ^ i; Aί ^ 0, ί > i .

We turn now to the case that φ is a supported starshaped function
such that 0(0) = 0; below are necessary and sufficient conditions for
(5.4) and for (5.5) to hold for all such functions with various conditions
on the x{.

A. 0 ^ xx ^ ^ xn:
(5.4) if and only if for some j , 0 ^ j ^ n, 0 ^ Ax ^ A2 ^ ^
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Aj] Aj+1 = = An = 0.

(5.5) if and only if for some j , 0 ^ j ^ n, Aλ ;> A2 ^ ;>
A y ^ l , A y + 1 = ... = An = 0.

B. x1 ^ ^ xn:
(5.4) if and only if for some j , 0 ^ j rg n, 0 ^ ay ^ 1 and α̂  =

0, i Φ j .
(5.5) if and only if for some j , 0 <̂  j ^ w, a,- >̂ 1 and α* = 0,

i Φjm This condition arises from (iii) of Theorem 4.8.
C. x1 ^ ^ xk ^ 0 ^ ajΛ+1 ^ ^ a?Λ:

(5.4) if and only if there exists j \ and j 2 , j \ <; j z , 1 ^ \̂ g
fc + 1, k <£ i 2 ^ w, such that i4x = = Ah^ = 0,1 ^
A y i ^ ^ Λ t ^ 0, 0 ^ Ak+ι ^ ^ A ia ^ 1, A i 2 + 1 - . . .
= A. = 0.

(5.5) if and only if either
( i ) there exists j \ , 1 g j \ ^ A; + 1 such that

Λ = = AdiΓl - 0 , l g i ^ . . ^ Ak, Ak+1 = - An = 0 ,

or
(ii) there exists j 2 , k g y2 ^ ^ such that

A* ^ 0,1 ^ ΐ ^ fc, Ak+1 ^ ^ A i2 ^ 1, A i 2 + 1 = - An = 0 ,

or
(iii) aά ^ 1 for ^ = A or A + 1 and α< = 0, i ^ i .
D. a?i ^ ^ xn and ^fc ^ 0 ^ ^(A g I):

(5.4) if and only if there exists j \ <̂  j i f 1 ^ j \ g ί, fc ^ j 2 ^ ^,
such that At= =_ Ah_x =_0,1 ^ A^ ^ •_• ^ A,^ ^
0, 0 ^ A t + 1 ^ ^ Ah ^ 1, A i 2 + 1 = . . . = = A. = 0.

(5.5) if and only if either
( i ) there exists j191 ^ j ί ^ I, such that

Ax = = Ah_λ = 0,1 ^ Ah ^ ^ A,_lf A4+1 = = A. ^ 0 ,

or

(ii) there exists j21k % j2^n, such that

A, ^ 0,1 g i < I, Ak+1 2: ^ Ah ^ 1, A i a + 1 = = A » = 0 ,

or

(iii) there exists i , k ^ j <. I, such that αy ^ 1 and α̂  = 0, i Φ j .

6* Applications* Our interest in the foregoing results arose
from the study of statistical problems for certain restricted families
of probability distributions of importance in reliability theory. We
say that a distribution F is convex (starshaped) with respect to H if

= iί(0) = 0 and H~ιF is convex (starshaped) on the support of
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F. Of particular interest is the case that H is the exponential distri-
bution, i.e., H(x) = e~x (other cases are interesting, e.g., H(x) = x,
0 £ x £ 1).

Distributions F convex with respect to the exponential distribution
are called increasing hazard rate (IHR) distributions, because those
that are absolutely continuous are characterized by having an increasing
hazard rate r(x) = [dF(x)/dx]/F(x). Distributions F starshaped with
respect to the exponential distribution are called increasing hazard
rate average (IHRA) distributions, because those that are absolutely
continuous are characterized by the property that (l/t)γor(x)dx is in-
creasing. The properties of IHR and IHRA arise in formulating
descriptions of "wearout" in reliability theory.

If 0 ̂  Xx ^ ^ Xn are order statistics from F, then H^FiXi)
are distributed as order statistics Y{ from H. With φ(x) = H~ιF(x),
where φ is convex or starshaped, we obtain from the foregoing inequali-
ties necessary and sufficient conditions on the α{ in order that

FiΣatX^iHi^atY,) or H(Σ atYt) I F(Σ <MQ ,
si

where g denotes "stochastically less than." Such inequalities are
used by Barlow and Proschan [2] to construct conservative tolerance
limits for IHR or IHRA distributions.
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