A RADON-NIKODYM THEOREM FOR VECTOR AND OPERATOR VALUED MEASURES

Jorge Alvarez de Araya

Abstract

The main result of this paper is a Radon-Nikodým theorem for measures taking values in a separable Hilbert space and on the bounded operators of such a space. The integral used for the representation is a Gelfand-Pettis integral, which in this case is also equivalent to the Bochner integral.

1.1. Basic definitions. We will consider the following objects: a measure space $(\Omega, \mathscr{A}, \mu)$, where \mathscr{A} is a σ-algebra of subsets of Ω and μ is a σ-finite nonnegative measure; a separable Hilbert space H and the space $B(H)$ of bounded linear operators from H into H, and also the objects which we define below.
1.2. Definition. By vector function and operator function we will understand functions defined on Ω and taking values in H and $B(H)$ respectively. A vector function $x(\omega)$ is measurable if for each y in H, the function $(y, x(\omega))$ is measurable. An operator function $A(\omega)$ is measurable if for each x, y in H, the function $(A(\omega) x, y)$ is measurable. Obviously $A(\omega)$ is measurable if and only if $A(\omega) x$ is a measurable vector function for each x in H.
1.3. Lemma. If $x(\omega)$ is a measurable vector function, then $\|x(\omega)\|$ is measurable. If $A(\omega)$ is a measurable operator function, then $\|A(\omega)\|$ is measurable.

Proof. Let $x(\omega)$ be measurable and let $\left\{e_{1} e_{2}, \cdots\right\}$ denote an orthonormal basis for H. Then $\left(x(\omega), e_{n}\right)$ is measurable for each n and so $\|x(\omega)\|^{2} \sum_{n=1}^{\infty}\left|\left(x(\omega), e_{n}\right)\right|^{2}$ is measurable. Now let $A(\omega)$ be measurable and let S_{0} be a countable dense subset of the unit ball in H. Then $\|A(\omega)\|=\sup \left\{\|A(\omega) x\|: x \in S_{0}\right\}$ is measurable.
1.4. Definition. A measurable vector function $x(\omega)$ is integrable if $\|x(\omega)\|$ is integrable (i.e., it belongs to $\left.L_{1}(\mu)\right)$. A measurable operator function $A(\omega)$ is integrable if $\|A(\omega)\|$ is integrable.

Let $x(\omega)$ be integrable and let $y \in H$. Then $|(y, x(\omega))| \leqq\|y\| \cdot\|x(\omega)\|$ and $(y, x(\omega))$ is integrable. $\int(y, x(\omega)) d \mu(\omega)$ is a linear functional bounded by $\int\|x(\omega)\| d \mu(\omega)$ and there is a unique vector $z \in H$ such that $\int(y, x(\omega)) d \mu(\omega)=(y, z)$. The vector z is by definition the integral
$\int x(\omega) d \mu(\omega)$; we already proved that $\left\|\int x(\omega) d \mu(\omega)\right\| \leqq \int\|x(\omega)\| d \mu(\omega)$. The integral is obviously linear. For each

$$
x \in H,\|A(\omega) x\| \leqq\|A(\omega)\| \cdot\|x\|
$$

so that $A(\omega) x$ is an integrable vector function. Since

$$
\left\|\int A(\omega) x d \mu(\omega)\right\| \leqq \int\|A(\omega) x\| d \mu(\omega) \leqq \int\|A(\omega)\| d \mu(\omega) \cdot\|x\|
$$

$\int A(\omega) x d \mu(\omega)$ defines a bounded linear operator on x. This operator is by definition the integral of $A(\omega)$, so that $\int A(\omega) x d \mu(\omega)=\left(\int A(\omega) d \mu(\omega)\right) x$ for each $x \in H$. Obviously $\left\|\int A(\omega) d \mu(\omega)\right\| \leqq \int\|A(\omega)\| d \mu(\omega)$ and the integral is linear.
2.1. Indefinite integrals and the Radon-Nikodým theorem. If $x(\omega)$ is a measurable vector function and $E \in \mathscr{A}, \chi_{E}(\omega) x(\omega)$ is also measurable and if $x(\omega)$ is integrable, so is $\chi_{E}(\omega) x(\omega)$. Similarly, if $A(\omega)$ is an operator function, $\chi_{E}(\omega) A(\omega)$ will be measurable or integrable if $A(\omega)$ has the same property. Thus, if $x(\omega)$ and $A(\omega)$ are integrable, $\int_{E} x(\omega) d \mu(\omega) \equiv \int \chi_{E}(\omega) x(\omega) d \mu(\omega)$ and

$$
\int_{E} A(\omega) d \mu(\omega) \equiv \int \chi_{E}(\omega) A(\omega) d \mu(\omega)
$$

will exist for all $E \in \mathscr{A}$.
Let $\varphi(E)$ denote the integral over E of a vector or operator function. Then φ is σ-additive in norm, that is, if $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a sequence of disjoint sets in \mathscr{A}, then $\varphi\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \varphi\left(E_{n}\right)$ in norm. Also ϕ is absolutely continuous with respect to $\mu(\rho \ll \mu)$ in the sense that $(\mu E)=0$ implies $\varphi(E)=0$. Finally if $E \in \mathscr{A}$ and $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a disjoint sequence of sets in \mathscr{A} such that $E=\bigcup_{n=1}^{\infty} E_{n}$, then we must have $\sum_{n=1}^{\infty}\left\|\varphi\left(E_{n}\right)\right\|<\infty$. We will denote this property saying that is σ bounded on E.
2.2. Lemma. Let X be a normed space and φ a σ-additive function from \mathscr{A} into X. Then there is a nonnegative measure ν on \mathscr{A} such that for each $E \in \mathscr{A},\|\varphi(E)\| \leqq \nu(E)$, and $\nu(E)$ is finite if and only if φ is σ-bounded on E. Furthermore if $\varphi \ll \mu$, then $\nu \ll \mu$. (Obviously in any case $\varphi \ll \nu$).

Proof. Let $\mathscr{P}=\left\{E_{1}, \cdots, E_{n}\right\}$ be a (measurable) partition of $E \in \mathscr{A}$ and let $|\mathscr{P}|$ denote the number $\sum_{i=1}^{n}\left\|\varphi\left(E_{i}\right)\right\|$. Temporarily we will say that E is unbounded if for each $K>0$ there is a partition \mathscr{P} of E with $|\mathscr{P}|>K$. Assume that φ is σ-bounded on E, but
that E is unbounded. We claim that E contains disjoint measurable subsets $E_{0}, E_{1}, \cdots, E_{n}, n \geqq 1$ with E_{0} unbounded and $\sum_{i=1}^{n}\left\|\varphi\left(E_{i}\right)\right\|>1$. Otherwise each partition of E contains precisely one unbounded set and for positive integer n there is a partition \mathscr{P}_{n} with $|\mathscr{P}| \geqq n+1$, containing the unbounded set F_{n} for which we must have $\left\|\varphi\left(F_{n}\right)\right\| \geqq n$. If necessary, by refining these partitions we may obtain that $F_{n+1} \supseteqq F_{n}$ for each n. Since $F_{n}=F \cup \bigcup_{k=1}^{\infty}\left(F_{k} \backslash F_{k+1}\right)$, where $F=\bigcap_{k=1}^{\infty} F_{k}$, and ρ is σ-additive in norm, we have

$$
n \leqq\left\|\varphi\left(F_{n}\right)\right\| \leqq\|\varphi(F)\|+\sum_{k=n}^{\infty}\left\|\varphi\left(F_{k} \backslash F_{k+1}\right)\right\|
$$

which is impossible since $\sum_{k=1}^{\infty}\left\|\varphi\left(F_{k} \backslash F_{k+1}\right)\right\|$ is convergent, E being σ-bounded. Having proved our claim, we arrive at a new contradiction, since then we may construct a disjoint sequence $\left\{E_{n}\right\}_{n=1}^{\infty}$ measurable of subsets of E with $\sum_{n=1}^{\infty}\left\|\varphi\left(E_{n}\right)\right\|=\infty$. Thus a σ-bounded set E is not unbounded, i.e., there is a constant $K_{E}>0$ such that $\sum_{n=1}^{\infty}\left\|\varphi\left(E_{n}\right)\right\|<K_{E}$ for each disjoint sequence $\left\{E_{n}\right\}_{n=1}$ of measurable subsets of E.

Now we define ν on \mathscr{A} by $\nu(E)=\sup \left\{\sum_{n=1}^{\infty}\left\|\varphi\left(E_{n}\right)\right\|:\left\{E_{n}\right\}_{n=1}^{\infty} \subset \mathscr{A}\right.$, disjoint and $\left.\bigcup_{n=1}^{\infty} E_{n}=E\right\}$. Obviously $\|\varphi(E)\| \leqq \nu(E), \nu(E)<\infty$ if and only if φ is σ-bounded on E, and $\varphi \ll \mu$ implies $\nu \ll \mu$. We only need to prove that ν is σ-additive. Suppose that $E=\bigcup_{n=1}^{\infty} E_{n}$ where the E_{n} are disjoint and measurable. For any $\varepsilon>0$ there is a disjoint sequence $\left(G_{m}\right)_{m=1}^{\infty}$ of measurable subsets of E such that $E=\bigcup_{m=1}^{\infty} G_{m}$ and $\nu(E) \leqq \sum_{m=1}^{\infty}\left\|\varphi\left(G_{m}\right)\right\|+\varepsilon$ (if $\nu(E)=\infty, E$ is not σ-bounded and the G_{m} may taken such that $\left.\sum_{m=1}^{\infty}\left\|\varphi\left(G_{m}\right)\right\|=\infty\right)$. Since

$$
\varphi\left(G_{m}\right)=\sum_{n=1}^{\infty} \varphi\left(G_{m} \cap E_{n}\right),
$$

we have $\left\|\varphi\left(G_{m}\right)\right\| \leqq \sum_{n=1}^{\infty}\left\|\varphi\left(G_{m} \cap E_{n}\right)\right\|$ and therefore

$$
\nu(E) \leqq \sum_{m, n}\left\|\varphi\left(G_{m} \cap E_{n}\right)\right\|+\varepsilon \leqq \sum_{n=1}^{\infty} \nu\left(E_{n}\right)+\varepsilon .
$$

On the other hand, for each positive n there is a disjoint sequence $\left\{G_{n m}\right\}_{m=1}^{\infty}$ of measurable sets such that $\bigcup_{m=1}^{\infty} G_{n m}=F_{n}$ and

$$
\nu\left(E_{n}\right) \leqq \sum_{m=1}^{\infty}\left\|\varphi\left(G_{n m}\right)\right\|+2^{-n} \varepsilon .
$$

Then $\sum_{n=1}^{\infty} \nu\left(E_{n}\right) \leqq \sum_{n, m}\left\|\rho\left(G_{n m}\right)\right\|+\varepsilon \leqq \nu(E)+\varepsilon$. Since ε was arbitrary, we obtain $\nu(E)=\sum_{n=1}^{\infty} \nu\left(E_{n}\right)$.
2.3. Lemma. Let $f(\omega)$ and $r(\omega)$ be integrable functions, the first complex and the second nonnegative, such that for each $E \in \mathscr{A}$, $\left|\int_{E} f(\omega) d \mu(\omega)\right| \leqq \int_{E} r(\omega) d \mu(\omega)$. Then $|f(\omega)| \leqq r(\omega)$ almost everywhere.

Proof. If the lemma is false, there is a positive integer n such that $\mu(\{\omega \in \Omega:|f(\omega)|>r(\omega)+1 / n\})>0$ since then $\{\omega \in \Omega:|f(\omega)|>r(\omega)\}$ has positive measure. Also, for some open circle S of radius $1 / 2 n$ on the complex plane we must have $0<\mu(F)<\infty$, where F denotes a subset of $\{\omega:|f(\omega)|>r(\omega)+1 / n\} \cap\{\omega: f(\omega) \in S\}$. Let z_{0} be center of S. Then for each $\omega \in F,\left|f(\omega)-z_{0}\right|<1 / 2 n$ and $|f(\omega)|>r(\omega)+1 / n$. Integrating the identity $f(\omega)=z_{0}-\left(z_{0}-f(\omega)\right)$ over F and taking absolute values we obtain

$$
\begin{aligned}
\left|\int_{F} f(\omega) d \mu(\omega)\right| & \geqq\left|\int_{F} z_{0} d \mu(\omega)\right|-\left|\int_{F}\left(z_{0}-f(\omega)\right) d \mu(\omega)\right| \\
& \geqq\left|z_{0}\right| \mu(F)-1 / 2 n \mu(F)>r(\omega) \mu(F)
\end{aligned}
$$

for all $\omega \in F$, since $r(\omega)<|f(\omega)|-1 / n<1 / 2 n \div\left|z_{0}\right|-1 / n$. Integrating again over F and dividing by $\mu(F)$ we obtain

$$
\left|\int_{F} f(\omega) d \mu(\omega)\right|>\int_{F} r(\omega) d \mu(\omega),
$$

which contradicts our hypothesis.
2.4. Theorem. Let φ be a measure defined on \mathscr{A} and taking values in H or $B(H)$. If φ is σ-additive in norm, σ-bounded and absolutely continuous with respect to μ then φ is the indefinite integral with respect to μ of an integrable vector function or operator function which is unique almost everywhere.

Proof. We consider first the case in which φ takes values in H. Since for each $z \in H,(x, \varphi(E))$ is a complex, finite measure, absolutely continuous with respect to μ, the Radon-Nikodým theorem says that there is a complex integrable function $f_{\omega}(x)$ (with respect to ω) such that

$$
\begin{equation*}
(x, \varphi(E))=\int_{E} f_{\omega}(x) d \mu(\omega) \tag{1}
\end{equation*}
$$

and the function $f_{\omega}(x)$ differs from another with the same properties at most in a μ-null set. If α, β are complex and $x, y \in H$, it is clear that $f_{\omega}(\alpha x+\beta y)=\alpha f_{\omega}(x)+\beta f_{\omega}(y)$ except in a μ-null set. Also

$$
\left|\int_{E} f_{\omega}(x) d \mu(\omega)\right|=|(x, \varphi(E))| \leqq\|\varphi(E)\| \cdot\|x\| \leqq \nu(E)\|x\|,
$$

where ν is the measure defined in Lemma 2.2. Since $\nu \ll \mu$ and ν is finite, there is a nonnegative, finite and integrable function r_{ω} such that $\nu(E)=\int_{E} r_{\omega} d \mu(\omega)$. From the inequality

$$
\left|\int_{E} f_{\omega}(x) d \mu(\omega)\right| \leqq \int_{E} r_{\omega}\|x\| d \mu(\omega)
$$

for each $E \in \mathscr{A}$, by Lemma 2.3. we conclude that $\left|f_{\omega}(x)\right| \leqq r_{\omega}\|x\|$ for almost all ω.

The next steps of the proof lead to the construction for each $x \in H$ of a particular function $f_{\omega}(x)$, which for each ω will be a continuous linear functional in x. Let $\left\{e_{1}, e_{2}, \cdots\right\}$ be an orthonormal base for H and let H_{0} be the set of linear combinations with rational complex coefficients of the base vectors.

Step 1. We choose finite functions $\tilde{f}_{\omega}\left(e_{k}\right)$ such that $\left(e_{k}, \varphi(E)=\right.$ $\int_{E} \tilde{f}_{\omega}\left(e_{k}\right) d \mu(\omega)$ for each $E \in \mathscr{A}$.

Step 2. We define \tilde{f}_{ω} on H_{0} by linearity.
Step 3. We choose a nonnegative, finite function r_{ω} such that $\nu(E)=\int_{E} r_{\omega} d \mu(\omega)$ for each $E \in \mathscr{A}$.

Step 4. Since H_{0} is countable and for each $x \in H_{0},\left|\tilde{f}_{\omega}(x)\right| \leqq r_{\omega}\|x\|$ for almost all ω, we choose a μ-null set N such that $\mid \widetilde{f}_{\omega}\left(x| | \leqq r_{\omega}\|x\|\right.$ for all $x \in H_{0}$ and $\omega \in \Omega \backslash N$.

Step 5. We define $f_{\omega}(x)$ for $\omega \in \Omega$ and $x \in H_{0}$ by $f_{\omega}(x)=\tilde{f}_{\omega}(x)$ if $\omega \in \Omega \backslash N$ and $f_{\omega}(x)=0$ if $\omega \in N$. The functions we have defined have the following properties:
(a) $(x, \varphi(E))=\int_{E} f_{\omega}(x) d \mu(\omega)$, for each $x \in H_{0}$ ane $E \in \mathscr{A}$.
(b) $\left|f_{\omega}(x)\right| \leqq r_{\omega}\|x\|$ for each $x \in H_{0}$ and $\omega \in \Omega$,
(c) if α, β are rational complex numbers and $x, y \in H_{0}$, then $f_{\omega}(\alpha x+\beta y)=\alpha f_{\omega}(x)+\beta f_{\omega}(y)$, for all $\omega \in \Omega$.

Step 6. Let $x \in H$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in H_{0} converging to x. For each $\omega \in \Omega,\left|f_{\omega}\left(x_{n}\right)-f_{\omega}\left(x_{m}\right)\right|=\left|f_{\omega}\left(x_{n}-x_{m}\right)\right| \leqq r_{\omega} \| x_{n}-x_{m}| |$. Therefore $\lim _{n \rightarrow \infty} f_{\omega}\left(x_{n}\right)$ exists and obviously it is independent of the particular sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$. We define $f_{\omega}(x)=\lim _{n \rightarrow \infty} f_{\omega}\left(x_{n}\right)$. From the continuity of the norm we obtain $\left|f_{\omega}(x)\right| \leqq r_{\omega}\|x\|$. Also $(x, \varphi(E))=$ $\lim _{n \rightarrow \infty}\left(x_{n}, \varphi(E)\right)=\lim _{n \rightarrow \infty} \int_{E} f_{\omega}\left(x_{n}\right) d \mu(\omega)=\int_{E} f_{\omega}(x) d \mu(\omega)$, the last equality being valid by the dominated convergence theorem. Finally, if α, β are arbitrary complex numbers and x, y are any two vectors in H, there are sequences $\left\{\alpha_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty}$ of rational complex numbers and sequences $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}$ of vectors in H_{0} such that $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$, $\lim _{n \rightarrow \infty} \beta_{n}=\beta, \lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y$. Then $f_{\omega}(\alpha x+\beta y)=\lim _{n \rightarrow \infty}$ $f_{\omega}\left(\alpha_{n} x_{n}+\beta_{n} y_{n}\right)=\lim _{n \rightarrow \infty}\left(\alpha_{n} f_{\omega}\left(x_{n}\right)+\beta_{n} f_{\omega}\left(y_{n}\right)\right)=\alpha f_{\omega}(x)+\beta f_{\omega}(y)$.

Thus for each $\omega, f_{\omega}(x)$ is a continuous linear functional and by the Riesz theorem there is a unique vector $x(\omega)$ such that $f_{w}(x)=$ ($x, x(\omega)$) for each $x \in H$. Since $f_{\omega}(x)$ is measurable, $x(\omega)$ is measurable and since $\|x(\omega)\|=\left\|f_{\omega}\right\| \leqq r_{\omega}, x(\omega)$ is also integrable. From the equation $(x, \varphi(E))=\int_{E}(x, x(\omega)) d \mu(\omega)=\left(x, \int_{E} x(\omega) d \mu(\omega)\right)$ we obtain $\varphi(E)=$ $\int_{E} x(\omega) d \mu(\omega)$. The uniqueness almost everywhere of the vector function $x(\omega)$ is trivial.

The proof for the case when φ takes values in $B(H)$ follows along the same lines. Now we obtain $(\varphi(E) x, y)=\int_{E} f_{\omega}(x, y) d \mu(\omega)$, where $f_{\omega}(x, y)$ is for all $x, y \in H$ an integrable function and for each $\omega \in \Omega$ is a bilinear functional in x, y, bounded by some Radon-Nikodým derivative r_{ω} of the measure ν. By a corollary of the Riesz theorem, $f_{\omega}(x, y)=(A(\omega) x, y)$ for some linear operator $A(\omega)$, with $\|A(\omega)\|=$ $\left\|f_{\omega}\right\| \leqq r_{\omega}$ and as before we obtain $\varphi(E)=\int_{E} A(\omega) d \mu(\omega)$ for each $E \in \mathscr{A}$. The uniqueness a.e. of $A(\omega)$ is again trivial.
2.5. Remark. From the proof of Theorem 2.4., we have that $\|x(\omega)\| \leqq r_{\omega}$ (a.e.), where $r_{\omega}=d \nu / d \mu$ (a.e.). It is easy to see that $\|x(\omega)\|$ is actually equal to r_{ω} (a.e.). In fact, from $\|\varphi(E)\| \leqq \nu(E)$ and the definition of $\nu(E)$, we obtain $\int_{E}\|x(\omega)\| d \mu \geqq \nu(E)$ since

$$
\sum_{n=1}^{\infty}\|\varphi(E)\| \leqq \sum_{n=1}^{\infty} \int_{E}\|x(\omega)\| d \mu=\int_{E_{n}}\|x(\omega)\| d \mu
$$

for each countable partition of E. Also $\int_{E}\|x(\omega)\| d \mu \leqq \int_{E} r_{\omega} d \mu=\nu(E)$ and therefore $\|x(\omega)\|=r_{\omega}$ (a.e.). If we write $x(\omega)=d \varphi / d \mu, r_{\omega}=$ $d \nu / d \mu$, we have $\|d \varphi / d \mu\|=d \nu / d \mu$. Of course, the same formula holds for operator valued measures.
2.6. If $x(\omega)$ is a measurable function which is not necessarily integrable, we may still integrate it on those sets in \mathscr{A} where $\|x(\omega)\|$ is integrable. In fact, since $\|x(\omega)\|$ is everywhere finite and μ is σ finite, there is a countable covering of Ω consisting of such sets. On each of these sets the indefinite integral is σ-bounded. Reciprocally, if there is a countable covering of Ω by measurable sets Ω_{n} and a vector (or operator) valued measure φ defined on the measurable subsets of each Ω_{n}, which is σ-additive and σ-bounded on each Ω_{n}, then φ is the indefinite integral of some unique (a.e.) \mathscr{A}-measurable vector (or operator) function, and this function will be integrable if and only if the (unique) extension of φ to all of \mathscr{A}, is σ-additive in norm and σ-bounded.
2.7. A Counterexample. We may exhibit a vector (or operator) measure φ which is σ-additive on \mathscr{A}, absolutely continuous with respect to some non-negative measure μ, but σ-bounded only on sets of μ-measure zero. In fact there is a vector measure γ defined on the Borel subsets of $[0,1]$, such that for each Borel set $E,\|\gamma(E)\|=\sqrt{\lambda(E)}$, where λ is the Lebesgue measure of E (so that $\gamma \ll \lambda$), and furthermore, if $E_{1} \cap E_{2}=\varnothing$ then $\left(\gamma\left(E_{1}\right), \gamma\left(E_{2}\right)\right)=0$, i.e., $\gamma\left(E_{1}\right)$ and $\gamma\left(E_{2}\right)$ are
orthogonal. It is easy to see that such a measure is σ-additive in norm, absolutely continuous with respect to λ, and if $\gamma(E) \neq 0$ (or equivalently, $\lambda(E) \neq 0$), then γ is not σ-bounded on E.

In fact, let \mathscr{B} denote the Borel sets on $[0,1]$ and let $\left\{E_{k}\right\}_{k=1}^{\infty}$ be a disjoint sequence in $\mathscr{B}, \bigcup_{k=1}^{\infty} E_{k}=E$. Then $\left\|\gamma(E)=\sum_{k=1}^{n} \gamma\left(E_{k}\right)\right\|=$ $\left\|\gamma(E)-\gamma\left(\bigcup_{k=1}^{n} E_{k}\right)\right\|=\left\|\gamma\left(\bigcup_{k=n+1}^{\infty} E_{k}\right)\right\|=\sqrt{\lambda\left(\bigcup_{k=n+1}^{\infty} E_{k}^{\prime}\right)} \rightarrow 0$ as $n \rightarrow \infty$ and therefore $\gamma(E)=\sum_{k=1}^{\infty} \gamma\left(E_{k}\right)$.

Now let $\gamma(E) \neq 0$. Consider the sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ in $[0,1]$ defined by $t_{n}=\inf \left\{t: \lambda(E \cap[0, t])>6 \lambda(E) / \pi^{2} \sum_{k=1}^{n} 1 / k^{2}\right\}$ for $n \geqq 1$ and $t_{0}=0$. We define $E_{n}=E \cap\left[t_{n-1}, t_{n}\right]$ so that $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a disjoint sequence in and $\bigcup_{n=1}^{\infty} E_{n} \cong E$. Also $\lambda\left(E_{n}\right)=6 \lambda(E) / \pi^{2} n^{2}$ and therefore

$$
\left\|\gamma\left(E_{n}\right)\right\|=\frac{\sqrt{6 \lambda(E)}}{\pi} \cdot \frac{1}{\pi}
$$

so that $\sum_{n=1}^{\infty}\left\|\gamma\left(E_{n}\right)\right\|$ diverges, although $\sum_{n=1}^{\infty} \gamma\left(E_{n}\right)$ is obviously convergent and equal to $\gamma(E)$. (Let $E_{0}=E \backslash \bigcup_{n=1}^{\infty} E_{n}$, then $\lambda\left(E_{0}\right)=0$ and therefore $\gamma(E)=0$).
2.8. Construction of γ. We construct first inductively a sequence of sets $\left\{A_{n}\right\}_{n=1}^{\infty}$ in H having the following properties:
(i) A_{n} consists of 2^{n} mutually orthogonal vectors $a_{n}^{1}, a_{n}^{2}, \cdots, a_{n}^{2 n}$ each of length $2^{-n / 2}$.
(ii) For each $n \geqq 0$ and $1 \leqq p \leqq 2^{n}, a_{n}^{p}=a_{n+1}^{2 p-1}+a_{n+1}^{2 p}$.

We start choosing a unit vector which we denote by a_{0}^{1} and call $A_{0}=a_{0}^{1}$. Having constructed $A_{0}, A_{1}, \cdots, A_{n}$, we construct A_{n+1} in the following way. Choose 2^{n} vectors $b_{1}, b_{2}, \cdots, b_{2^{n}}$, each of length $2^{-n / 2}$, orthogonal with respect to each other and to $a_{n}^{1}, a_{n}^{2}, \cdots, a_{n}^{2 n}$. Now define $a_{n+1}^{2 p-1}=1 / 2\left(a_{n}^{p}+b_{p}\right), a_{n+1}^{2 p}=1 / 2\left(a_{n}^{p}-b_{p}\right), p=1,2, \cdots, 2^{n}$ and then $A_{n+1}=\left\{a_{n+1}^{1}, a_{n+1}^{2}, \cdots, a_{n+1}^{2 n+1}\right\}$. Obviously a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ constructed in this way satisfies (i-ii).

Now we begin the construction of our measure. A basic interval of order n will be an interval of the form $\left[p-1 / 2^{n}, p / 2^{n}\right]$ where n and p are integers and $n \geqq 0,1 \leqq p \leqq 2^{n}$. \mathscr{F} and \mathscr{G} will denote respectively the class of all finite unions and the class of all countable unions of basic intervals and \mathscr{S} will denote the Borel sets of $[0,1)$. A set in \mathscr{F} (or in \mathscr{G}) can always be expressed as a finite (or countable) union of disjoint basic intervals. For a set in \mathscr{F} this is obvious and for a set in \mathscr{G} a simple inductive process will give us the required decomposition. It is clear that \mathscr{F} is an algebra, that is, it is closed with respect to finite unions and complementation. \mathscr{G} is closed with respect to countable unions and finite intersections. The latter follows from the identity $\left(\bigcup_{j=1}^{\infty} F_{i}\right) \cap\left(\bigcup_{j=1}^{\infty} H_{j}\right)=\bigcup_{i=1}^{\infty}\left(F_{i} \cap H_{i}\right)$, where $\left\{F_{i}\right\}_{i=1}^{\infty}$ and $\left\{H_{i}\right\}_{i=1}^{\infty}$ are nondecreasing sequences of sets in \mathscr{F}.

If V is the basic interval $\left[p-1 / 2^{n}, p / 2^{n}\right.$), we define $\gamma(V)=a_{n}^{p}$. If $V_{1}=\left[2 p-2 / 2^{n+1}, 2 p-1 / 2^{n+1}\right)$ and $V_{2}=\left[2 p-1 / 2^{n+1}, 2 p / 2^{n+1}\right)$, so that $V=V_{1} \cup V_{2}$, by (ii) we have that $\gamma(V)=\gamma\left(V_{1}\right)+\gamma\left(V_{2}\right)$. By induction we obtain that if $V_{1}, V_{2}, \cdots, V_{2^{m}}$ denote the 2^{m} basic subintervals of V of order $n+m$, then $\gamma(V)=\sum_{n=1}^{\infty} \gamma\left(V_{i}\right)$. Finally if $V_{1}, V_{2}, \cdots, V_{n}$ are disjoint basic intervals, not necessarily of the same order, such that $V=\bigcup_{i=1}^{n} V_{i}$ and $n+m$ is the highest order among the V_{i}, we decompose each V_{i} in basic subintervals of order $n+m$, say $V_{i}=$ $\bigcup_{i} W_{j}^{(i)}$, so that $\gamma\left(V_{i}\right)=\sum_{i} \gamma\left(W_{j}^{(i)}\right)$ and we obtain

$$
\sum_{i=1}^{n} \gamma\left(V_{i}\right)=\sum_{i} \sum_{j} \gamma\left(W_{j}^{(i)}\right)=\gamma(V)
$$

Thus γ is additive on the basic intervals.
If $F \in \mathscr{F}$ and $F=\bigcup_{i=1}^{n} V_{i}$, where the V_{i} are disjoint basic intervals, we define $\gamma(F)=\sum_{i=1}^{n} \gamma\left(V_{i}\right)$. From the additivity of γ on the basic intervals it follows immediately that $\gamma(F)$ is well defined, i.e., it doesn't depend upon the particular decomposition of F and that γ is additive on \mathscr{F}.

If $V=\left[p-1 / 2^{n}, p / 2^{n}\right),\|\gamma(V)\|^{2}=\left\|a_{n}^{p}\right\|^{2}=\| 2^{-n}=\lambda(V)$, where λ denotes Lebesgue measure. If V_{1} and V_{2} are disjoint basic intervals, $\gamma_{2}\left(V_{1}\right)$ and $\gamma\left(V_{2}\right)$ are mutually orthogonal, which implies that $\|\gamma(F)\|^{2}=$ $\left\|\sum_{i=1}^{n} \gamma\left(V_{i}\right)\right\|^{2}=\sum_{i=1}^{n}\left\|\gamma\left(V_{i}\right)\right\|^{2}=\sum_{i=1}^{n} \lambda\left(V_{i}\right)=\lambda(F)$, where $F \in \mathscr{F}, F=$ $\bigcup_{i=1}^{n} V_{i}$ and V_{i} are disjoint basic intervals.

Suppose now that $V=\bigcup_{i=1}^{\infty} V_{i}$, where the V_{i} are disjoint basic intervals and V is also a basic interval. Then $V \backslash \bigcup_{i=1}^{n} V_{i} \in \mathscr{F}$ for each $n \geqq 1$ and therefore $\left\|\gamma(V)-\sum_{i=1}^{n} \lambda\left(V_{i}\right)\right\|=\left\|\gamma\left(V \backslash \bigcup_{i=1}^{n} V_{i}\right)\right\|=$ $\sqrt{\overline{\lambda\left(V \backslash \bigcup_{i=1}^{n} V_{i}\right)}} \rightarrow 0$ as $n \rightarrow \infty$, which implies that $\gamma(V)=\sum_{i=1}^{\infty} \gamma\left(V_{i}\right)$, i.e., γ is σ-additive on the basic intervals.

Now we define γ on \mathscr{G} by $\gamma(G)=\sum_{i=1}^{\infty} \gamma\left(V_{i}\right)$, where $G=\bigcup_{i=1}^{\infty} V_{i}$ and the V_{i} are disjoint basic intervals. First we observe that since the vector $\gamma\left(V_{i}\right)$ are pairwise orthogonal and $\sum_{i=1}^{\infty}\left\|\gamma\left(V_{i}\right)\right\|^{2}=\sum_{i=1}^{\infty} \gamma\left(V_{i}\right)=$ $\lambda(G) \leqq 1$, the series $\sum_{i=1}^{\infty} \gamma\left(V_{i}\right)$ converges and $\|\gamma(G)\|^{2}=\lambda(G)$. If $G=$ $\bigcup_{i=1}^{\infty} V_{i}=\bigcup_{j=1}^{\infty} W_{j}$ are two decompositions of G into disjoint basic subintervals, $\quad \sum_{i=1}^{\infty} \gamma\left(V_{i}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \gamma\left(V_{i} \cap W_{j}\right)=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \gamma\left(V_{i} \cap W_{j}\right)=$ $\sum_{j=1}^{\infty} \gamma\left(W_{j}\right)$ (the sums commute because the vectors are orthogonal) so that $\gamma(G)$ is well defined. If $\left\{F_{i}\right\}_{i=1}^{\infty}$ is a nondecreasing sequence in \mathscr{F} with $G=\bigcup_{n=1}^{\infty} F_{n}$, then $\gamma(G) \lim _{n \rightarrow \infty} \gamma\left(F_{n}\right)$. In fact there is a sequence $\left\{V_{i}\right\}_{i=1}^{\infty}$ of disjoint basic intervals such that $F_{n}=\bigcup_{i=1}^{r_{n}} V_{i}$, where $r_{1} \leqq r_{2} \leqq \cdots$ are integers with $\lim _{n \rightarrow \infty} r_{n}=\infty$, so that $\gamma(G)=$ $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \gamma\left(V_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{r_{n}} \gamma\left(V_{i}\right)=\lim _{r \rightarrow \infty} \gamma\left(F_{n}\right)$. Suppose now that G_{1} and G_{2} are in \mathscr{G} and that $\left\{F_{n}\right\}_{n=1}^{\infty},\left\{H_{n}\right\}_{n=1}^{\infty}$ are nondecreasing sequences in \mathscr{F} with $G_{1}=\bigcup_{n=1}^{\infty} F_{n}, G_{2}=\bigcup_{n=1}^{\infty} H_{n}$. Then we have that $G_{1} \cup G_{2}=\bigcup_{n=1}^{\infty}\left(F_{n} \cup H_{n}\right), G_{1} \cap G_{2}=\bigcup_{n=1}^{\infty}\left(F_{n} \cap H_{n}\right)$, and taking limits, from the relation $\gamma\left(F_{n} \cup H_{n}\right)+\gamma\left(F_{n} \cap H_{n}\right)=\gamma\left(F_{n}\right)+\gamma\left(H_{n}\right)$ we obtain
$\gamma\left(G_{1} \cup G_{2}\right)+\gamma\left(G_{1} \cap G_{2}\right)=\gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)$, i.e., γ is modular in \mathscr{G}.
It is clear that \mathscr{G} contains all open sets in $[0,1$). Therefore, if $E \in \mathscr{B}$, for each $\varepsilon>0$, there is some $G \in \mathscr{G}$ such that $G \supseteqq E$ and $\lambda(G \backslash E)<\varepsilon$. Let $G_{1}, G_{2} \in \mathscr{G}, G_{1} \subseteq G_{2}, G_{1}=\bigcup_{i=1}^{\infty} V_{i}$, the V_{i} disjoint basic intervals. Then for each $n, G_{2} \backslash \bigcup_{i=1}^{n} V_{i} \in \mathscr{G}$ and expressing $G_{2} \backslash \bigcup_{i=1}^{n} V_{i}$ as a union of disjoint basic intervals we see that $\gamma\left(G_{2} \backslash \bigcup_{i=1}^{n} V_{i}\right)$ $\gamma\left(G_{2}\right)-\sum_{i=1}^{n} \gamma\left(V_{i}\right)$. Therefore

$$
\begin{aligned}
& \left\|\gamma\left(G_{2}\right)-\gamma\left(G_{1}\right)\right\|^{2}=\lim _{n \rightarrow \infty}\left\|\gamma\left(G_{2}\right)-\sum_{i=1}^{n} \gamma\left(V_{i}\right)\right\|^{2} \\
& \quad=\lim _{n \rightarrow \infty}\left\|\gamma\left(G_{2} \backslash \bigcup_{i=1}^{n} V_{i}\right)\right\|^{2}=\lim _{n \rightarrow \infty} \gamma\left(G_{2} \backslash \bigcup_{i=1}^{n} V_{i}\right)=\lambda\left(G_{2}\right)-\lambda\left(G_{1}\right) .
\end{aligned}
$$

This implies that if the sequence $\left\{G_{n}\right\}_{n=1}^{\infty}$ of sets in \mathscr{G} is nonincreasing, each G_{n} contains $G \in \mathscr{B}$ and $\lim _{n \rightarrow \infty} \lambda\left(G_{n}\right)=\lambda(E)$, then $\left\{\gamma\left(G_{n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence in H. We define $\gamma(E)$ as the limit of this sequence and obviously $\|\gamma(E)\|^{2}=\gamma(E)$. In order to prove that $\gamma(E)$ does not depend upon the particular sequence $\left\{G_{n}\right\}_{n=1}^{\infty}$, we take another such sequence, say $\left\{\widetilde{G}_{n}\right\}_{n=1}^{\infty}$. Evidently $\lim _{n \rightarrow \infty} \lambda\left(G_{m} \backslash \widetilde{G}_{n}\right)=\lim _{n \rightarrow \infty} \lambda\left(\widetilde{G}_{n} \backslash G_{n}\right)=0$ and since

$$
\begin{aligned}
& \left\|\gamma\left(G_{n}\right)-\gamma\left(\widetilde{G}_{n}\right)\right\| \leqq\left\|\gamma\left(G_{n}\right)-\gamma\left(G_{n} \cap \widetilde{G}_{n}\right)\right\| \\
& \quad+\left\|\gamma\left(\widetilde{G}_{n}\right)-\gamma\left(G_{n} \cap \widetilde{G}_{n}\right)\right\|=\sqrt{\lambda\left(G_{n} \backslash \widetilde{G}_{n}\right)}+\sqrt{\lambda\left(\widetilde{G}_{n} \backslash G_{n}\right)},
\end{aligned}
$$

we have $\lim _{n \rightarrow \infty}\left\|\gamma\left(G_{n}\right)-\gamma\left(\widetilde{G}_{n}\right)\right\|=0$ and therefore $\lim _{n \rightarrow \infty} \gamma\left(G_{n}\right)=\lim _{n \rightarrow \infty} \gamma\left(\widetilde{G}_{n}\right)$. If $G \in \mathscr{G}$ and $G \supseteqq E, E \in \mathscr{B}$, there is a nonincreasing sequence $\left\{G_{n}\right\}_{n=1}^{\infty}$ of sets in $\mathscr{G}, G \supseteqq G_{n}$ and such that $\gamma(E)=\lim _{n \rightarrow \infty} \gamma\left(G_{n}\right)$. Then $\|\gamma(G)-\gamma(E)\|^{2}=\lim _{n \rightarrow \infty}\left\|\gamma(G)-\gamma\left(G_{n}\right)\right\|^{2}=\lim _{n \rightarrow \infty} \lambda\left(G \backslash G_{n}\right)=\lambda(G \backslash E)$.

Our next step is to show that γ is finitely additive in \mathscr{B}. Let E_{1} and E_{2} be disjoint sets in \mathscr{B} and let G_{1} and G_{2} in \mathscr{G} be such that $G_{1} \supseteq E_{1}, G_{2} \supseteq E_{2},\left\|\gamma\left(G_{1}\right)-\gamma\left(E_{1}\right)\right\|<\varepsilon$ and $\left\|\gamma\left(G_{2}\right)-\gamma\left(E_{2}\right)\right\|<\varepsilon$, where $\varepsilon>0$ is given. Then

$$
\begin{aligned}
& \left\|\gamma\left(G_{1} \cup G_{2}\right)-\gamma\left(E_{1} \cup E_{2}\right)\right\| \\
& \quad=\sqrt{\lambda\left(G_{1} \cup G_{2}\right)-\lambda\left(E_{1}^{\prime} \cup E_{2}\right)} \leqq \sqrt{\lambda\left(G_{1} \backslash E_{1}\right)+\lambda\left(G_{2} \backslash E_{2}\right)}<\sqrt{2 \varepsilon} .
\end{aligned}
$$

Also since γ is modular in \mathscr{G},

$$
\begin{aligned}
& \left\|\gamma\left(G_{1} \cup G_{2}\right)-\gamma\left(G_{1}\right)-\gamma\left(G_{2}\right)\right\|=\left\|\gamma\left(G_{1} \cup G_{2}\right)\right\| \\
& \quad=\sqrt{\left.\lambda G_{1} \cap G_{2}\right)} \leqq \sqrt{\lambda\left(G_{1} \backslash E_{1}\right)+\lambda\left(G_{2} \backslash E_{2}\right)}<\sqrt{2 \varepsilon} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\|\gamma\left(E_{1} \cup E_{2}\right)-\gamma\left(E_{1}\right)-\gamma\left(E_{2}\right)\right\| \leqq\left\|\gamma\left(E_{1} \cup E_{2}\right)-\gamma\left(G_{1} \cup G_{2}\right)\right\| \\
& \quad+\left\|\gamma\left(G_{1} \cup G_{2}\right)-\gamma\left(G_{1}\right)-\gamma\left(G_{2}\right)\right\|+\left\|\gamma\left(G_{1}\right)-\gamma\left(E_{1}\right)\right\| \\
& \quad+\gamma\left(G_{2}\right)-\gamma\left(E_{2}\right) \|<(2+2 \sqrt{2}) \varepsilon,
\end{aligned}
$$

which implies that $\gamma\left(E_{1} \cup E_{2}\right)=\gamma\left(E_{1}\right)+\gamma\left(E_{2}\right)$.
In 2.7. we proved that γ is countable additive under the assumption that it is finitely additive and $\|\gamma(E)\|^{2}=\lambda(E)$ for $E \in \mathscr{B}$. Thus γ is countably additive.

Next, in order to prove the orthogonality property, we observe that since disjoint basic intervals have orthogonal measures, if G_{1} and G_{2} are disjoint sets in $\mathscr{G}, \gamma\left(G_{1}\right)$ and $\gamma\left(G_{2}\right)$ must be orthogonal. If K_{1} and K_{2} are disjoint compact sets, there are nonincreasing sequences $\left\{G_{n}\right\}_{n=1}^{\infty}$ and $\left\{\widetilde{G}_{n}\right\}_{n=1}^{\infty}$ of sets in \mathscr{G} such that $G_{n} \cap \widetilde{G}_{m}=\varnothing$ for all n and m, and $\lim _{n \rightarrow \infty} \gamma\left(G_{n}\right)=\gamma\left(K_{1}\right), \lim _{n \rightarrow \infty} \gamma\left(\widetilde{G}_{n}\right)=\gamma\left(K_{2}\right)$, which implies that $\gamma\left(K_{1}\right)$ and $\gamma\left(K_{2}\right)$ are orthogonal. Finally if E_{1} and E_{2} are disjoint sets in \mathscr{B}, there are nondecreasing sequences $\left\{K_{n}\right\}_{n=1}^{\infty},\left\{K_{n}\right\}_{n=1}^{\infty}$ of compact subsets of E_{1} and E_{2} such that $\lambda\left(E_{1}\right)=\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right), \lambda\left(E_{2}\right)=\lim _{n \rightarrow \infty} \lambda\left(K_{n}\right)$, so that $\gamma\left(E_{1}\right)=\lim _{n \rightarrow \infty} \gamma\left(K_{n}\right), \gamma\left(E_{2}\right)=\lim _{n \rightarrow \infty} \gamma\left(K_{n}\right)$, and this implies that $\gamma\left(E_{1}\right)$ and $\gamma\left(E_{2}\right)$ are orthogonal. We may extend γ to the Borel subsets of $[0,1]$ defining $\gamma(\{1\})=0$, and even "complete" it, defining $\gamma(E)=0$ if E is a subset of a Borel set of λ-measure zero.

Bibliography

1. S. Bochner, Integration von Funktionen, deren Wert die Elemente eines Vektorraumes sind, Fund. Math. 20 (1933), 262-276.
2. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
3. K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1965.

Received April 20, 1967.
Universided de Chile

