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A CHARACTERISTIC PROPERTY OF THE SPHERE

L. T AM ASSY

It was proven by P. Funk that the only symmetrical star-
shaped body, all of whose intersections with planes through
its midpoint have surface area π, is the unit sphere. In this
paper the same conclusion is deduced from a materially weaker
hypothesis and an application of the result is given.

We consider the set Π of those planes through the midpoint of
a symmetrical body in the three-space, whose normals make an angle

with a fixed plane Γ. rj is an arbitrary positive constant.

THEOREM. The only symmetrical star-shaped body with smooth
boundary, which is intersected by elements of Π in figures of surface-
area π, is the unit sphere.

Star-shapeness means, that each closed ray from the midpoint out
meets the boundary of the body at most at one point.

The property expressed in the theorem obviously holds for the
unit sphere.

Let B be a symmetric starshaped body with smooth boundary and
center 0. Let n be a unit vector. We denote the plane through 0
and perpendicular to n by P{n), and the surface-area of the intersec-
tion of P(n) and of B by A(n): A(n) = Area (B Π P(n)). Let 0 be the
origin of a cartesian coordinate system and Γ the (y, z) plane.

We suppose A(n) = π for <̂C(w, Γ)<η, and we start to prove the
uniqueness of B.

Let P be a point of the boundary dB of B in the (x, y) plane ε.
We denote the tangent plane to dB in P by Σp. Let a be a line in ε
through 0 and σ a plane through a (see the figure). We draw the
normal n to e through P and we denote the intersection of n and σ
by P; the intersection of dB and P0 by R; and the intersection of
Σp and OR by Q. K denotes the foot of the normal from P to a. We
draw the perpendicular to n through P in the plane of 0 and n; let
V be the point of intersection of this line and of QP. Finally we
denote

QP = q; TO - r; PK = r ^QPP = f; ^PKP = τ; < P 0 P - v

and the angles measured in the positive sense from an arbitrary
direction d to 0P(resp. to α) by α(resp. β). τ and v are regarded
positive if P lies in the positive half space of ε, otherwise they are
negative, q is positive if n separates Q and 0 (in the plane of n, 0),
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otherwise it is negative, ψ has the same sign as q, and r and f are
not negative. We note that Q and R are uniquely determined by
a, β and τ for a given body B.

Let now σ turn about a into ε. Then τ and v tend to zero and
R(v) moves in a curve in the plane of 0 and n having the tangent QP
at P. Thus we must have

( 1 ) lim °Q ~ ^
v-> 0 V

S i n c e v — » 0 f o l l o w s f r o m τ —>0 a n d i n v e r s e l y , a n d s i n c e | r | ^ | v | ,
w e g e t f r o m (1)

Multiplying by 0Q + OR and emphasizing the dependence of Q and R
on a, β, τ, we get

( 2 ) E, β, τ) - 0R\a, β, τ) _
τ

Let 0 = a0 < at < <αw_1 < αw = TΓ be a subdivision of the interval
(0, π) of α. We consider (2) for the different a^i = 1, 2, , ri), and
we put Δa{ = ^Qia^, β, τ)0Q(aif β, τ). Now, multiplying by Jaif sum-
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ming for i form 1 to n, and then carrying out an appropriate limit
process, we obtain

lim

where the second integral of the numerator gives the surface-measure
of the intersection of B and σ and, thus, its value equals π according
to our condition, provided that | τ\ < ΎJ. (In this case the normal of
σ makes with Γ a smaller angle than η).

Furthermore

QQ = θP+PQ = r + q + o(τ)

where o denotes the small ordo, introduced by Landau.1 According to
an elementary computation,

ΔS = Δa + o(τ)Δa

and

[*q*da + Γ(r2 + 2rq)o(τ)da
Jo Jo

Γ[2r + 2q + o(τ)]o(τ)da .
Jo

Substituting (4) into (3) and changing the order of the integration
and of the limit process in some terms we obtain

I r2da- \θR2da ,πf Ί

lim -Js is + 2\ lim-^X Ida
τ->0 X JθLr-+O Z J

oL r-»o f

+ ίΊim [2r + 2 g + o(r)]o(r)_d- = Q _
JO r-»0 Γ

r2dα = Area (B Π e) = π. The two last
0

terms vanish because of limΓ_0 {o(τ)/z} = 0.
We show that limΓ^0 (q2/τ) = 0. From the triangle PQPΔ we have

q: rtgv = sin ψ: sin (τr/2 — ̂  — v). Thus, g = rtgv sin α/r/cos (τ/τ + v),
and, because of | τ |
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q2

τ

V
II q*

V

tgv
V

tgv
cos2 (ψ + v)

0 .

if τ 0.0 and, thus v

Now, we transform the only remaining term \ [limr_0 (rq/τ)]da of
Jo

(5). An elementary computation shows that q — v Λ- o(τ), where v =
VP. (The sign of v equals that of q.) So (5) gives

( 6 ) ΐlim—
)Lr-0 Γ

=: 0 .

Since Q is a function of a, β,τ and P a function of a, v is a
function of α, /3, τ. If α J. OP, then β = a± (π/2) 0 ^ β <π., and
then v = τ. We put v(a, a ± π/2, T) = v*(a). T being a fixed positive
value of τ which satisfies the condition Tr <η. The subscript " 0 "
denotes the perpendicularity of a and OP, and the asterisk denotes
r = Γ. Thus, v*: vt = PP*: PP? = rtgT: rtgT and v* = v*(r/r).

Furthermore, v*: v = r tgT: r tgτ. Hence v* = v(tg T/tg τ). Comparing
this to the previous expression of v* and taking in account the rela-
tion r = r I sin (a — β) \, we have

tg 1

Substituting this into (6), and taking in account that r and v* are
functions of the a alone, we get

| sin (a - β) \ da = 0 .
r-0 τ tg T

Performing the limit process and reducing by the constant 1/tg T, we
obtain

( 7 ) I r(a)vf(a) \ sin (a — β) \ da = 0 .
Jo

B must be shaped so that this equation is fulfilled for any β between
0 and π.

We show that (7) can hold only for vt(a) = 0. Put r(a)vt(a) =
φ(a). Then (7) has the form

( 8 ) [Kφ{a) I sin (a - β)\da = 0 for all β e (0, π) .
Jo

Let us suppose for the moment that <p(a) has a finite number of sign
changes between 0 and π and is not identically zero. Let these be
a1 < a2 < < ar. Then
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( 9 ) [*<p(a) Σ [«* I sin (a - at) | + 6< | sin (α - βt) \]da = 0
JO i = l

for any ai9bi9 βi9 since (9) is a linear combination of (8) for some
special β which satisfy α,- < βό < α i+1(j> = 1, 2, , r — 1); /3r = π.
We consider the functions

f^a) = — α : sin (α: — α^) — 6X sin (α — A ) — α2 sin (α — a2)

— b2 sin (α — β2) - — br sin (α: — /3r)

f^a) = + αx sin (α — α j — δx sin (α: — βλ) — a2 sin (a — a2)

— b2 sin (a — β2) — — 6 r sin {a — βr)

f2(a) = + αL sin (α — αL) + δL sin (α — /SJ — α2 sin (α — a2)

- b2 sin (a — β2) — — 6 r sin (α - βr)

f2(a) = + aλ sin (a — aλ) + bι sin (α — /SJ + a2 sin (α — a2)

- 62 sin (a — β2) — — 6r sin (a - βr)

fr(a) = + α x sin (α - αx) + 6X sin (a - A) + ̂ 2 sin (a - α2)

+ b2 sin (α - /52) + + br sin (a - βr) .

We denote by Φ(a) the sum under the integral sign in (9). Then

Ua) = Φ(a) &_x £ a ^ a, (β0 = 0)

Ma) = Φ(a) a^a^β, (i = 1, 2, . . . , r) .

and

(10) fi(ai)=fi(ai)

as well as

fj(βj) = Λ+iG8y) (i = 1, 2, . . . , r - 1) .

Each of the f{(a) and of the f^a) has the form A sin a + 5 cos α.
Thus each of them has only one zero between 0 and π defined by
tga = BjA, and f^a) esp. fi(a) changes sign at this point.

Making use of the 3w — 1 parameters aίy bif βd we can achieve

(11) U*i) = 0 .

and

(12) sgn Mi- (a,) = sgn <ψ- (a,) .
da da

Then Mai) = 0 is a consequence of (10). Thus the a{(% = 1, 2, , r)
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are all the zeros and sign changes of Φ(a) between 0 and π. <p(a) is
continuous, since both r(a) and vf(a) are so. Because of (12) and the
continuity of f(a), Φ{a) and φ(a) have the same sign over (0, π), and
they do not vanish identically. This implies a contradiction to (9).
Therefore, <p(a) cannot have a finite number of sign changes. Hence,
the sign changes of φ(ά) have some accumulation points. Let us sup-
pose that these accumulation points are not everywhere dense. Since
φ(a) is continuous, cutting out the accumulation points (each with a
suitable small neighborhood) changes the integral (8) by less than an
arbitrary small number. Performing the previous process on the re-
maining domain of a we arrive again at a contradiction. Hence, the
sing changes of φ(ά) must be everywhere dense. This is impossible
unless φ(a) vanishes identically:

(13) φ(a) = r(a)vf(a) = 0 .

If r(a) were zero for any a, then B would reduce to the point 0 by
the starshapeness and the symmetry of B, and we would have
Area (B Π e) = 0 Φ π. Thus we get r(a) Φ 0, and from (13) v£(a) = 0.
This means that ε is perpendicular to the tangent planes to dB at
the points of 92? Π ε.

Until now we used A(n) for planes whose angle with ε is smaller
than η. Then we have used A(n) only for those n for which (n, z) < η,
z being the coordinate axis perpendicular to ε. The endpoints of these
vectors n fill a small circle C on the unit sphere around "north pole"
(resp. around its south pole).

Now we want to show that ΣpA.0P. Instead of ε we choose a
plane ε' through OP whose angle with ε is ω(0 < ω < T). Let us
perform the foregoing consideration for this ε' replacing T by a Tf

such that 0 < T" < T — ω. These considerations lead to Σp_Lε'. But
from Σp±ε, ε' it follows that Σp is perpendicular to the intersection
of ε and ε', i.e., Σp±0P. In this part of the proof we have used
A(n) again just for the n whose endpoints fill a circle C on the unit
sphere with a center inside C (because of ω < Γ), and with a radius
such that C ' c C (because of T < T — ω). Hence, we were able to
proove Σp±0P; Pe dB Π ε, using A(n) merely for n belonging to C.

Let us consider a pencil of planes through the x axis. Let us
perform our whole proof for all the planes of the pencil. This leads
us to the result that Σp 1 OP for each P e dB. But a continuous sur-
face with this property cannot be other than a sphere whose radius
must be 1 because of A(n0) = π, n0Le. During this last step of the
proof we used A(n) for all planes of the pencil in a small circular
neighborhood of the normal of the plane of the pencil on the unit sphere.
The union of these circles forms a small strip around the great circle
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in the (y, z) plane of the unit sphere, as stated in the theorem.
We show an immediate application of the theorem. In a Minkow-

skian geometry Mn with indicatrix S, the surface area | F | of a plane
figure F is defined as the euclidean surface area X(F) of this figure
F, multiplied by an appropriate factor. This factor is π divided by
the euclidean surface-area of the intersection of the interior B of S
and of the plane σ through the midpoint 0 of S and parallel to F:

(14) \F\ = - X(F)2.
λ(£n<7)

The first factor on the right hand side of (14) is a function of
the plane position only: π/m(σ). H. Busemann [2] investigated affine
measures where this factor is not deduced from a convex symmetric
body B but it is rather arbitrarily given. From the theorem of this
paper follows again an answer to the question treated by H. Busemann,
whether or not an arbitrary continuous m(σ) can always be derived
from a symmetric star-shaped body B as surface area of its inter-
sections with planes through its midpoint.3 Namely, taking a differen-
tiable function m(σ) over the positions of planes in 3-space, (a) having
value π on the planes, whose normals make an angle with the y, z
plane smaller than η, and (b) having values differing from π elsewhere,
we get a function which cannot be derived from any symmetrical
body in the above sense (i.e., so that m(σ) = Area (B Π σ)). Namely
the body B ought to be a sphere because of (a), according to our
theorem; on the other hand it cannot be a sphere, since no sphere
satisfies (a) and (b) simultaneously. Thus this m(σ) presents a sim-
ple and concrete negative example. Negative examples for higher
dimensional spaces are any functions over the position of planes in n-
space that are differentiate extensions of the previous function.

I wish to thank Professor Heinrich Guggenheimer for valuable
conversations concerning this matter.
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