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ARTINIAN, ALMOST ABELIAN GROUPS AND
THEIR GROUPS OF AUTOMORPHISMS

ANNEMARIE SCHLETTE

The principal results of this paper are several characteri-
zations of the class of artinian almost abelian groups. Several
corollaries of the main characterization are given, one of which
states that a torsion group G which has a finite group of auto-
morphisms is finite, and an abelian torsion group which has
a countable automorphism group is finite. In a concluding
section, the class of artinian almost abelian groups and the
class of finite groups are characterized by formal group-theore-
tical properties.

A group is called artinian, if the minimum condition is satisfied
by its subgroups. The structure of an abelian, artinian group is
completely determined. Every artinian group that is known so far
is an extension of an abelian, artinian group by a finite group. An
extension of an abelian group by a finite group is called almost abelian.
It is not known whether there exist further artinian groups. For this
reason it seems to be worth while to consider the structure of artinian
and almost abelian groups and we will give some characterizations of
them. We will prove the following

MAIN THEOREM. The following properties of the group G are
equivalent:

(1) G is artinian and almost abelian.
(2) (a) Every abelian subnormal subgroup of G is artinian;

(b) Every infinite epimorphic image of G possesses an
abelian subnormal subgroup, not 1;

(c) G is a torsion group.
(3) (a) Every abelian subgroup of G is artinian;

(b) Every epimorphic image, not 1, of G possesses an almost
abelian normal subgroup, not 1.

(4) (a) G is a torsion group;
(b) Every torsion group of automorphisms of G is artinian

and almost abelian.
( 5) (a) G is a torsion group;

(b) The central quotient group of G is artinian and almost
abelian;

(c) Primary elementary abelian groups of automorphisms
of G are countable.

Sections 1 to 4 deal with preliminary lemmas, some of which may
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be of independent interest. We show, for instance, that the central
quotient group of G is artinian and almost abelian if, and only if, G
is almost abelian with artinian commutator subgroup G' (Proposition
3.2). Section 5 is dedicated to the proof of the Main Theorem. A
simple application of the Main Theorem yields a characterization of
the artinian groups with finite central quotient group (Corollary 6.1)
and of the finite groups (Corollary 6.2), both by their automorphism
groups. The results of the Main Theorem and of its corollaries finally
are used to characterize the class of all artinian and almost abelian
groups on the one hand and the class of all finite groups on the other
hand by merely formal group theoretical properties. This is done in
§7 (Theorem 7.1 and Theorem 7.2).

NOTATIONS.

lG = center of the group G,
cG U = centralizer of U in G,

nG U = normalizer of U in G,
IG:U] = index of U in G,

\G = intersection of all subgroups U of G with finite [G: U],
{•••} = subgroup generated by the enclosed elements,
xoy — χ~ιχy — χ-ιy-^χy for elements x, y in G,

J o Y = {χoy with x in X, y in Y) ,
Q o G = Gr = G1 = commutator subgroup of G,
Q(n + 1) _ Q(n) o Q(n)

Gp = set of all ^-elements in G for p a prime,
Gp = set of all gp with g in G [if G is multiplicatively written],

pA = set of all pa with a in A [if A is additively written].

DEFINITIONS. A factor of G is an epimorphic image of a subgroup

of G.
The socle of an abelian p-group is the set of its elements of order

p or 1.
The group G is called
artinian, if its subgroups satisfy the minimum condition;
almost abelian, if it possesses an abelian [characteristic] subgroup

of finite index;
soluble, if G{n) = 1 for almost all n;
locally finite, if every finitely generated subgroup of G is finite;
hyper (almost) abelian, if every epimorphic image, not 1, of G

possesses an (almost) abelian normal subgroup, not 1.

aaG
IfG

= product of all
hyperabelian ]
almost abelian [ normal subgroups of G.
locally finite J



ARTINIAN, ALMOST ABELIAN GROUPS 405

An abelian group A is called divisible (radicable), if pA = A (Ap = A)
for all primes p, and reduced, if it possesses no divisible (radicable)
subgroup ^ 0 (Φ 1).

1Φ Lemmas on abelian groups* In this chapter we consider
(additively written) abelian groups A. Any homomorphism σ of A
maps the element x in A upon w .

LEMMA 1.1. A reduced abelian p-group A with finite A/pA is
finite.

Proof. Since A/pA is finite, there exists a finitely generated
subgroup F of A with A = F + pA. Since finitely generated, abelian
p-groups are finite, F is finite. Therefore there exists a positive
integer n with p".F — 0. Hence

pnA = pnF + pn+ιA = p(pnA)

is divisible. But A is reduced, so that pnA — 0. From A — F + pA
we deduce

A = F + [pi7 + p2A] = F + p2A= . . . =

= .F + p"A = F ,

so that A is finite.

LEMMA 1.2. // A is an abelian, reduced, infinite p-group and
if B is an abelian p-group Φ 0, then Horn (A, B) contains an uncount-
ably infinite, elementary abelian p-subgroup.

Proof. Since A is an abelian, reduced, infinite p-group, A/pA is
infinite, by Lemma 1.1. Since B Φ 0, it contains a subgroup Z of
order p. Now

Horn (A, Z) S Horn (A, B)

and

Horn (A, Z) s Horn (A/pA, Z) ,

which is an uncountably infinite, elementary abelian p-group, (cf. [5],
p. 206; E, and p. 208; Lemma 54.2).

LEMMA 1.3. (a) If A and B are abelian, artinian groups, then
the torsion subgroup of Horn (A, B) is finite.

(b) Torsion groups of automorphisms of an abelian, artinian
group are finite.
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Proof. The abelian artinian group A is a direct sum

of a finite group F and a divisible group D, (cf. [5], p. 65; Th. 19.2).
Hence there exists a positive integer n with nF = 0. Let X be the
subgroup of all x in B with nx = 0. Since 5 is abelian and artinian,
it is a consequence of ([5], p. 65; Th. 19.2) that X is finite.

If σ is a torsion element of order i in Horn (A, B), then

- (iZ>)σ = D(iσ) = DO = 0

and

= {nF@nD)σ = w(Z>σ) = 0

so that A<7 s X. Therefore the torsion subgroup of Horn (A, B) is
essentially the same as a group of homomorphisms of the finite group
A/D ~ F into the finite group X, which implies its finiteness. This
proves (a), and (b) is a consequence of (a) if we let A = B.

LEMMA 1.4. // the abelian group A is the direct sum of in-
finitely many subgroups A» Φ 0 , then A possesses an uncountable
infinite, elementary abelian 2-group of automorphisms.

The simple proof of this lemma may be left to the reader.

2* Stabilizing automorphism groups*

PROPOSITION 2.1. Suppose B is a normal subgroup of the group
G and A is a subgroup of G with AξΞ=B Γ) %G. Let Σ = ΣG(A, B)
be the group of all automorphisms σ of G which fix every element
in G/A and in B. Then

Σβ(A, B) = Horn (G/B, A) ~ Horn (G/BG', A) .

Proof. If σ is an automorphism in Σ, then a — 1 is a single
valued mapping of G into A. If x and y are elements in G, then

(xy)σ~ι — ̂ T/V^ctr1 = x'y'^x-1 = x^y*-1 ,

since y°~γ belongs to 4g%G. Therefore σ — 1 is a homomorphism of
G into Ay whose kernel contains B. Thus

(a ) If σ is an element in Σ, then σ — 1 induces a homomorphism
σ* of GjB into A with

(Bgy - g*-1 .
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Let a, β be two automorphisms in Σ and g be any element in G.
Then

gaβ-i = g"β(g-ψgβg-i = (g^ψgβ^ = g*~ψ->- ,

since g"'1 belongs to A § B and every element in B is a fixed element
of β. Therefore

(aβ)* = α* + β* for a, β in Σ ,

so that σ —> α* is a homomorphism of 2" into Hom (G/ί?, A). If <τ* = 0
and g is an element in G, then

1 - (Bgr = g-1 .

This implies g = gσ for every g in G, so that σ == 1. Hence
(b) The mapping σ —> σ* is a monomorphism of Σ into Hom (G/J5, A).

For every 7 in Hom (G/B, A) define the mapping d of G into (? by
the rule

gδ = (Bflf)rflf for every g in G.

This is clearly a single valued mapping of G into itself.
If x,y are two elements in G, then

(a?2/)β - (BxyYxy = (Bx)r(ByYxy = {Bx)'x(ByYy = a V

since (S?/)r belongs to A<Ξ^$G. Thus δ is an endomorphism of G. If
xδ = 1, then (βχ)ra; = 1, so that # belongs to 2? (since (ίta) r is in i g ΰ ) .
This implies (Bx)7 = Br = 1 so that x = 1. Hence <? is a monomorphism
of G into G. Because of Br = 1 and (J?flf)r e A it is clear that <? induces
the identity in both B and G/A. Now let # be any element in G
and let

x =

Then

xs = (BxYx - [B(βff-Ύ9\7(BgrιYg = (Bflf)i(Bflf)3']-1 fir = flf

since (Bg~ιY belongs to A g J5. This shows that δ is an automorphism
of G which belongs to Σ. Finally

gδ~ι = (β^) r for every # in G ,

shows <ϊ* = 7 and

(c) σ —> σ* is an isomorphism of Σ onto Hom (G/B, A) .
The isomorphy of Hom (G/B, A) and Hom (G/BG', A) is an im-

mediate consequence of the commutativity of A.
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LEMMA 2.2. // the group G possesses a characteristic subgroup
A such that the torsion groups of automorphisms of A and of G/A
are finite, then every torsion group Γ of automorphisms of G is
almost abelian: The subgroup A of Γ which fixes every element in
A and in G/A is abelian and has finite index in Γ.

Proof. Let Γ be a torsion group of automorphisms of G. Denote by
ΓA resp. ΓGjA the set of all those automorphisms in Γ, which induce
the identity in A and in G/A respectively. Since A is characteristic
in G, the sets ΓA and ΓGίA are both normal subgroups of Γ. Now
Γ/ΓA resp. Γ/ΓGίA is essentially the same as the group of automorphisms
of A resp. G/A, induced by Γ. Therefore it is (essentially) a torsion
group of automorphisms of A resp. G/A, and hence, by hypothesis,
finite. If A — ΓA Π ΓGlA, then A is a normal subgroup of Γ with finite
Γ/A. By its definition, A is a subgroup of the stabilizer of the char-
acteristic subgroup A of G. As such it is known to be abelian, see
([7], p. 88; Satz 19). This proves Lemma 2.2.

3* Central quotient group and commutator subgroup* In this
chapter we aim at characterizing the groups with almost abelian, ar-
tinian central quotient group (Proposition 3.2).

LEMMA 3.1. If G is a group with abelian, radicable, not torsion-
free central quotient group G/%G, then G is abelian.

Proof. Suppose that G is not abelian. Then G/%G Φ 1 and since it
is not torsionfree there exists a subgroup W/$G in G/ιG of order a prime
p. Now Gf S gG c W, so that W is normal in G. Since G/&G is abe-
lian, it follows that W<>GξΞ:$G and that

w(w o g) = (w o g)w for every w e W, g e G .

Since wp also belongs to 3G, it is centralized by every element in G.
Therefore it follows from w° = w(wog) that

Wp = (Wp)9 = (Wg)p = {w(Wog)Y = Wp(Wogy .

Hence

(w o g)p z= 1 for every w e W, g eG .

By complete induction we get

w9<L — w(w o gy for every positive integer i

and in particular

wgP = w(w°g)p = w ,
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which shows

G'G* ^ G>&G Q cσW .

Therefore the epimorphic image G/cG W of G/&G is an elementary abelian
2>-group. Since elementary abelian p-groups Φ\ possess finite non-
trivial epimorphic images, G/cGW is equal to 1, because G/jG is radica-
ble. Hence cGW = G, implying W ^ j G c W, a contradiction. There-
fore G is abelian.

DEFINITION. fG = intersection of all subgroups U of G with finite
index [G: U]. This is a well determined characteristic subgroup of G.

PROPOSITION 3.2. The following properties of the group G are
equivalent:

( i ) G/$G is artinian and almost abelian.
(ii) If F is the uniquely determined characteristic subgroup of

G with §G g F and FfoG = f(G/sG), then F is abelian, G/F is finite,
and GoF is artinian.

(iii) There exists an abelian normal subgroup A of G with finite
G/A and artinian Go A.

(iv) G is almost abelian and Gf is artinian.

Proof, (i) —• (ii). Since G\ιG is artinian and almost abelian, ap-
plication of ([1], pp. 3, 4, 22(B)) on G\%G shows

(a) G/F= (G/sG)/f(G/8G) is finite and f(G/jG) = FfoG does not pos-
sess finite epimorphic images. F/%G is abelian because Gj%G is almost
abelian. Hence F' £ gG £ ιF g F and therefore

(b) FJiF is an abelian radicable torsion group. Apply Lemma
3.1 on F to see

(c) F is abelian.
Let Γ be the group of automorphisms which is induced in F by

G. Then Γ = G/cGF is finite because FQcGF by (c), and G/F is finite,
by (a). Every automorphism 7 in Γ fixes every element in jG. Hence
7 — 1 is an endomorphism of the abelian group F whose kernel con-
tains 3G. Consequently Fy~ι is an epimorphic image of the artinian
group F/$G and as such Fr~ι is artinian. Since Γ is finite and F is
abelian,

F™ = Π Fr~ι

is likewise artinian. From the definition of Γ,

GoF= F^1

so that



410 ANNEMARIE SCHLETTE

(d) GoF is artinian.
(ii) — (iii). Let A = F.
(iii) —» (iv). It is an immediate consequence of (iii) that G is al-

most abelian. Since A is normal in G, so is G°A. Denote by σ the
canonical epimorphism of G upon H = G/(GoA). Then B = Aσ is an
abelian normal subgroup of H with finite H/B, as G/A is finite. From
HoB = (GoA)σ = 1 we get β g giϊ, so that ίf/sίf is finite. This im-
plies the finiteness of H', see ([6], p. 443; 15.1.13). But H' = Gfa~
G'/(G°A), so that G' is artinian as an extension of the artinian group
Go A by the finite group H'.

(iv) —• (iii). Obvious.
(iii) ~>( i ). The group Γ of automorphisms of A which are in-

duced in A by G is isomorphic to G/cGA and it is finite since A Q cGA
and G/A is finite. If 7 is an automorphism in Γ, then 7 — 1 is an
endomorphism of the abelian group A with Aγ~~ι QGoA. It follows
that Ar~ι is artinian and A7"1 ~ A/K(y), where K(y) denotes the kernel
of 7, i.e., K(y) = cAg if # induces 7. Now

A Π δG = Π -BΓ(7) .

Therefore A/(A Π sG) is isomorphic to a subgroup of the direct product
of the finitely many artinian groups A/K(y) and as such A/(A Π jG) ~
A$G/iG is itself artinian. G/A%G is finite as an epimorphic image of
G/A. Finally G/%G is an extension of the abelian artinian group A$G/%G
by the finite group G/A%G. Hence G/%G is artinian and almost abelian.

4* Products of normal subgroups* In this section we shall
establish a few lemmas on products of normal subgroups, which are
needed later. In this context see also Corollary 6.4.

DEFINITION. §aG = product of all hyperabelian normal subgroups
of G.

This is a well determined characteristic subgroup of G.

LEMMA 4.1. // every abelian subnormal subgroup of the torsion
group G is artinian, then

(a) §aG is artinian and soluble;
(b) §aG contains every hyperabelian subnormal subgroup of G;
( c) 1 is the only hyperabelian subnormal subgroup of G/ί)αG;
(d)

Proof. If S is a subnormal subgroup of G, then every abelian
subnormal subgroup of §aS is a subnormal subgroup of G and hence,
by hypothesis, artinian. Nontrivial epimorphic images of fyaS possess
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by definition hyperabelian normal subgroups, not 1, and consequently
abelian subgroups, not 1; and §aS is a torsion group, as is G. Apply
([4], p. 345, Satz 6.1, equivalence of (1) and (2)) to §aS to show that

(e) §aS is artinian and soluble for every subnormal subgroup S
of G. This implies (a) in the particular case S = G.

Since S is subnormal in G, there exists a finite chain of subgroups
Si of G with

S = So, Si normal in Si+1, Sn = G .

If S is hyperabelian, then S = §aS0. By (e), fyaSi is a soluble, hence
hyperabelian characteristic subgroup of the normal subgroup St of
Si+1. Hence fyaSi £ ϊjα£ί+1, showing

S = ^αS0 £ £ ϊjα£n = £)cιG ,

so that §ctG contains every hyperabelian subnormal subgroup of G,
proving (b). Now let T = S/§aG be a hyperabelian subnormal sub-
group of G/^aG. Then £ is as an extension of the, by (a), soluble
group ί)αG by the hyperabelian group T hyperabelian. Since £ is sub-
normal in G, it follows from (b) that SξΞ fyaG. Hence T = 1, proving (c).

(d) is an immediate consequence of (c).

LEMMA 4.2. If N is a product of minimal normal subgroups
of the group G, then N is a direct product of minimal normal sub-
groups of G.

This is proven by the customary lattice theoretical arguments;
see for instance ([8], p. 208; Basis Theorem of Lattice Theory).

LEMMA 4.3. If a minimal normal subgroup M of G is contain-
ed in a product N of finite normal subgroups of G, then M is finite.

Proof. Let t Φ 1 be an element in M. Since t belongs to the
product N of finite normal subgroups of G, there exists a finite number
n of finite normal subgroups Ft of G with JP< £ N and

tefLFi = F.

Clearly F is a finite normal subgroup of G with t in F £ N. Hence
lφMf]F and because of the minimality of M we have M=Mf]F^ F,
so that M is finite.

LEMMA 4.4. If 1 is the only abelian normal subgroup of G, then
the following properties of the product N of finite normal subgroups
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of G are equivalent:
( i ) N is finite.
(ii) N contains but a finite number of minimal normal sub-

groups of G.
(iii) The product P of all the minimal normal subgroups of G,

contained in N, is the direct product of finitely many minimal normal
subgroups of G.

Proof. Evidently, (ii) is a consequence of (i) and it follows from
Lemma 4.2 that P is a direct product of minimal normal subgroups
of G, therefore (iii) is a consequence of (ii).

Assume that (iii) holds. Then application of Lemma 4.3 shows
that

( ' ) the normal subgroup P of G is finite .

Since P is finite, the group of automorphisms, induced in P by
G, which is essentially the same as G/cGP, is finite, too. Since %P =
P Π cGP is an abelian normal subgroup of G and since, by hypothesis,
1 is the only abelian normal subgroup of G, we get

( " ) P Π cGP = 1 and G/cGP is finite .

If N Γ) cGP Φ 1, then there would exist a finite number of finite nor-
mal subgroups E19 •••,!£» of G with EtS N and

W=cβPΓίf[EiΦl.

It follows that W is a finite normal subgroup, not 1, of G. Hence
W contains a minimal normal subgroup V of G. Since

this minimal normal subgroup V is part of P. Hence

ic7sPni7£Pncflp = i,

by (") which is a contradiction. Therefore

NΠcGP=l

which implies that

N = N/(N Π cGP) ^ NcGP/cGP Q G/cGP

is finite, by (").
Thus (i) is a consequence of (iii), proving Lemma 4.4.

5* Proof of the Main Theorem* The proof of the equivalence
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of (1), (2), and (3) was given in a course of lectures held by R. Baer
at New Mexico State University in the fall term 1967.

Proof of the equivalence of (1) and (2). Evidently (1) implies
(2.a) and (2.c). Furthermore every epimorphic image of an almost
abelian group is almost abelian, which implies (2.b).

Assume conversely the validity of conditions (2.a-c). Then Lemma
4.1 shows

(d) $aG is artinian and soluble,
and

(e) 1 is the only hyperabelian subnormal subgroup of G/fyaG.
Combine (e) and (2.b) to get

( f) G/fyιG is finite.
Therefore, by (d) and (f),

(g) G is artinian.
Since §aG is almost abelian by (d), cf. ([4j, p. 345, Satz 6.1 and

its proof), there exists an abelian characteristic subgroup C of §aG
with finite §aG/C. Then C is an abelian characteristic subgroup of G
and G/C is finite, by (f). Thus

(h) G is almost abelian
and we have proven the equivalence of (1) and (2).

Proof of the equivalence of (1) and (3). If G is artinian and al-
most abelian then every subgroup of G is artinian and every epimor-
phic image of G is almost abelian, proving that (3) is a consequence
of (1).

Assume the validity of (3.a) and (3,b). Then, by (3.a), every
cyclic subgroup of G is finite. Hence

( c ) G is a torsion group.
Lemma 4.1 shows

(d ) §aG is artinian and soluble,
and

(e) 1 is the only abelian subnormal subgroup of H = G/fyaG.
If A is an abelian subgroup of H then there exists a subgroup

B of G with ^aG^B and A = B/$aG. By (d), B is soluble and hence
hyperabelian and by (3.a) every abelian subgroup of B is artinian.
Hence, by Lemma 1.3. (b), every torsion group of automorphisms of
every abelian subgroup of B is finite. Because of (c) we may apply
([4], p. 345, Satz 6.1, equivalence of (1) and (4)) on B. This shows
that B is artinian. Hence A is artinian, too, proving

( f) Abelian subgroups of H are artinian.
Let F be the product of all finite normal subgroups of H and let

P be the product of all minimal normal subgroups of H which are
contained in F. Application of Lemma 4.2 shows that P is a direct
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product of minimal normal subgroups X of H. Since H is a torsion
group by (c), we may pick in every X an element e(X) of order a
prime. Then the subgroup S generated by these e(X) is a direct pro-
duct of the cyclic groups {e(X)}, each of order a prime. Thus S is
abelian and hence, by (f), artinian. Therefore and since the elements
of S are of squarefree order, S is finite, cf. ([5], p. 68; Exercise 19).
Hence

(g) P is a direct product of finitely many minimal normal sub-
groups of H. Because of (e) and (g) we may apply Lemma 4.4 to
show that

(h) F is finite.
Since HJcHF is essentially the same as the group of automorphisms

induced by H in F, it is finite, as F is and, by (e), 1 = %F=FΓ\tHF.
Thus

( i ) H/cHF is finite and 1 - F n cHF.
Assume by way of contradiction that H is infinite. Then FΦΉ.

because of (h), so that HJF is an epimorphic image, not 1, of G. By
(3.b) there exists an almost abelian normal subgroup, not 1, of H/F.
Consequently there exists a normal subgroup V of H with

FaV and almost abelian V/F .

Apply (i) to see that

( ' ) V/cvF =V/(VΠ cHF) = VcHF/cHF S H/cHF

is finite and

cHF)/(F Π cHF) ~F(VΠ cHF)/F S V/F

is almost abelian.
Because of (") cvF possesses an abelian characteristic subgroup

C with finite cvF/C. As a characteristic subgroup of the normal sub-
group zvF of H the group C is normal in H. Hence C = 1 by (e),
which shows that cvF is finite. Hence V is a finite normal subgroup
of H, by ('), whence F g F c F , a contradiction, proving

(k) H= G/§aG is finite.
Combination of (d) and (k) shows that

(1) G is artinian and almost abelian.
This completes the proof of the equivalence of (1) and (3) of the

Main Theorem.

Proof of the equivalence of (1), (4), and (5).
(1)—»(4). Every artinian group is a torsion group, hence (4.a) is

valid. If G is furthermore almost abelian, then there exists an abelian
characteristic subgroup A of G with finite G/A. Since A is artinian
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as a subgroup of the artinian group G, its torsion groups of automor-
phisms are finite, by Lemma 1.3. Therefore Lemma 2.2 is applicable,
showing that every torsion group Γ of automorphisms of G is almost
abelian. Define Δ as in Lemma 2.2.

The set S of all the elements of squarefree order in the artinian
abelian group A is a finite characteristic subgroup of A; cf. ([5], p.
68; Exercise 19). Let Σ be the set of all elements of squarefree order
in A. If σ is an element of order n in Σ and if x is an element in G,
then x0-1 belongs to A and is therefore a fixed element of σ. Thus
xa — (xσ~ι)x and, by complete induction,

xσ% — (χa-ιyχ for every integer i ^ 0 ,

so that in particular

x = χ°n = (xσ-γx .

This implies

(xa~ιγ = 1 for every x in G .

Hence xσ~ι is an element of squarefree order in A and belongs there-
fore to S. Thus

Ga~ι S S for all σ in Σ .

Every σ — 1, with d in I7, induces a single valued mapping of G/A
into S, as

(ax)0-1 = αa;""^"1 = af"1 for α in 4, x in (5 ,

since aσ = a and of"1 both belong to the abelian group A. If σr and
σ" are two elements in Σ, then σ' — 1 and σ" — 1 induce the same
mapping of G/A into S if, and only if, & — σ". Since G/A and S
are finite there exists only a finite number of single valued mappings
of G/A into S. This implies that Σ is finite. As Δ is an abelian tor-
sion group, application of ([5], p. 68; Exercise 19) shows that Δ is
artinian.

Since Γ/Δ is finite, Γ is artinian and almost abelian. Hence (4)
is a consequence of (1).

(4) -+(5). Since G is a torsion group, so is G/ιG\ and G/%G is es-
sentially the same as the group of inner automorphisms of (?, hence
it is artinian and almost abelian, by (4.b). So (5) is but a weak form
of (4).

(5) —> (1). Because of (5.b) Proposition 3.2 is applicable, which
shows

(d) G' is artinian
and
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(e) There exists an abelian characteristic subgroup F of G with
F 2 %G and finite GIF. Thus G is almost abelian.

By (5.a), F is a torsion group, so that it is locally finite, since
it is abelian. Hence G is an extension of the locally finite group F
by the finite group G/F, showing

( f ) G is locally finite.
Since G/F is finite there exists a finitely generated subgroup E

of G with G = FE. Because of (f), E is finite:
(g) There exists a finite subgroup E of G with G = FE.
Consider an abelian direct factor A of G. Every group of auto-

morphisms of A and of every direct factor of A is isomorphic to a
group of automorphisms of G. If A would have infinitely many pri-
mary components, it would possess an uncountably infinite, elementary
abelian 2-group of automorphisms (Lemma 1.4), contradicting (5.c).
For each primary component Ap of A we have, by ([5], p. 63; Th. 18.2),

where B is radicable and C is reduced. As a radicable torsion group
B is the direct product of groups of type p°°. If there were infinite-
ly many, B would admit an uncountably infinite, elementary abelian
2-group of automorphisms (Lemma 1.4) which again is impossible be-
cause of (5.c). Hence, by ([5], p. 65; Th. 19.2), B is artinian. If
C Φ 1, then there exists a subgroup Z of order p in C By Proposi-
tion 2.1, Rom (C/Z, Z) is isomorphic to a group of automorphisms of
C. Now C/Z is reduced, as C is. If C were infinite, C/Z would be
infinite and, by Lemma 1.2, Hom (C/Z, Z) would contain an uncountably
infinite, elementary abelian p-subgroup, which would be isomorphic to
a group of automorphisms of C. This contradiction shows that C is
finite. Hence, by ([5], p. 65; Th. 19.2), we have

(h) Every abelian direct factor of G is artinian.
We derive from (d), (e), and (g) that GΈ is artinian and almost

abelian. Therefore the set co of primes which are orders of elements
in GΈ is finite, see for instance ([3]; p. 13, Bemerkung 2.2, (A)).

Denote by Fω the set of all ω-elements in F and by Fω, the set
of all elements in F of order prime to every prime in ω. Since F is
an abelian torsion group,

Both, Fω and Fω, are characteristic subgroups of the characteristic
subgroup F of G, hence they are characteristic in G. By its definition,
FωGΈ is a normal ω-subgroup of G. Furthermore

Fω, Π FωGΈ = 1 ,
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since the elements in these two groups have relatively prime order.
Thus, by (g),

G = FE = Fω,FωE = Fω, <g) FωGΈ .

Application of (h) shows that Fω, is artinian, implying the finiteness
of ω'. Therefore

( i ) There exist only finitely many primes which are orders of
elements in G.

The product R of all the radicable subgroups of 3G is a radicable
characteristic subgroup of gG and hence of F. As R is a torsion group
it is a product of groups of type Z(p°°) for various primes p. Let Rx

be maximal among the direct products of those Z(p°°) in R, which
have a nontrivial intersection with GΈ. Then clearly the elements
of squarefree order of Rγ lie in GΈ. This implies that RL is artinian.
Moreover, Rλ is radicable as it is the direct product of radicable groups.
Therefore Rx is a direct factor of R, cf. ([5], p. 62; Th. 18.1),

R = R, ® R2 ,

where R2, as an epimorphic image of R is likewise radicable. Let x
be an element of prime order p in R2 n GΈ. Then x is contained in
a subgroup V S R2 of type Z(p°°) and χφ\ would imply F n G Έ ^ l ,
a contradiction to the maximality of Rx. Therefore

R2 n GΈ = R2 n (F n (?'#) = 1.

Hence, by ([5], p. 63), there exists a complement S of R2 in ί7 which
contains F Π G'#. Thus

By (g) therefore

G = FE = R2SE = R2(SGΈ)

and by Dedekind's Modular Law

R2 n SG'^ - R2 ΠFΠSGΈ = R2Π S(FΠGΈ) =

Since R2 is part of the center of G, it follows that

and application of (h) shows that R2 is artinian. Since i^ is likewise
artinian, R is artinian, and we have shown

( j) Radicable subgroups of %G are artinian.
Let p be a prime with (jG)p =£ 1. Then there exists a subgroup

Z of order p in gG. Consider
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Ή.om(G/GΈZF>, Z) = Horn (FGΈ/GΈZFP, Z)

~ Horn (FPG'E\GΈZFP

P, Z)

s Horn (FPI(GΈZF* Π Fp), Z)=H .

By ([5], p. 206; E), H is an elementary abelian p-group and by Pro-
position 2.1 it is isomorphic to a group of automorphisms of G. Hence,
by (5.c), H is countable and therefore—cf. ([5], p. 208; Lemma 54.2)
—the elementary abelian p-group

FPI(GΈZF* Π Fp) is finite .

This implies the finiteness of Fp/F», since otherwise (GΈZFξ Π Fp)/F*
would be infinite, but, by Dedekind's Modular Law, this is equal to

F;(GΈZ n F9)/F; = (GΈZ n FP)/(G'EZ n F;) ,

which is an artinian elementary abelian p-group and hence finite, cf.
([5], p. 65; Th. 19.2). Thus

( k ) FJF* is finite for every p with (jG)p Φ 1.
Let S be the set of all elements x in Fp with xp in (ιG)p. Then

S/dG)p is the socle of FP/(%G)P and

Fp/(iG)p = FJ(FP n iG) = FpiG/iG

is artinian as a subgroup of the—by (5.b)—artinian group F/%G. Hence
its socle

S/(&G)P is finite ,

cf. ([5], p. 65; Th. 19.2). By definition of S we have

Sp = dG)p Π Fξ .

Now

(iG)p/S* - (lG)p/[(iG)PΓί Fξ] ~

is finite, because, in case ($G)P Φ 1, it is a subgroup of FpjFξ, which
is finite, by (k). Therefore, if (%G)P/(%G)P

P were infinite, SP/(%G)P

P would
be infinite. But the mapping σ, defined by the rule

o\(^G)px^(iG)lxp f o r x e S

is an epimorphism of the finite group S/($G)P upon Sp/($G)l, implying
the finiteness of SP/($G)P

P. Hence

(1) (8G)p/(8G)ϋ is finite for all p.
Since {%G)P is an abelian torsion group,

(iG)p =
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where A is radicable and B is reduced. A is artinian, by (j). B/Bp is
finite, by (1), and since B is reduced, B is finite, by Lemma 1.1. Hence

(m) (%G)P is artinian for every p.
By (i), there exists only a finite number of primes which are orders

of elements in G. Hence gG is the product of finitely many primary
components, each of which is artinian, by (m). This implies

( n) gG is artinian.
Combination of (5.b), (e), and (n) shows that G is artinian and

almost abelian.
Thus (1) is a consequence of (5) which completes the proof of the

Main Theorem.

REMARK. (A) It is impossible to weaken condition (3.a) by re-
quiring only that abelian subnormal subgroups are artinian and that
G be a torsion group, since both this weaker condition and (3.b) are
satisfied by every direct product of any number of nonabelian, finite,
simple groups.

(B) The infinite cyclic group is an example of a torsionfree abelian
group whose group of automorphisms is finite. This shows that con-
ditions (4.a) and (5.a) are indispensable for the validity of the Main
Theorem.

(C) A direct product of infinitely many cyclic groups of order a
prime satisfies (5.a) and (5.b) showing the indispensability of condi-
tion (5.c).

6* Corollaries of the Main Theorem* The first two corollaries
of the equivalence of (1), (4), and (5) of the Main Theorem, one
characterizing the artinian groups with finite central quotient group,
the other characterizing the finite groups by means of their automor-
phism groups, which will be useful in § 7, may be found in [2]. We
will give a proof of Corollary 6.1, since it is a simple application of
the Main Theorem. It is a consequence of the equivalence of (1) and
(3) of the Main Theorem that the product of all almost abelian normal
subgroups of a group G is almost abelian and artinian, provided its
abelian subgroups are artinian (Corollary 6.4).

COROLLARY 6.1. The following properties of the group G are
equivalent:

( 1 ) G is artinian with finite G/jG.
(2 ) G is a torsion group and every torsion group of automor-

phisms of G is finite.
Cf. ([2], p. 521, theorem and proof of the equivalence of (i) and (ii)).

Proof. (1)—+(2). Every artinian group is a torsion group. Since
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gG is an artinian characteristic subgroup of G we may, because of
Lemma 1.3, apply Lemma 2.2. Thus: If Γ is a torsion group of auto-
morphisms of G and if Δ is the subgroup of Γ which fixes every ele-
ment in %G and in G/$G, then Δ is abelian and has finite index in Γ.
The group Δ is a torsion subgroup of the group Σ of all those auto-
morphisms of G which induce the identity in both %G and G\%G. Ap-
plication of Proposition 2.1 yields

Σ = Horn (G/zG, 3G) = Horn (G/G^G, 3G) .

Since G is artinian, application of Lemma 1.3 shows that the torsion
subgroup of Horn (G/G'%G, jG) is finite. Hence A is finite and Γ, as
an extension of the finite group Γ/Δ by the finite group Δ, is finite,
too.

(2) —• (1). If G is a torsion group and if every torsion group of
automorphisms of G is finite, then the group of inner automorphisms
of G is finite. This is equivalent to the finiteness of G/$G. Applica-
tion of the Main Theorem (equivalence of (1) and (4)) shows that G
is artinian.

COROLLARY 6.2. The following properties of the group G are
equivalent:

(1) G is finite.
(2) G is a torsion group and the group of automorphisms of

G is finite.

For a proof see ([2], p. 529, Corollary).

COROLLARY 6.3. The following properties of the abelian group
A are equivalent:

(1) A is finite.
(2) A is a torsion group and the group of automorphisms of

A is countable.

Proof. Evidently, (2) is a consequence of (1). Assume conversely
that (2) holds. As an abelian torsion group, A is the direct product

of a reduced group B and a radicable group C, see ([5], p. 63), where
C is a product of groups of type Z{p°°). The automorphism group of
a group of type Z(p°°) is isomorphic to the group of p-adic integers,
prime to p, cf. ([5], p. 211; Exercise 5), which is uncountable. There-
fore C = l. Application of the Main Theorem, equivalence of (1) and
(5), shows that A is artinian. This implies the finiteness of B, cf.
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([5], p. 65; Th. 19.2). Hence A =B is finite.

DEFINITION. aaG = product of all almost abelian, normal subgroups
of G. This is a well determined characteristic subgroup of G.

COROLLARY 6.4. If every abelian subgroup of G is artinian, then
( a) aaG is artinian and almost abelian;
( b) aaG contains every almost hyperabelian subnormal subgroup

ofG;
(c) Every abelian subgroup of G/aaG is artinian;
(d) 1 is the only almost abelian subnormal subgroup of G/aaG;
( e) aa(G/aaG) = 1.

Proof. Every epimorphic image of aaG is a product of almost
abelian normal subgroups, as aaG is. Consequently, every epimorphic
image H, not 1, of aaG possesses an almost abelian normal subgroup,
not 1. Therefore conditions (3.a,b) of the Main Theorem are satisfied
by aaG so that aaG is artinian and almost abelian, proving (a).

Assume that S is an almost hyperabelian, subnormal subgroup of
G. Then there exists a hyperabelian subgroup T of S with finite
S/T. By hypothesis, every abelian subgroup of T is artinian. Thus
it follows from ([4], p. 345, Satz 6.1) that T is artinian, soluble and
almost abelian. Consequently T possesses an abelian subgroup A of
finite index in T and A has finite index also in S as S/Γ is finite.
Hence S is almost abelian. Thus

(f ) Every almost hyperabelian, subnormal subgroup of G is
almost abelian.

Since S is subnormal in G there exists a finite chain of subgroups
Si of G such that

S = So, Si is normal in Si+1, Sn = G .

Clearly S = aaS0 and aaSi is a characteristic subgroup of the normal
subgroup Si of Si+1. Since, by (a), aaS{ is artinian and almost abelian,
we have aaS{ gΞ aaSi+1, so that

S = aaSQ S S aaSn = aaG ,

proving (b).
If X/aaG is an almost abelian subgroup of G/ctαG, then the sub-

group X of G satisfies, by hypothesis and (a), conditions (3.a,b) of
the Main Theorem so that X is almost abelian and artinian. Hence
X/aaG is artinian, which proves (c). If X/aaG is furthermore subnor-
mal in G/aaG, then X is an almost abelian subnormal subgroup of G.
Hence XQaaG, by (b), which proves (d). It also proves (e), because
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of (c) and (a), if X is the well determined characteristic subgroup of
G with X/aaG = aa(G/aaG).

7* Classes of groups* We are going to give a characterization
of the class ω(a) of all artinian and almost abelian groups and of the
class ω(f) of all finite groups by formal group theoretical properties.

A group which belongs to the class ω is called an ω-group.

THEOREM 7.1. The class ω of groups is the class ω(a) of all ar-
tinian and almost abelian groups if, and only if, ω satisfies the
following properties:

I. 1 is an ω-group,
II. Subgroups of co-groups are co-groups,
III. Epimorphic images of co-groups are co-groups,
IV.a An extension of an ω-group by an ω-group is an ω-group,
V.a If G is an ω-group, then G is a torsion group and every

torsion group of automorphisms of G is an ω-group,
VI.a A torsion group is an ω-group if all its torsion groups of

automorphisms are ω-groups,
VII. Every ω-group is countable,
VIII. Every infinite ω-group possesses an abelian subnormal sub-

group, not 1.

THEOREM 7.2. The class ω of groups is the class ω(f) of all
finite groups if, and only if, ω satisfies the following conditions:

I. 1 is an ω-group,
II. Subgroups of ω-groups are ω-groups,
III. Epimorphic images of ω-groups are ω-groups,
IV.f Direct products of finitely many ω-groups are ω-groups,
V.f Every group of automorphisms of an ω-group is an ω-

group,
VI.f A torsion group is an ω-group, if its automorphism group

is an ω-group,
VII. Every ω-group is countable,
VIII. Every infinite ω-group possesses an abelian subnormal sub-

group, not 1.

Proof of the necessity of conditions I to VIII. The class ω(a) of
all artinian and almost abelian groups clearly satisfies I, II, III, VII
and VIII. That ω(a) is extension inherited may be found in ([3], p.
14, Folgerung 2.6) and the validity of conditions V.a and Vl.a is con-
tained in the Main Theorem, equivalence of (1) and (4).

It is evident that the class ω(f) of all finite groups satisfies I,
II, III, IV.f, V.f, VII and VIII and the validity of Vl.f is contained
in Corollary 6.2.
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Proof of the sufficiency of conditions I to VIII.
(1) Every co-group is a torsion group (provided II, IV.f, V.f,

VII).

Proof. Assume, that G is an co-group, which is not a torsion
group. Then G contains an infinite cyclic subgroup Z, which is an
co-group, by II. It follows, from IV.f, that F = Z®Z is an co-group.
If F — {α} (g) {6}, then automorphisms σr and σ" of F are defined by

aσt = ab2 , ba' = b

aσ" = a , ba" = a2b .

It is a consequence of V.f that Σ = {σr, σ") is an co-group, so that,
by II, its commutator subgroup Σ' is an co-group, too. By its defini-
tion, I7 is a free group of rank 2 and it is well known that Σ' is a
free group of infinite rank. If Λ is a free set of generators of Σ'
and if A is a subset of Λ which is neither vacuous nor Λ, then there
exists one and only one automorphism of order 2 of Σ', which leaves
every element in Δ fixed and maps every element Λ — Δ upon its in-
verse. The group of automorphisms generated by these involutions
is an co-group by V.f and it is uncountably infinite by construction.
This contradicts VIII and proves (1).

(2) Every finite group is an co-group (I, IV, V, VI).

Proof. 1 is an co-group, by I. Since 1 is the only group of
automorphisms of the cyclic group Z(2) of order 2 it follows from
either of the conditions VI, that Z(2) is an co-group. By either of the
conditions IV, every finite, elementary abelian 2-group is an co-group.
Every finite group is isomorphic to a group of automorphisms of a
suitably selected finite elementary abelian 2-group. Because of V
therefore every finite group is an co-group.

(3.a) Every abelian co-group is artinian (II, V.a, VII).
(3.f) Every abelian co-group is finite (II, IV.f, V.f, VII).

Proof. (3.a) If A is an abelian co-group, then it is, by V.a, a
torsion group whose torsion groups of automorphisms are co-groups, and
hence, by VII, countable. Application of the Main Theorem, equiva-
lence of (1) and (5), shows that A is artinian.

(3.f) If A is an abelian co-group, then it is, by (1), a torsion
group whose automorphism group is an co-group, by V.f, and hence
countable, by VII. Application of Corollary 6.3 shows that A is finite.

(4.a) Every artinian, almost abelian group is an co-group (I,
IV.a, V.a, Vl.a).

Proof. By (2) every finite group is an co-group. If A is artinian
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and abelian, then every torsion group of automorphisms of A is finite
(Lemma 1.3) and hence an ω-group. Vl.a shows that A is an ω-group.
Every artinian and almost abelian group is an extension of an artinian
and abelian group by a finite group. Thus, by (2), it is an extension
of an ω-group by an ω-group and therefore, by IV.a, an ω-group.

(5.a) If ω satisfies the conditions II, III, V.a, VII, VIII, then
every ω-group is artinian and almost abelian.

Proof. If G is an ω-group, then every abelian subgroup A of G
is an ω-group by II, and A is artinian, by (3.a). Therefore—if we
denote by aaG the product of all almost abelian, normal subgroups of
G—it follows from Corollary 6.4 that

( i ) aaG is artinian and almost abelian, and
(ii) 1 is the only almost abelian, subnormal subgroup of G/aaG.
If G were not artinian and almost abelian, then, by (i), G Φ aaG

and, by (ii), G/aaG is infinite. Because of III, G/aaG is an ω-group
and VIII shows the existence of an abelian subnormal subgroup, not
I, contradicting (ii). This contradiction shows that G is artinian and
almost abelian.

(5.f) If ω satisfies the conditions II, III, IV.f, V.f, VII, VIII,
then every ω-group is finite.

Proof. Let G be an ω-group and denote by IfG the product of
all locally finite, normal subgroups of G. According to ([7], p. 135;
Satz 28 and p. 141; Satz 40*) we have

( i ) l\G is locally finite, and
(ii) 1 is the only locally finite subnormal subgroup of G/l\G.

Because of III, G/ίfG is an ω-group and it follows from (1) that G
and G/l\G are torsion groups.

Application of VIII and (ii) shows G/IfG = 1, so that G = IfG is
locally finite by (i). Every abelian subgroup of G is an ω-group by
II, hence, by (3.a) every abelian subgroup of G is finite. Application
of the theorem of Kargapolov-P. Hall-Kulatilaka (see [6], p. 453;
15.4.3) yields the finiteness of G.

Combine (4.a) and (5.a) to get the sufficiency of the conditions in
Theorem 7.1; and combination of (3.f) and (5.f) shows the sufficiency
of the conditions of Theorem 7.2.

This completes the proof of the two theorems.

I am deeply indebted to Professor Reinhold Baer for his help and
advice when writing this paper.
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