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GEOMETRIES ON SURFACES

HELMUT SALZMANN

Among the topological geometries, two classes have so far
attracted special attention, namely the locally compact, 2-
dimensional projective and affine planes. Such a plane has a
pointset which is homeomorphic to the pointset of the real
arguesian plane, hence is a 2-dimensional manifold. In this
paper, all the 2-manifolds that can carry topological geometries
with connected lines will be determined.

THEOREM. Let M be a surface carrying a topological geometry
such that any two distinct points are on a unique line. Then either

( 1 ) M is an open disk, and each line is open, i.e., homeomorphic
to the real line R, or

( 2 ) M is a compact surface of characteristic 1, and each line
is closed, i.e., homeomorphic to a circle, or

( 3 ) M is a Moebίus strip, and through each point there pass
closed lines and at least one open line.

The proof follows immediately by combining statements 1.10 and
2.3, 6, 9, 10, 13 below. From 2.9 and 2.11 we get

COROLLARY. M is orientable if and only if the space 2 of lines
is a Moebius strip, and M is nonorientable if and only if 2 is compact.

1. Let 8 be a family of subsets of a nontrivial topological space
M, and assume that each two distinct "points" p, qeM are joined by
a unique "line" L = pUqe2. The system E = (M, 2) is called [3] a
"plane" whenever 2 can be provided with a topology (necessarily unique)
for which E becomes a topological geometry in the following sense:

( a ) p U q depends continuously on (p, q), and
( b ) the set ® of pairs of intersecting lines is open in 8 x 2, and

intersection is a continuous map from © onto M.
Condition (b) is equivalent to
(b') If US M is open, then {(K, L);Kf)LeU} is open i n S x S .
We shall be concerned with "flat" planes only, i.e., with those

planes in which the underlying space M is a 2-dimensional manifold
or "surface". The line space 8 of a flat plane is also a surface, and
the incident point-line pairs or "flags" form a 3-dimensional closed
submanifold F of M x 2; each line is closed in M and is locally
homeomorphic to the real line [3, 2.3].

If B is a connected open subset of M, then the system
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is again a flat plane. This shows that, in general, the lines of a
geometry will not be connected sets; it is therefore reasonable to
determine only those flat planes that have connected lines, i.e. planes
satisfying

(c ) every line is homeomorphic to the real line or to the circle.
Each line can then be provided with two opposite orientations, and
the space 8 + of oriented lines becomes a two-fold covering of 8. The
lines homeomorphic to R will be called "open", and the others compact
or "closed".

LEMMA 1.1. A compact disk D S M cannot contain any line.

Proof. A line K £ D would have to be a closed line. Hence K
would separate some points ae D and be M, and then a\jb would
intersect K twice.

DEFINITION 1.2. A set C £ M is convex if L Π C is connected for
every line L. If the boundary bd C consists of finitely many, resp. of
4 or 3 line segments, C will be called a polygon resp. a quadrangle
or a triangle.

LEMMA 1.3. Each point pe Mhas a neighborhood basis consisting
of quadrangles (triangles).

Proof. Let W be a neighborhood of p. Choose points a19 a2 such
that p $ a1 U α2, and let Jk be a sufficiently small connected neighbor-
hood of p on ak U p. Then

U = {(xλ U α2) n (xz ΓΊ a,); xk e Jk} £ W

is a neighborhood of p homeomorphic to J x x J2f which is easily seen
to be a convex quadrangle.

COROLLARY 1.4. The space 2+ of oriented lines through p is
homeomorphic to a circle.

Convergence in M and in S are related by

LEMMA 1.5. Ln —^ L if and only if L — {x; V ^ e Lnxn —^x}.

This follows immediately from the continuity of join and inter-
section, (a) and (b).

A set is termed "bounded" if it has compact closure.
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LEMMA 1.6. A set @ of lines is bounded in £ if and only if
there is a bounded set C S M intersecting every line

Proof. Let Sn e @ and xn e Sn Π C. We may assume #w —^> x.
Choose a triangle with boundary T containing x in its interior; then
for each sufficiently large n there exists a point tne Snf] T. The tn

accumulate at some ί e Γ, and a subsequence of the Sn converges to
t\Jx. For the converse note that M is a union of a countable family
of compact subsets.

LEMMA 1.7. Let K be a closed line, and B S M a bounded open
set containing K. Then 23 = {L e L; L g 5} is cm opew neighborhood
of K in 2 consisting of closed lines only.

Proof. Since bounded lines are closed, 33 cannot contain any open
line. If S3 were not a neighborhood of K, we would find a sequence
of lines Ln > if with Ln Π -B =£ 0 and L% g S3. By (c) each line L%

would contain a point xn of the compact boundary bd B, in contradiction
to 1.5.

COROLLARY 1.8. The space S) of closed lines is open in S.

LEMMA 1.9. A closed line K intersects every line L e S.

Proof. For a£K the map a = (x ι—• α (J a?) maps ϋΓ into the set
Sα of lines through α. Since £„ is homeomorphic to a circle by 1.4,
and a is one-to-one, a is even a bijection.

COROLLARY 1.10. If M is a compact surface, then (M, S) is a
protective plane, and M is homeomorphic to the real protective plane.

Proof. Any two different lines intersect by 1.9, and this is the
first assertion. The second statement follows now from [2].

PROPOSITION 1.11. If a geometry contains a closed line K, then
each point lies on a closed line.

Proof. Assume that each line through s is homeomorphic to R,
and let s U z+ denote the line s (J x oriented from s to x. Then
(x i—> s U x+): K—> %>t would be a homeomorphism from K onto a set of
oriented lines through s containing exactly one of any two lines of
opposite orientation. This contradicts 1.4.

2. From now on we shall assume for the sake of simplicity that
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M is a surface of finite connectivity, i.e., that Mean be embedded in a
compact surface M by adding a finite number of "endpoints" e19 , er.

LEMMA 2.1. Let g:R~>M represent an oriented open line L =
g(R). Then L has unique endpoints

e*(L) = limt^±« g(t)

in M.

Proof. Choose small disjoint open neighborhoods Uk of ek in M.
Since each line is closed in M, there exists an s e R such that the
connected set {g(t); t ^ s} is contained in U£=1 Uk and hence in one of
the Uk.

LEMMA 2.2. The oriented lines L having a given endpoint
e+(L) = e form a closed subset of 8+.

Proof. Let Ln —^ L with e+(Ln) = β, and choose a small neighbor-
hood U of e in M. Then all the Ln intersect the compact boundary
bd U S M. Hence L n bd U Φ 0 by 1.5, and e+(L) = β.

LEMMA 2.3. .For eαc/*, α e M and each endpoint e there is an
oriented line Lett with e+(L) = e.

Proof. Let bn —^> e in M, and αUδ f t — -̂> L.

COROLLARY 2.4. Lei (Λf, 8) 6e α ̂ αί plane with connected lines.
Then M is compact if and only if each line is closed.

PROPOSITION 2.5. A surface M carrying a plane geometry with
connected lines has at most one endpoint.

Proof. 2ik = {Le 2+; e~(L) = eif e+(L) = ek} is closed in S+ by 2.2.
Assume r > 1, choose small disjoint neighborhoods Uk of ek in M, and
let bkn —^ ek in Uk. For i Φ k the lines bin U bkn meet the compact

complement C of \Jk=ί Uk, and hence accumulate at a line in 2ik. Since
S+ is connected, the boundary bdSίfc Φ 0 , and there is a sequence of
closed lines Kn converging to a line Le2ik. For large w a line iΓΛ

will contain two arcs joining Ut and Uk\ thus a line Jϊ intersecting
L at a point of C would meet some line Kn twice, a contradiction.

PROPOSITION 2.6. A plane geometry on an orientable surface M
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has no compact lines.

Proof. A compact line K on an orientable surface M would have
a bounded neighborhood B £ M which is homeomorphic to a cylinder.
By 1.7 the set 93 of all lines L gΞ B is an open neighborhood of K in
£, and each L e B is closed. Moreover, it follows from 1.1 and 1.9 that
a line L S B decomposes the cylinder and intersects K. But then K
and L would have to intersect twice.

PROPOSITION 2.7. The complement of an open line L is homeo-
morphic to an open subset of R2.

Proof. For a,beL consider

(xH(αUx,ί)U x)): M-L -* (8. - {L}) x (S6 - {L}) .

PROPOSITION 2.8. If M is orientable, then any line L decomposes
M into two open half-planes, each of which is homeomorphic to an
open disk. Consequently M is homeomorphic to a 2-sphere.

Proof. Let L = a (J b, and choose homeomorphisms

a: 2a -{L} — (0, 1) , β: 2b - {L} -> (0,1)

corresponding to the same orientation of M. For f = Aa let

inf{BP;AnB= 0} .

Then δ is a monotonically increasing, left-continuous mapping. Accord-
ing to the orientation of M one of the half-planes defined by L will
be mapped by

^ ( ( α U x)% (b U x)β)

onto the Jordan domain

D - {(ί, ?) ei22; 0 < ξ < 1, 0 < η < δ(ζ)} .

COROLLARY 2.9. Lβί (ikf, S) 6β α ̂ αί plane with connected lines.
If M is orientable, then M is homeomorphic to R2, and 2 is a Moebius
strip.

For the last assertion see [1, § 3(6)] or [3, 2.14].

An argument completely analogous to the proof of 2.8 shows

COROLLARY 2.10. Each point of a plane geometry on a non-
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orientable surface is incident with a compact line.

THEOREM 2.11. The line space of a plane geometry (M, S) on a
nonorientable surface is a compact surface of characteristic 1; the
space of oriented lines is homeomorphic to a 2-sphere.

Proof. If H, K are closed lines through α, then S — 2a is homeo-
morphic to (H — {a}) x (K — {a}).

LEMMA 2.12. In a plane geometry (M, 8) on a nonorientable
surface the set of closed lines through a point a is connected.

Proof. Because of 2.5 we may assume that M has exactly one
endpoint e. Choose an open line L and two closed lines H and K
through a. We have to show that no open line through a is separated
from L by H, K. By 2.7 the Jordan curve theorem holds in M — L.
Hence the union H U K decomposes M — L into two connected subsets,
only one of which contains points of a small neighborhood U of e.
Therefore, a line G which is separated from L by H, K must be disjoint
from U and hence is compact.

THEOREM 2.13. An open nonorientable surf ace M carrying a plane
geometry with connected lines is a Moebius strip.

Proof. The dual (8, M) of the geometry defined by the system
$ of closed lines on M is a flat plane by 2.10, 1.8, 1.9, and 2.12.
The theorem follows now from 2.9 and 2.11.

Note that in general the lines of a topological geometry on a
Moebius strip need not be connected.

The author is indebted to James Dugundji for very stimulating
discussions and valuable comments.
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