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ON FINITE GROUPS WITH INDEPENDENT
CYCLIC SYLOW SUBGROUPS

MARCEL HERZOG

The purpose of this paper is to classify all perfect groups
with cyclic Sylow p-subgroups which satisfy the condition
(TI) two different Sylow p-subgroups of G contain only
the unit element in common
and such that

o(G) < o(P)?

where P is a Sylow p-subgroup of G.
The main result of this paper is the following

THEOREM 1, Let G be a perfect finite group with a cyclic
Sylow p-subgroup P of order p* and assume that the Sylow
p-subgroups of G satisfy the (T'I) condition. Assume, further-
more, that

o(@) < pie,
Then one of the following statements holds.
(I) a=1, G= PSL(2, p), where p > 3 is a prime,
(II) a=1, G= PSL2,p—1), where p=2"+4+1>5 is a
Fermat prime,
Il a=1, G= SLZ2, p), where p > 3 is a prime,
av) a=2, p=3, G = PSL(Z2,8).

Ten years ago E. Artin raised the following problem: what are
the simple finite groups G of order g which are divisible by a prime
p > ¢**? This question was answered by R. Brauer and W. F.
Reynolds in [1]. They found that the only groups satisfying the
above conditions are PSL(2, p), where p > 3 is a prime, and PSL(2,
p»—1) where p >3 is a Fermat prime, p = 2™ 4+ 1. In particular,
the Sylow p-subgroups of these groups are of order p and therefore
they are cyclic and satisfy the (T'I) condition. Theorem 1 thus
generalizes these results.

As a matter of fact we will prove a more general statement than
Theorem 1.

THEOREM 1*. Let G be a finite group with a cyclic Sylow p-
subgroup P of order p* and assume that the Sylow p-subgroups of
G satisfy the (TI) condition. Assume, furthermore, that

o(G) < p*
and no homomorphic image of G is isomorphic to Ny P)/W, where
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W is the normal complement of P in Cyi(P). Then one of the fol-
lowing statements holds.

(I)* a=1, G = PSL(2, p), where p > 3 is a prime.

(II)Y* a=1, G= PSLQ2,p —1), where p=2"+1>5 s a
Fermat prime.

(IIH*  a =1, G = SL(2, p), where p > 3 is a prime.

(IV)* a=2, p=38, G= PSL(Z,8).

(V)Y a=1, G= PGL(2, p), where p >3 is a prime.

(VD)* a=1, G = PSL(2, p) x M, where p > 3 is a prime and
o(M) = 2.

Since G = G’ implies the last condition of Theorem 1*, Theorem
1 follows immediately from Theorem 1*. In this paper the group
N (P)/W will be referred to as the p-metacyclic group of order gp°.

Theorem 1* follows from the following more general result:

THEOREM 2. Let G be a finite group with a cyclic Sylow p-sub-
group P of order p* > 1 and assume that the Sylow p-subgroups of
G satisfy the (TI) condition. Suppose that no homomorphic image
of G is isomorphic to the p-metacyclic group of order p°q. Then

o(G) = quwp"(L + np®)

where wp* = o(Ce(P)), ¢ =[Ny(P):Ce(P)] >1 and n is a positive
integer.

Furthermore, let G, be the minimal normal subgroup of G for
which G/G, is solvable, and let M be the maximal normal subgroup
of G, of order prime to p. Denote G,/M by G*. Then one of the
following statements holds.

(A) n = (hvp* + h + v* +v)/(v + 1)
where h and v are positive integers and v + 1| h(p®* — 1).

B) a=1, n =1, G* = PSL(2, p) where p > 3 is a prime.

©C) a=1, n=p-3)/2, G*=PSL(Z2,p — 1) where p =2 +1>5
s a Fermat prime.

D) a=2, p=38, n= (P —3)2 G* = PSL(2,8).

Theorem 2 immediately yields

COROLLARY. Let G satisfy the assumptions of Theorem 2 and
suppose that n < (p* + 3)/2. Then G* s of type (B), (C) or (D).

In §2 some basic properties of groups with a Sylow subgroup
satisfying the TI-property are derived. Section 3 contains the proof
of Theorem 2, from which Theorem 1* is deduced in §4.

We use the standard notation C.(T'), N(T), o(T), T*% and {T),
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where T is a subset of the group G, to denote respectively: the
centralizer, normalizer, number of elements, the nonunit elements and
the group generated by 7. We will say that N (T)/Cs(T) acts
frobeniusly on 7T if 6" =6 for 6e T*% and ne Ng(T) implies that
neCy(T). An element of G is called a p’-element, where p is a prime
number, if p does not divide its order. The principal character and
the commutator subgroup of G will be denoted by 1, and G’ respec-
tively. Finally, if a and b are integers, then (a,b) denotes their
greatest common divisor and a | b means: a divides b.

2. TIP-groups. A finite group will be called a TIP-group if
its Sylow p-subgroups are nontrivial and satisfy the TI-property.
This section deals with properties of TIP-groups in general, followed
by a study of TIP-groups with a cyclic Sylow p-subgroup.

PROPOSITION 2.1. Let G be a TIP-group with a Sylow p-subgroup
P of order p°*. Then the following statements hold.

(a) Cy(P)=Wx P
where o(W) = w and (w, p) = 1.

(b) oG = qup (1 + np")
where q = [Ny (P) : Ce(P)] and n is a nonnegative integer.

(e) Any normal subgroup L of G of order divisible exactly by
p* > 1 is a TIP-group of order q,w,p'(1l + np®).

(d) If H is a normal subgroups of G of order prime to p, then
G/H is a TIP-group.

Proof. Let C = C4(P), N = Ny(P).

(a) Since P is a normal Hall-subgroup of C, it has a comple-
ment W and (w, p) = 1. Since elements of W commute with elements
of P, C=W x P.

(b) Consider the conjugates {P;} of P, other than P. If oeP
and P/ = P;,, where P, = P°, 7e€@G, then P "' = P, ot~ e Ng(P)
and o€ Ny(P*), e PN P°={1}. Thus P acts by conjugation fixed
point free on {P;} and therefore o{P;} = mp" for some nonnegative
integer n. Hence [G: N] =1 + np® and o(G) = qwp*(1 + np°).

(¢)—(d) The proof of Lemma 1 in [6] obviously holds also for
general TIP-groups, with p = 2. Thus any subgroup of G of order
divisible by p is a TIP-group and (d) holds. Let o(L) = q,x,p*(1 + n.p").
Since L and G have the same number of Sylow p-subgroups 1 + n,p* =
1 + np* proving (c).

PropPoOSITION 2.2. Let G be a TIP-group with a cyclic Sylow
p-subgroup P of order p°. Then in addition to properties (a)—(d)
of Proposition 2.1, and using the same motation, the following state-
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ments hold.
(e) Cu(P) = C4(0) and Ny4(P) = Ny(oD)
for all o e P%,
(f) q divides p — 1.
(g) o(G/H) = qwp*(l + np°)
and there exists a monmnegative integer z such that

n=z-+n-4 z2np®.

If z=0 then HC W.
(h) If K is a normal subgroup of G and K does mot contain
P then

Nx(P) = Cx(P) .

(1) If also o(K N P) > 1, then G can be mapped homomorphically
on the p-metacyclic group of order p°q.

Proof. (e) Let oe P# then by Lemma 2.1.b in [3] Cs(0) N Ng(P)=
Cy(P). It follows from the TI-property that C,(cd) C Ny(P) and
Ng(K0D) © Ny(P). Thus Cy(0) = Cx(P) and since P is cyclic Ny(<o)) =
Ng(P).

(f) By Lemma 2.1.d of [3] N/C acts frobeniusly on P and P
is cyclic. Therefore ¢ = [N : C] divides » — 1.

(g) The proof of Proposition 2 in [1] holds, with the obvious
changes, also in the present case. It is clear from the proof in [1]
that if z = 0 then H < C,(P).

(h) Suppose that KN NZ C and let ce KN N — C. Since N/C
acts frobeniusly on P, it follows that the elements op~'c~'p, pec P,
are distinct and belong to PN K. Thus P is contained in K, a con-
tradiction. Consequently KN Nc C and KN N = KN C, as required.

(i) Let p* be the exact power of p dividing o(K). Then
1 < p® < p* and by Proposition 2.1.c and (h) o(K) = wip*(1 + np*),
where w;p* = o(Cx(P N K)) = o(Ng(P N K)). By the Burnside Theorem
K has a characteristic subgroup T of order wg(l + np®). T is normal
in G and G = NT. Consequently WT is a normal subgroup of G and
G/WT is isomorphic to the p-metacyclic group of order p%.

3. Proof of Theorem 2. If either p =2 or ¢ =1, then
Cs(P) = N4(P) and by the Burnside Theorem P has a normal comple-
ment in G, in contradiction to our assumption. Thus p > 2 and q > 1.

If P is normal in G and Cx(P) = W x P, then W is normal in
G, again a contradiction. Thus P is not normal in G and the first
statement of Theorem 2 follows from Proposition 2.1.b.

It follows from Proposition 3 in [1] and Proposition 2.2.i that
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Pc G, Indeed, if PZ G, then either ¢ =1 or a > 1 and G contains
a normal subgroup U such that 1 < o(U N P) < p°. In both cases the
above mentioned propositions yield a contradiction to our assumptions.

The definition of G, forces it to be its own commutator subgroup
and the same is true for G*. Moreover, G* does not have nontrivial
normal subgroups of order prime to p.

From now on we will assume that (A) is not satisfied and will
show that then one of the statements (B), (C), or (D) holds.

Let o(G,) = qw.p*(1 + np*), o(G*) = qw*p*(1 + n*p®). Since G* =
(G*)', n* = 0. By Proposition 2.2.g there exists a nonnegative integer
z such that

n =2+ n* + zn*p®.
If 20, let h = (2 + L)n*, v = 2. Then:
n=uv+ h/(v+1) + vhp*/(v + 1)

in contradiction to our assumptions. Thus z = 0 and #* = .

Consequently, it suffices to show that if G satisfies the assumptions
of Theorem 2 and in addition, G = G’, G has no nontrivial normal
subgroup of order prime to » and % does not satisfy (A), then G is
isomorphic to one of the simple groups described in (B), (C), and (D).

We will use the following notation: N = Ny (P), C = Cy4P) =
W x P where o(W) = w and (w, p) = 1.

Let B be the principal p-block of G. Then by Proposition 2.1 of
[3] B contains ¢ = (p* — 1)/q exceptional characters X, of degree =z,
A=1,.--,t and ¢ nonexceptional characters X, of degree ux;, 7 =
1,.-..,q. If 0 P* and 7w is a p’-element of C,(0) = C then:

Xy(om) = — & >, Ci(0) for x=1,.--,¢
PER

(1) .
Xi(om) = ¢; forj=1,---,¢q

where R is a set of coset representatives of Cin N, {{;|x =1, ---, &}
is a set of representatives of the ¢ transitivity classes of characters
of P under conjugation by N (see [3], Lemma 2.2), and ¢; = + 1 for
j=0,1,..-.,q. It follows also by Corollary 2.1 of [3] that the
following relations hold:

x; = & (mod p*) for i=1,---,¢q

-

(2) tx, = &, (mod p%)

and

(3) e =0.

1=0
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We are now ready to state

LemMmA 3.1.
(4) tw; | (p° — 1)(1 + np®) for j=0,---,q.

Proof. If o€ P# then C = Cy(0o) and it is well-known that the

expression
0(G)- X,(9)
o(C)-x;
is an algebraic integer for all j. It follows, from Proposition 2.1 and
1), that for j =1, .-+, ¢
quwp*(1 + np®)/wp"x;
is an algebraic integer and consequently
tx; [ tg(1 + mp®) = (p* — 1)(1 + np°) .

For j = 0, it follows from (1), Proposition 2.1 and Lemma 2.2 of [3]
that

L o(G)X(0) _ qwpi(l + mp*e,
=1 o(C)x, WP,

is an algebraic integer and therefore tx, | (p* — 1)(1 + np?).
Since the block B contains 1, as a nonexceptional character, we
may assume that X, = 1,. We have then

LeEmMmA 3.2. For 57=0,2,8,---,¢q

~4{1+np" if ¢ =1
o1 i g =1

where T; = x; for 3 =2, -+, q and %, = tw,.

Proof. We will show first that if
up® + | (p* — 1) + np?) , e==x1

then either » satisfies statement (A) or one of the following relations
holds:

up* +e=1 or np®+1 if e=1
up® +e=p*—1 or (p*— )(np* + 1) if e=—1.

To do so, it suffices to show that if n does not satisfy (A) then the
only solutions of
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(5) (vp* + D(wp* — 1) = (p* — DA + np*)

in nonnegative integers v and w are: v = 0, wp® — 1 = (p* — 1)1 + np*)
and v =n, w = 1.

Suppose that v = 0 and w > 1. Then v»p* + 1 <1+ np°, v < n.
By multiplying out equation (5), adding 1 to both sides and dividing
by p* we get

(6) wep* +w —v=np*—n+1.
Now by (6):

(vp* + D(n — wv) = vp*n — v(wvp*) + n — W
= vp*n + vw — V* — vNP* + vn — v + n — WY
=n-—-2+1).
Since n > v, the left hand side of the equation is positive and so we
may put h = n — wv, where } is a positive integer. Solving for n we
get a contradiction to the assumption that » does not satisfy (A).

Thus either v = 0 or w = 1 and the above assertion follows.
Now we have seen that for 1 =0,2,3, ---, q

Z; = ¢; (mod p°) and Z; | (p* — 1)1 + np°) .

Since X, is the only character of G of degree 1, it follows that for
j: 092v3) e, q
1 + npa if Sj == 1

T g =1 or (p — 1)1 + mp?) if e, = —1.

I

Thus it suffices to show that for § = 0,2,8, ---, ¢
z; # (p* — 1)1 + np°) .
Indeed, if the equality holds, then by (3):

0= Zj. e; = 1+ (¢ — 1) + np®) — (p* — DA + np*)/t = — np”

a contradiction. The proof of Lemma 3.2 is complete.

We will proceed with the proof of Theorem 2. It follows from
(3) that at least one of the ¢/s, = 0,1, .-+, q, is negative. If ¢, =
—1,let X=>¢_ X,and if ¢, = — 1 for some ¢ =2 let X = X;. In
either case, by Lemma 3.2 X is a character of G of degree p* —1
and by (1) and Lemma 2.2 of [3]

X(om) = —1
for 0 e P%, we W, where C = P x W. Denote the restriction of X to
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C also by X; then X is a character of P x W and therefore for
o€ P and me W we have:

(7) X(om) = 3 4(m)pi(p)

where +;, ¢ =1, .--, r are distinct irreducible characters of W and
@i, © =1, -+, r are characters of P. Let oc P* mwe W; as X(on) =
— 1, it follows from (7) and from the linear independence of the
irreducible characters of W, that the principal character appears
among the +;, say +, = 1,, and

P(0) = — 1, p(0) = +++ =, (0) = 0.

Suppose that r > 1. Then ¢, vanishes on P* and therefore p* divides
@,(1), in contradiction to (7) and the fact that X(1) = p* — 1. Thus
r=1 and

X(om) = @,(0) for all pe P, meW.

In particular X(7) = ¢,(1) = X(1) for all e W. Let V denote the
kernel of X; then V is a normal subgroup G and W V. Suppose
that W = {1}. Then it follows from the assumption that G has no
nontrivial subgroups of order prime to » and from Proposition 2.2.i
that PcC V, in contradiction to the fact that X(¢) = — 1 for ¢ ¢ P&
Consequently W = {1}, P contains the centralizer of each of its nonunit
elements and by Theorem 2 of [2] G is either of type (B), or of type
C, or G = PSL(2, p* — 1), where a > 1 and p* — 1 = 2°, In view of
Lemma 3.1 of [3], the only solution of the above equation with @ > 1
ist p=38, a=2and b =3. Thusifa >1, G= PSL(2,8). Since the
groups of types (B), (C) and (D) satisfy the conditions of Theorem 2,
the proof is complete.

4. Proof of Theorem 1*, It follows from Theorem 2 that one
of the statements (B), (C) and (D) holds. Statement (A) could not
oceur, since then

n= (P +3)/2, oG = 2p"(p* + 3)p2 > p*

a contradiction.

In cases (C) and (D) o(G*) > p**/2 and therefore G = G*, yielding
statements (II)* or (IV)*. In case (B), o(G*) = (p* — »")/2 and there-
fore either [G: G,] =2, G, = G*, or G = Gy, o(M) = lor 2. If [G:G,] =
2, then o(M) = 1, G is isomorphic to a subgroup of the automorphism
group of PSL(2, p) and by [5, Lemma 2] G = PGL(2, p), yielding (V)*.
If G =G, and o(M) =1, then G = PSL(2, p), »p >3, and (I)* holds.
Finally, if G = G, and o(M) = 2, then it follows from a theorem of
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Schur [4, p. 120] that G is either isomorphic to SL(2, p) and (III)*
holds, or it is isomorphic to PSL(2, p) x M and (VI)* holds. Since
the groups mentioned in Theorem 1* satisfy the conditions of that
theorem, the proof is complete.
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