ON PRIME DIVISORS OF THE BINOMIAL COEFFICIENT

E. F. Ecklund, Jr.

A classical theorem discovered independently by J. Sylvester and I. Schur states that in a set of k consecutive integers, each of which is greater than k, there is a number having a prime divisor greater than k. In giving an elementary proof, \mathbf{P}. Erdös expressed the theorem in the following form:

If $n \geqq 2 k$, then $\binom{n}{k}$ has a prime divisor $p>k$.
Recently, P. Erdös suggested a problem of a complementary nature:

If $n \geqq 2 k$, then $\binom{n}{k}$ has a prime divisor $p \leqq \begin{aligned} & n \\ & 2\end{aligned}$
The problem is solved by the following
Theorem. If $n \geqq 2 k$, then $\binom{n}{k}$ has a prime divisor $p \leqq \max \left\{\frac{n}{k}, \frac{n}{2}\right\}$, with the exception $\binom{7}{3}$.

Throughout the paper, p denotes a prime. J. Rosser and L. Schoenfeld [2] have obtained fairly precise estimates for $\theta(x)=$ $\sum_{p \leqq x} \log (p)$, and $\pi(x)=\sum_{p \leqq x} 1$.

$$
\begin{array}{ll}
\frac{x}{\log x}\left(1+\frac{1}{2 \log x}\right)<\pi(x) & \text { for } x \geqq 59 . \tag{1}\\
\pi(x)<\frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right) & \text { for } x>1 .
\end{array}
$$

$$
\begin{equation*}
\pi(x)<\frac{1.25506 x}{\log x} \quad \text { for } x>1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\theta(x)<1.01624 x \quad \text { for } x>0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
x-2.05282 \sqrt{x}<\theta(x)<x \quad \text { for } 0<x \leqq 10^{8} . \tag{5}
\end{equation*}
$$

Using these results, we are able to prove the theorem.
First we establish the following lemmas.
Lemma 1. If $\binom{n}{k}$ has no prime divisors $p \leqq n / 2$, then

$$
\begin{equation*}
\binom{n}{k} \leqq e^{\theta(n)-\theta(n-k)} \leqq n^{\pi(n)-\pi(n-k)} . \tag{6}
\end{equation*}
$$

Lemma 2. For $k \geqq 59$,

$$
\begin{equation*}
n^{\pi(n)-\pi(n-k)}<e^{(n / \log n+k+k / 2 \log n)} . \tag{7}
\end{equation*}
$$

Lemma 3.

$$
\begin{equation*}
\frac{2^{(n+1) k-1}}{\sqrt{k}} \leqq\binom{ 2^{n} k}{k} \tag{8}
\end{equation*}
$$

Proof of Lemma 1. $\binom{n}{k} \leqq \Pi_{n-k<p \leqq n} p \leqq \Pi_{n-k<p \leqq n} n$. Hence

$$
\binom{n}{k} \leqq e^{\theta(n)-\theta(n-k)} \leqq n^{\pi(n)-\pi(n-k)}
$$

Proof of Lemma 2. From (1) and (2), we have

$$
\begin{aligned}
n^{\pi(n)-\pi(n-k)} & <n^{\{n / \log n[1+3 /(2 \log n)]-(n-k) / \log (n-k)[1+1 /(2 \log (n-k))]\}} \\
& <n^{\{n / \log n[1+3 / 2 \log n]-(n-k) / \log n[1+1 / 2 \log n]\}} \\
& <e^{\{n[1+3 / 2 \log n]-(n-k)[1+1 / 2 \log n]\}} \\
& <e^{(n / / \log n+k+k / 2 \log n)}
\end{aligned}
$$

Lemma 3 is proved by induction on n for all values of k.
The proof of the theorem is by contradiction. Three cases are considered. The general case is a Sylvester-Schur type argument. The other cases involve deducing contradictions from appropriate upper and lower bounds on the inequalities, (6), of Lemma 1.

Proof of the theorem. Assume $\binom{n}{k}$ has no prime divisors

$$
p \leqq \max \left\{\frac{n}{k}, \frac{n}{2}\right\}
$$

1. $k<n^{2 / 3} .\binom{n}{k}=\frac{n \cdot(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 1} \geqq\left(\frac{n}{k}\right)^{k}$.

By sieving all multiples of 2 , and 3 , we have

$$
\pi(n)-\pi(n-k) \leqq \frac{k}{2} \quad \text { for } k \geqq 4
$$

Therefore from (6), we have $(n / k)^{k} \leqq n^{k / 2}$. Thus the assumption is false if $4 \leqq k<n^{1 / 2}$. By sieving all multiples of 2,3 , and 5 , we have

$$
\pi(n)-\pi(n-k) \leqq \frac{k}{3} \quad \text { for } k \geqq 60
$$

Thus from (6), we have $(n / k)^{k} \leqq n^{k / 3}$. Hence the assumption is false if $60 \leqq k<n^{2 / 3}$.
2. $n^{2 / 3} \leqq k \leqq n / 16$. Let $\widetilde{n}=[n / 2]$, and $\tilde{k}=[k / 2]$; where $[x]$ denotes the integral part of x. If $p>k$ and p divides $\binom{\tilde{n}}{\tilde{k}}$, then p divides $\binom{n}{k}$ and $p \leqq n / 2$. By assumption, there are no such primes. Therefore, $\binom{\widetilde{n}}{\widetilde{k}}$ has no prime divisors $p>2 \widetilde{k}+1$. Thus $\binom{\widetilde{n}}{\widetilde{k}}<\tilde{n}^{\pi(\sqrt{n}} \cdot e^{\theta(2 \tilde{k}+1)}$ (see paper of M. Faulkner [1]). From (3), (4), and (8), we have

$$
\frac{2^{\tilde{k}-1}}{\sqrt{\widetilde{k}}}<\tilde{n}^{(1.26 \sqrt{\tilde{n}} / \log \sqrt{\sqrt{n}})} \cdot e^{1.02(2 \tilde{k}+1)}
$$

Taking logarithms, we obtain

$$
3.45 \tilde{k}-0.70-\frac{1}{2} \log (\widetilde{k})<2.52 \sqrt{\widetilde{n}}+1.02(2 \tilde{k}+1)
$$

which is a contradiction for $\tilde{k}>32$. Therefore the assumption is false if $n^{2 / 3} \leqq k \leqq n / 16$ when $k \geqq 65$.
3. $n / 16<k \leqq n / 2$. Consider $n / 16<k \leqq n / 8$. By (6), (7) and (8), we have

$$
\frac{2^{4 k-1}}{\sqrt{k}}<e^{(n / \log n+k+k / 2 \log n)}
$$

Taking logarithms, we obtain

$$
2.76 k-0.70-\frac{1}{2} \log (k)<\frac{n}{\log n}+k+\frac{k}{2 \log n}
$$

which is false for $k \geqq 1901$. By (5), (6), and (8), we have

$$
\left.\frac{2^{4 k-1}}{\sqrt{k}}<e^{(k+2.06 \sqrt{15 k}}\right)
$$

Taking logarithms, we obtain

$$
2.76 k-0.70-\frac{1}{2} \log (k)<k+2.6 \sqrt{15 k} ;
$$

which is false for $k \geqq 25$. Thus the assumption is false if $n / 16<k \leqq n / 8$ when $k \geqq 25$. By similar arguments, we show the assumption is false is $n / 8<k \leqq n / 4$ when $k \geqq 32$; and if $n / 4<k \leqq n / 2$ when $k>105$.

We have proved the theorem for $k \geqq 4$ with the exception of a finite number of cases. The cases $k=1,2$, and 3 , are easily resolved; and the remaining cases have been checked with the aid of an IBM 1620 computer in the following manner:

The values which were checked are $4 \leqq k \leqq 60$ with $2 k \leqq n \leqq k^{2}$, and $61 \leqq k \leqq 105$ with $2 k \leqq n \leqq 4 k$.

For the i-th prime, p_{i}, the exponent to which p_{i} occurred in the "numerator", $n(n-1) \cdots(n-k+1)$, and in the "denominator", k !,
of $\binom{n}{k}, \alpha_{i}$ and β_{i} respectively, were determined; and the values of p_{i}, n, and k, were reported if the difference, $\alpha_{i}-\beta_{i}$, was positive. Cross-checking was done manually. The first ten primes proved sufficient to verify the theorem in these cases.

This concludes the proof of the theorem.
In closing, I would like to thank Professor M. Faulkner for her gracious assistance.

References

1. M. Faulkner, On a theorem of Sylvester and Schur, J. London Math. Soc., 41 (1966), 107-110.
2. J. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

Received July 8, 1968.
Western Washington State College

