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ON BOUNDARY BEHAVIOR OF THE BERGMAN KERNEL
FUNCTION AND RELATED DOMAIN FUNCTIONALS

BRUCE L. CHALMERS

Bergman and Hδrmander have studied the boundary be-
havior of the Bergman kernel function for domains in Cn,
2 ^ n < oo, with strictly pseudo-convex boundaries. It is the
purpose of this paper to extend these results to a larger and
more general class of domains with so called strictly (p, q)-
pseudo-convex boundaries.

Let B be a bounded domain in the space Cn of n complex variables,
say zk = xk + iyk9 k = 1, 2, , n, where 2 <: n < oo. (The euclidean
norm of a point z = {zι,z2, , zn) will be denoted by

and we let z = (z19 z29 , zn) and 0 = (0, 0, , 0).) The space H(B)
of all square-integrable holomorphic functions on B forms a Hubert
space with the Bergman (reproducing) kernel function KB(z, t) with

respect to the inner product (f,g) = \ fgdω, where f,geH(B) and

da) is the euclidean volume element of B. If {φn(z)}n=i is any complete
orthonormal system for H(B), then

which converges uniformly in the interior of B x B. Then, if z* = z*(z)
is a biholomorphic map from B to B* aCn,

KB(z, t) = KB4ί(z*(z), ί*(ί))
d(z) d(t)

and we say KB(z, t) is a relative (pseudoconformal) invariant. Further-
more

( 3 ) KB(z, z) = s u p {\f(z) | 2 : fe H(B), \\f\\ £ 1}

is a decreasing domain functional; i.e.,

( 4 ) B c A implies KA(z, z) ^ KB(z,"z) .

In [1] and [10] respectively Bergman and Hδrmander have in-
vestigated the behavior of K(B; z) = KB(z, z) near a point Q e dB, the
boundary of B, where B is strictly pseudoconvex at Q. In each case
sufficient conditions were attained for K(B; z) to become infinite of
order n + 1 at QedB (i.e., | z — Q \n+1K(B; z) remains between two
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positive finite bounds as z nears Q) in a certain "nontangential' ' ap-
proach A. Both procedures use as "basic" domains the complex n-
dimensional hypersphere [\z\ < 1] whose kernel function is known and
becomes infinite of order n + 1 at the boundary.

We here introduce an extension of the notion of strictly pseudo-
convex as follows:

DEFINITION. Let B be a domain in Cn. Suppose that there exists
an analytic change of coordinates, one-to-one in a neighborhood η of
Q edB, so that, with respect to the new (normal) coordinates, Q = 0
and, in a neighborhood of 0, B = [2x, > r?(ff_1} + r2j* + oir2^^ + r2

q^)],
where p > 0, 2 ^ q ^ n, and r\υ = Σ l U I zk \\ Then B is said to be
strictly {p, g)-pseudo-convex at Q. If also B 0 7 , then i? is said to
be globally representable (with respect to normal coordinates) at Q.

Note that if B is strictly pseudo-convex at Q then B is strictly
(1, n)-pseudo-convex at Q.

As examples of domains in C2 which are strictly (p, 2)-pseudo-convex
at the points of the circle [zλ = 0, | z21 = 1] consider the Reinhardt
circular domains given by [| z21

2 < R(\ zt \2lP)], where \z1\ < Ro, R is de-
creasing and R'(0) Φ 0.

In §2 and §3 we prove the following extensions of theorems by
Hormander and Bergman respectively:

THEOREM A. In Cn let B be a bounded strictly (p, q)-pseudo-
convex domain at Q. Suppose further that B is a domain of holomor-
phy. Then K(B; z) becomes infinite of order p(n — q + 1) + q in a
"nontangential" (see §1) approach to Q.

THEOREM B. In C% let B be a bounded strictly (p, q)-pseudo-
convex globally representable domain at Q. Suppose further that
passing through Q is a "normal" (see §3) analytic hypersurface lying
entirely outside B. Then K(B; z) becomes infinite of order p(n — q + 1) + q
in a "nontangential" approach to Q.

Since p is an arbitrary positive number, these theorems provide
sufficient conditions for the kernel function to become infinite of any
order r > 2. Setting p = 1 and q = n in Theorem A yields Hόrmander's
result, while taking p = 1 and q = n = 2 in Theorem B gives Bergman's
result.

The proofs of Theorems A and B will use as ' 'basic" domains
the nonhomogeneous (if p Φ 1) domains Rp(n, s) = [r?{?_D + τ\n < 1]
which we introduce in §1. There we will determine the kernel function of
these domains and show that it becomes infinite of order p(n — q + 1) + g,
q = % — s + 2, at the points on the boundary given by r1(s_1} = 0.
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Under the hypotheses of Theorem B, we will determine in §4 the
boundary behavior of other domain functionals related to the kernel
function K, such as the Bergman metric given by ds2 — T^dz^dZμ, where
Tvμ = d2log K/dzudzμ, and the scalar (pseudoconformal) invariant 1 =

1* Determination of the Bergman kernel function and its
boundary behavior for the domains Rp(n, s).

Notation. If f(x) e Ck, then denote the A -th partial derivative
of f(x) with respect to x by [f(x)]ix,k)-

THEOREM 1.1. For the kernel function of R — Rp{n, s) we have

( 1 } K{R. z) = [ [ * » ' ( ! - . ζ ^ ^ 1 * ^ ,

where t = r\lv(s —1)(1 — τL)~\ s' = s — 1, p' — p — 1, α^d w' = % + p's ' .

Proof. The monomials 2m = ^m i2: 2

m 2 zn

mn

y m = (mx, m2, , mΛ) ^ 0

form a complete set of orthogonal functions in H(R). Thus by (0.1)

K{z) = K(R; z) = Σm^o cm I zm |2, where c"1 = f | zm |2 do). I t is clear t h a t
JR

R admits the group Gx of unitary transformations of the first s — 1
variables zu •• ,^s_1 and the group G2 of unitary transformations of
the last n — s + 1 variables ^s, , ̂ %. The Jacobian of a unitary trans-
formation has modulus one and so K(z) = ίΓ(r1(s_υ, 0, , 0, rsn, 0,
•• ,0) = Σ ; = o Σ ; = o S o . . . o V . . . o φ i , * and our problem has been
reduced to only a double sum. After a straightforward calculation
we find

_ 7tnm1\ m s !

(s + m1 —1)1 [pis + rrii —1) + 1] [p(s + mx —l) + m s + ^ —

Now

-— * * * m * ~—- (rln)ms = , where

Thus,

2 ) ΛΓ(«) = _ ^ 2 Σ o ( w + 1) (m +

• [p(m + s') + n - s'\{tp)m .
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Now if Q is a boundary point of Rp(n, s) with r1(s_υ = 0, then by
a unitary transformation in G2 followed by a translation, we can effect
an analytic change of coordinates with respect to which Q = 0 and
the domain can be written as

( 3 ) R'p(n, s) = [2a?, > n V υ + rj'ί] , q = n - s + 2 ,

with kernel function (obtained from formulas (2) and (0.2)):

(4) K(R'p(n,s);z) = ΣαJ ^ ,

where the αm are given in (2).

Notation. We shall write lim^0, or sometimes simply linr4, to
indicate a limit is being taken as z —> 0 in the set

( 5 ) Γo < 0 < ^i-1 if p < 2, and Γo < β < -*L] if p ^ 2 ,
L I«IJ L \z\Λ

and say «—> 0 via an A-approach. (If for a strictly (ί), g)-pseudo-
convex domain the ^-coordinates are normal, such an approach to 0 is
nontangential in the usual sense.)

Thus from (4) we have

THEOREM 1.2. K(Rr

p(n, s); z) becomes infinite of order p(n — q + l) + q
at 0 in a "nontangential" A-approach; in fact

, a s \imA(2xiy
sf+"K(Rf

p(nf s); z) = π~ns'\ [psf + 1] [ps' + q'] = L .

2* Poof of Theorem A. The following lemma is due to Hδrmander
(see [10], p. 146):

LEMMA 2.1. (Hormander) Let B be a bounded domain of holo-
morphy. Let Q edB and assume that for some neighborhood U of Q
there is an analytic function uQ in Br = B Γ) U such that | uQ | ^ 1
in B', I uo(z) I —> 1 when z—>Q, and | uo(z) \ has an upper bound < 1 in
Br 0~U0 for some neighborhood UQ of Q with compact closure contained
in U. Then K(B; z)/K(Br) s) -> 1, s -> Q.

LEMMA 2.2. Rp(n, s) is a domain of holomorphy.

Proof. It follows easily from (1.1) that K(Rp(n, s); z) becomes
infinite at every boundary point of Rp(n, s). But it is well known
that a domain whose kernel function becomes infinite at every boundary
point is a domain of holomorphy (see e.g., [7], p. 357).
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LEMMA 2.3. If B is strictly (p, q)-pseudo-convex at Q, then, with
respect to local normal coordinates

( 1 ) ΉmA (2xiy
f+qK(B; z) g L .

Proof. B can be written locally in a neighborhood of Q = 0 as

B = [2x, > n2

(g_υ + rl'i + ofoVυ + K'i)] For ε > 0 let

R£ = [2x, > r?(ff_υ + r2': + ε(r^_1 } + r ^ ) ] .

Then Rl = Rεn[\z\<δ] is included in B if δ is sufficiently small.
Since Rε is obtained from R'p(n, s) by the change of coordinates
zk*-(l + ε)- 1 ^, A; = 1, , q - 1, zx <— (1 + e ) - ^ , Z = q, , n, Rε is
also a domain of holomorphy. Thus

E n ? (2x1)
P8f+qK(B; z) ^ ϊ ϊ m 1 (2x1)

PΛ'+qK(Rδ

ε; z)

ϊϊ ?£; z) =

by (0.4), Lemma 2.1 (taking wo(s) = e~z^ and [7 = [|^| < δ]), and (0.2)
together with Theorem 1.2, respectively.

Conclusion of proof of Theorem A. Let 0 < ε < 1. Then, an-
alogously as in the proof of Lemma 2.3., Bδ = I? Π [| z \ < δ] αR_ε if
δ is sufficiently small. Now since J5 is a domain of holomorphy we
can apply Lemma 2.1 with uQ(z) — e~Zl and U — [\z\ < δ] to obtain

lim (2xiy"+qK(B; z) = lim (2α;1)^ s r +^(S5; z) ^ lim (2^) p s '

using also (0.4) and (0.2) together with Theorem 1.2. Combining this
result with that of Lemma 2.3, we conclude that under the hypotheses
of Theorem A,

( 2 ) \\mA (2xiy^~"+1)+"K(B; z) = L .

3* Proof of Theorem B*

DEFINITION 3.1. Suppose that B is a strictly (py g)-pseudo-convex
globally representable domain at Q. Suppose h is an analytic hyper-
surface through Q which can be represented as h = [zλ = 0] with re-
spect to normal coordinates for B and h Π B = Q. Then we say that
through Q passes the "normal" analytic hypersurf ace h lying entirely
outside B.

LEMMA 3.2. Let B be α bounded domain whose closure intersects
the hyperplane [zι = 0] only at the origin. Then an arbitrary neigh-



248 BRUCE L. CHALMERS

borhood of the origin includes the section δ ί l [ ^ = 7] if 7 is sufficient-
ly small.

Proof. Let P = sup2e B r2n. Since the set of points [zx = 0, b ^ r2n ^ P]
is closed, for each b > 0 there exists a number τ(6), 0 < τ(6) <̂  6, such
that [|Si| ^ r(6), b <^ r2n<^ P] contains no point of B. Now if U is
any neighborhood of the origin, there is a v > 0 such that [|^| < v,
r2n <v]aU. Then if z e B and b ^ v, we have that | zt | < r(6) im-
plies r2n <b, and so the section £ n K = 7 ] c i 7 for 171 < τ(b).

LEMMA 3.3. Let B be a domain satisfying the hypotheses of
Theorem B. Then there exists a transformation

such that for a and β positive and sufficiently large, the domain
Elβ

e = W(R-ε) includes B in its interior, where 0 < ε < 1.

Proof.

B = [2x, > rj(ff-1) + rft + 0(7%^ + rj'*)] and

R_ε = [2x, > (l-ε)(r^_1 ) + rfί)]. Thus 3 a neighborhood 77 of 0 such
that 5 n V ^ Λ-ε Π )?. Hence for | 7 | < δ, Bn [zx = 7] c i?_ε Π [̂ 1 = 7]
if δ is sufficiently small, by Lemma 3.2.

Now let R°ίε = Wa(R-ε), where Wa: z, <- zj(l - azj, zk «-zkJk =
2, , n. Then consider Rlε Π [r2n = 0] = ~ ca, where ca is the circle

Γ|*1 + I < I Ί .
L1 2a - (1 - ε) ~ 2a - (1 - ε) J

We can assume a is so large that caf] B f] [r2n = 0] = 0. Then the
closed set M = B Π [r2n = 0] n [| zι \ ̂  δ] lies entirely in the interior
of the section R°Lε Π [r2n = 0]. Now the sections Rlε Π [zx = 7], 76 Λf,
include hyperspheres with center (7,0, « ,0) and the radii of these
hyperspheres have a positive lower bound r. If one applies to Rlε

the transformation Wβ: zL <— z19 zk +- zk(l + βzj, k = 2, , ^, to obtain
the domain . β ^ = Wβ(R°Lε), then the section Rlε f] [zλ = 7] goes into a
domain including a hypersphere with center (7,0, « ,0) and radius
^ r 11 + βy [. β can be chosen so large that r 11 + /37 | > P for | 7 | ^ δ,
where P = sup, 6 5 r2w. Thus B n [«i = 7] c JBfLξ Π [z± = 7] if | 7 | ^ δ.

On the other hand consider 7 e R°Lε Π [̂ 2% = 0] = ~ ca. Thus if
/9 > 2a - (1 - ε), then | 7 + 1//3 | > 1//3 and so 11 + /S7 | > 1. Hence
β-̂ ε Π [̂ 1 = 7] 3 # " ε Π [^ = 7]. But for I 7 I < δ we know R°Lε Π fo =
7] =) S Π [«i = 7]. Thus JBfLί n[2i = 7 ] D ί n K = 7] for all 7.
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Conclusion of proof of Theorem B. Since RaJε ZD B, we have
limA (2xιy

sf+"K(B; z) ^ limA (2xiy
sf+qK(R°Lβ

ε; z) = ( l - ε ) ^ - 2 ! , . This re-
sult together with Lemma 2.3 shows that (2.2) also holds for B under
the hypotheses of Theorem B.

4* Boundary behavior of other functionals on the domains
of Theorem B*

THEOREM 4.1. Under the hypotheses of Theorem B and using
normal coordinates, we have further, denoting lim^ (2xyF(B; z) by
(λ, F) and letting m — p(q — 1) and a = m + s,

( 1 ) (a + 1, KZ1) = - La; (a + 1/2, K,k) = 0, 2 ^ k £ q - 1;

(a + p/2, KZk) = 0,q^k£n,

( 2 ) (2, ds2) = a I dz, Y if 0 < p < 2;

(2, ds2) = a\dz,\2 + cf^\dzk\
2 if p = 2 ,

A; = s

n

(p, ds2) = c Σ | ^ | 2 if V > 2, where
c = q(p + m+ !)--• (p +a- l)/[(m + 1) . (α -1)] ,

(3) (oyl)

= π~n(q - 1)! cr^Km + 1) a]q[q(p + m+ 1) - (p + a - lf-q.

Proof (Sketch). One can show analogously as in Lemma 3.3 that
B includes in its interior the domain Rfβr = W(Rε) where

zk

for sufficiently large α' and β'. Then if F(B; z) is any decreasing
functional of the domain B, e.g., K(B; z), we have

F(Rfβf; z) ^ F(B; z) ^ F(RaJε; z) .

It is well known that the quantities ds2 and I are rational functions
of decreasing domain functionals F{ which can be determined from
the kernel function and its derivatives. But from our results in §1,
and using (0.2), we can calculate the kernel function and its derivatives
for the domains R"'βf and R°Lβ

t. Thus we can calculate the decreasing
domain functionals Fζ and show that there exist λ$ such that
lim ε^ (λ,, FiiRr*'; z)) = lim_0 (λίf Ft(Rlβ

β; z)) = li9 whence (λif Ft(B; z)) - I,.
From these results (2) and (3) follow immediately. Although the de-
rivatives KZk are not themselves rational functions of monotone domain
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functionals, they can be approximated above and below by such
functions and the same method yields (1).

The author wishes to express his thanks to Professor S. Bergman
for his guidance and to Professor C. Loewner and M. Skwarczynski
for their pertinent criticism in the preparation of this paper.
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