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MATRICES WITH PRESCRIBED CHARACTERISTIC
POLYNOMIAL AND A PRESCRIBED SUBMATRIX-II

GrAcIANO N. DE OLIVEIRA

Let A =[a;;] be an nxn complex matrix and f(1) be a
polynomial with complex coefficients of degree n + k and
leading coefficient (—1)**%*, In the present paper we solve the
following problem: under what conditions does there exist
an (n+ k) x (n + k) complex matrix B of which A is the
submatrix standing in the top left-hand corner and such that
fQ2) is its characteristic polynomial ?

In [3] we solved this problem for 4 =1, It can be seen that
from our Theorem 2 in [3] the solution of the general case (k > 1)
comes out very easily when A is real symmetric (hermitian) and B
is required to be of the same kind. This last problem had actually
already been solved by Ky Fan and G. Pall (see [1]). Now we will
prove the following

THEOREM. Let A be an n X n complex matrix whose distinct
characteristic roots are w; (¢t =1, ---,t). Let us suppose that in
the Jordan mormal form of A, w; appears in r, distinct diagonal
blocks of orders v, ---, v respectively. Let us assume that
v < eee S0P, Let 0, = 300, with 0, = 04f v, — k<1, There
exists an (n + k) X (n + k) complex matrix B having A in the top
left-hand corner and with f(\) as characteristic polynomial 1f and

only if f(\) is divisible by [l .(w; — N)7i.

First we prove that the condition is necessary. Let T be a
nonsingular matrix that transforms A into its Jordan normal form J:
TAT! = J, with J = diag (J,, --+, J,). The block J, will be of the

form
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and we will suppose that J; is of type s; X s;. Let
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where X, Y,, S, are blocks of type » X k, k X n, k x k respectively.
Let us assume that f(\) = det (B — \FE,.;) where E,,, denotes the
identity matrix of order n + k. If

T_I:T O:I
T = 0 Ek ’

B—TBT“l—[J X:I
1= 4y = Yy S

we will have

with X=TX,, Y=Y, T'and S=8,. As i # j implies w; = w; all
we need to prove is that det (B, — AE,.,) is divisible by (w, — \)%
(1=1,---,t). We will do it for (w, — \)"* as the proof is the same
for the other cases. We can assume that w, appears in the first
diagonal blocks of J and that s, <s, < --+- <s,. Let us expand
det (B, — ME,,;) by Laplace rule in terms of its first >,“,s; rows.
The necessity of the condition of the theorem will be proved if we
show that all the nonzero minors contained in the first > * s, rows
have determinants which are divisible by (w, — A\)?. These minors are
diag (J, — AE®, ««« J, — ANE™)(E® denotes the identity matrix of the
same order as J;) and all the minors obtained from this one by replacing
no more than k of its columns by the same number of columns taken
from the matrix which remains after suppressing the last >\,..s;
rows of X. As J;, (¢=1,.--,u) are diagonal matrices with w, in
the principal diagonal our assertion follows.

Let us now prove that the condition is sufficient. For this we
need an auxiliary proposition.

LEMMA. Let A be an n X n complex matriec whose distinct
characteristic roots are w,, «--, w,. Let us assume that in the Jordan
normal form of A, w, (i =1, ---,t) appears in r; diagonal blocks of
orders v <) < .- <. Then it 1is possible to construct a
matriz A, of type (n + 1) X (n + 1) containing A in its top left-hand
corner and such that: (a) The characteristic polynomial of A, s

t(w; — N)ip(N), where o; = 3w and o(N) is any polynomial
in N of degree p =mn + 1 — >\ 0;, leading coefficient (—1)* and such
that p(w,) =0 (1 =1, -+, %). (B) In the Jordan normal form of A,
the characteristic root w; appears in exactly r, — 1 diagonal blocks
of orders

’Uiﬂy"‘ylv(r?—l (i=1,°°',t).

Proof. We can suppose, without loss of generality, that A is
in its Jordan normal form.
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The matrix A4,, if it exists, will have the form

J, 0---0 Xl"!

with X, =[#f---2.]" and Y; = [yi---9i]. The a}and y; must satisfy

h+1

;l(_l)si_hyéx;-ksrx—h = by, (h =10,+--,5 —1)

where the b;, are calculated by a process we give in [3]. Moreover,
we recall that for each 4+ we can give to the 2% (j=1,---,s)
arbitrary nonzero values. Let us suppose that we have fixed all the
matrices X, -+, X, with 250 ¢0=1,.--,m; j=1,:-+,8). We
can assume that w; appears in the diagonal blocks J,. .., -+, J, i,
J, (@=1,c,t; uy=0, u, =m) of orders s, . = -+ =5,,=5s,,
respectively. Let us now choose ¥V, ., =0,-++, Y, ,=0@=1,---,%).
Let

. 0 X,
0 J,---0 X,

Ay = | e
0 0 ---J, X,

We have
det (A, — \E,) = [T(w; — V)% det (4, — \E,)

where o0; = 337} ..s; and E; is the identity matrix of the same
order as A; (j = 1,2). The matrix diag (J,, J,,, -+, J,,) is obviously
a nonderogatory matrix and so according to the corollary to Theorem
1 in [3] we can choose Y, , -+, Y,, and ¢ such that

det (4, — \E) = p(\) .

With this choice A, has the required characteristic polynomial.
Let us find the diagonal blocks of the Jordan normal form of A4,
corresponding to w; (4 =1,.--,%). This amounts to finding all the
elementary divisors of A of the form (A — w,) (1 =1, .--,%). Let
us consider, for example, the case 7 = 1 as the other cases can be
treated in the same fashion. A, can be written in the form
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A, A,
4= [ 0 A

where A, = diag (J,,---, J,—.) and the matrix A,, has not the charac-
teristic root w,. Therefore (see [2], p. 85) the elementary divisors
of A, of the form (A — w,)" are exactly

(’\ - wl)sly (\ - /wl)szy ) (’\ - ,wl)su*l

and the proof of the lemma is concluded.
Let us now complete the proof of the theorem.
Let

ro—h

0“12_‘2/0;) (h:l,-",k—-l;eih:Oif7’i—h<1).
2=l

Let
£ = T = Vip,00 G =1, k= 1),

where the ¢;(\) are polynomials in N chosen arbitrarily but with the
following properties :

(@) The leading coefficient and the degree of o;(\) (j =1,---,k—1)
are such that f;(\) has degree n + j and leading coefficient (—1)"*

(B) For j=1,---,k—1 the roots of o¢,;(\) are distinct,
piw) =0 (t=1,---,7% and if p;(5) = 0 then ¢;.,(5) = 0.

Obviously there are infinitely many possibilities of choice for the
PN (=1, -,k —1).

Because of the lemma we can border A with a row (below) and
a column (on the right hand side) to obtain a matrix A, with
characteristic polynomial f,(\) and such that in its Jordan normal
form w; (1 =1,--.,t) appears in exactly 7, — 1 diagonal blocks
whose orders are v{”, ---,v,”,. Now we can border A, with another
row (below) and a column (on the right hand side) in such a way
that we obtain a matrix A, with f,(\) as characteristic polynomial
and such that in the Jordan normal form of A, the characteristic
root w;, (¢ =1, ---,¢) appears in exactly 7, — 2 diagonal blocks of
orders v,”, .-+, v, ,. We can continue in this fashion up to the
matrix A4, ,. Using now Theorem 1 of [3] with A,_,, the proof is
complete.

In an (n + k) X (n + k) matrix any principal minor of type
n X n can be brought to the top left-hand corner by a permutation of
rows and the same permutation of columns. This remark combined with
the Theorem above solves the following problem: under what conditions
does there exist an (n + k) X (n + k) complex matrix B of which 4
is the principal minor contained in the rows of orders <, «--, %,
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1=s4,<--- <14, <n+k) and such that f(\) is its characteristic
polynomial ?
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