MATRICES WITH PRESCRIBED CHARACTERISTIC POLYNOMIAL AND A PRESCRIBED SUBMATRIX

Graciano N. De Oliveira

Abstract

Let A be an arbitrary (complex) $n \times n$ matrix and let $f(\lambda)$ be a polynomial (with complex coefficients) of degree $n+1$ with leading coefficient $(-1)^{n+1}$. In this paper we solve the problem: under what conditions does there exist an $(n+1) \times(n+1)$ (complex) matrix B of which A is the submatrix standing in the top left-hand corner and such that $f(\lambda)$ is its characteristic polynomial?

In [1] Farahat and Ledermann proved that if A is a nonderogatory matrix over a field Φ and $f(\lambda)$ is a monic polynomial over Φ, then there exists an $(n+1) \times(n+1)$ matrix B over Φ with A standing in its top left-hand corner and such that $f(\lambda)=\operatorname{det}\left(\lambda E_{n+1}-B\right)$. Now, our main results are:

Theorem 1. Let A be an $n \times n$ complex matrix whose distinct characteristic roots are $w_{\alpha}(\alpha=1, \cdots, t)$. Let us suppose that in the Jordan normal form of A, w_{α} appears in r_{α} distinct diagonal blocks of orders $v_{1}^{(\alpha)}, \cdots, v_{r_{\alpha}}^{(\alpha)}$ respectively. We assume that

$$
v_{1}^{(\alpha)} \leqq \cdots \leqq v_{r_{\alpha}}^{(\alpha)} .
$$

Let $\theta_{\alpha}=\sum_{j=1}^{r_{\alpha}^{-1}} v_{j}^{(\alpha)}$. There exists an $(n+1) \times(n+1)$ complex matrix B having A in the top left-hand corner and with $f(\lambda)$ as characteristic polynomial (i.e., $f(\lambda)=\operatorname{det}\left(B-\lambda E_{n+1}\right)$) if and only if $f(\lambda)$ is divisible by $\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{\theta_{\alpha}}$.

Theorem 2. Let A be a real $n \times n$ symmetric matrix whose distinct characteristic roots are $w_{\alpha}(\alpha=1, \cdots, t)$. Let r_{α} be the multiplicity of w_{α}. There exists a real $(n+1) \times(n+1)$ symmetric matrix B having A in the top left-hand corner and with $f(\lambda)$ (now with real coefficients) as characteristic polynomial if and only if
(a)

$$
f(\lambda) \text { is divisible by } \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{r_{\alpha}-1}
$$

and

$$
\begin{equation*}
\left[\frac{f(\lambda)}{\left(w_{\beta}-\lambda\right)^{r_{\beta}-1}}\right]_{\lambda=\lambda_{\beta}} \cdot \quad \prod_{\substack{\alpha=1 \\ \alpha \neq \beta}}^{t}\left(w_{\alpha}-w_{\beta}\right)^{r_{\alpha}}(\beta=1, \cdots, t) \tag{b}
\end{equation*}
$$

is real and nonpositive.

Remark. There is no difficulty in seeing that the conditions (a)
and (b) imposed on $f(\lambda)$ are equivalent to the following: $f(\lambda)$ has only real roots wich are interlaced by the n characteristic roots of A.
2. We start with the following

Lemma. Let A be any $n \times n$ complex matrix with normal Jordan form J. In order that the matrix B referred in Theorem 1 exists, it is necessary and sufficient that there should exist a column X_{1} (with n elements), a row Y_{1} (with n elements) and a number q_{1} such that

$$
\left[\begin{array}{cc}
J & X_{1} \\
Y_{1} & q_{1}
\end{array}\right]
$$

has $f(\lambda)$ as characteristic polynomial.
Proof. Let T be an $n \times n$ nonsingular matrix such that $T A T^{-1}=$ J. Suppose B exists and is given by

$$
B=\left[\begin{array}{rr}
A & X \\
Y & q
\end{array}\right]
$$

Let

$$
S=\left[\begin{array}{ll}
T & 0 \\
0 & 1
\end{array}\right]
$$

We have

$$
S B S^{-1}=\left[\begin{array}{lr}
J & T X \\
Y T^{-1} & q
\end{array}\right]
$$

and so we can take $Y_{1}=Y T^{-1}, X_{1}=T X$ and $q_{1}=q$.
The converse is easily proved in a similar way.
Our next step is to deduce the characteristic polynomial of the matrix:

$$
C_{i}=\left[\begin{array}{ccccc}
J_{i} & 0 & \cdots & 0 & X_{i} \tag{2.1}\\
0 & J_{i+1} & \cdots & 0 & X_{i+1} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
0 & 0 & \cdots & J_{m} & X_{m} \\
Y_{i} & Y_{i+1} & \cdots & Y_{m} & q
\end{array}\right]
$$

where, with obvious notation,

$$
\begin{gather*}
\left.J_{j}=\left[\begin{array}{cccc}
\lambda_{j} & 1 & & \\
& \cdot & \\
& \cdot & \cdot & \\
& \cdot & \cdot & 0 \\
0 & & \cdot & \cdot \\
0 & & & \cdot \\
\hline
\end{array}\right] \quad \text { (of type } s_{j} \times s_{j}\right), \tag{2.2}\\
X_{j}=\left[\begin{array}{c}
x_{1}^{j} \\
\vdots \\
\vdots \\
x_{s_{j}}^{j}
\end{array}\right], \quad Y_{j}=\left[y_{1}^{j}, \cdots, y_{s_{j}}^{j}\right]
\end{gather*} \quad(j=i, \cdots, m)
$$

and q is a complex number.
We expand $\operatorname{det}\left(C_{i}-\lambda E_{i}\right)$ (where E_{i} is the identity matrix of the same order as C_{i}) by Laplace Theorem in terms of its first s_{i} rows. In order to do this let us find all the nonzero minors contained in these rows. They are: $J_{i} \lambda E^{(i)}\left(E^{(i)}\right.$ denotes the identity matrix of the same order as J_{i}) and the s_{i} minors formed with $s_{i}-1$ columns of $J_{i}-\lambda E^{(i)}$ and the column X_{i}. These s_{i} minors are given by

$$
\begin{aligned}
& \left(\rho=1, \cdots, s_{i}\right) \text {. }
\end{aligned}
$$

We have

$$
H_{\rho}=(-1)^{s_{i}-\rho}\left(\lambda_{i}-\lambda\right)^{\rho-1} P_{\rho}
$$

with

$$
P_{\rho}=\left|\begin{array}{ccccc}
x_{\rho}^{i} & 1 & 0 & \cdots & 0 \\
x_{\rho+1}^{i} & \lambda_{i}-\lambda & 1 & \cdots & 0 \\
x_{\rho+2}^{i} & 0 & \lambda_{i}-\lambda & \cdots & 0 \\
\cdot & \cdot & \cdots & \cdots & \cdots
\end{array}\right|
$$

Expanding P_{ρ} in terms of the first row we get

$$
P_{\rho}=x_{\rho}^{i}\left(\lambda_{i}-\lambda\right)^{s_{i}-\rho}-P_{\rho+1}
$$

and by induction it can be easily seen that

$$
P_{\rho}=\sum_{\tau=0}^{s_{i}-\rho}(-1)^{\tau} x_{\rho+\tau}^{i}\left(\lambda_{i}-\lambda\right)^{s_{\tau}-\rho-\tau}
$$

so we can write

$$
H_{\rho}=\sum_{\tau=0}^{s_{i}-\rho}(-1)^{\tau+s_{i}-\rho} x_{\rho+\tau}^{i}\left(\lambda_{i}-\lambda\right)^{s_{i}-\tau-1} .
$$

Let us now calculate the complementary minor \tilde{H}_{ρ} of H_{ρ} in C_{i} λE_{i}. There is no difficulty in seeing that

$$
\widetilde{H}_{\rho}=\left|\begin{array}{cccccc}
1 \text { column } \\
\overbrace{0} & J_{i+1}-\lambda E^{(i+1)} \\
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & J_{i+2}-\lambda E^{(i+2)} & \cdots & 0 & 0 \\
\cdot & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & \cdot & \cdot \\
y_{\rho}^{i} & Y_{i+1} & Y_{i+2} & \cdots & Y_{m-1} & Y_{m}
\end{array}\right|
$$

We have

$$
\widetilde{H}_{\rho}=(-1)^{o} y_{\rho}^{i} \prod_{j=i+1}^{m}\left(\lambda_{j}-\lambda\right)^{s_{j}}
$$

with

$$
\sigma=\sum_{k=i+1}^{m} s_{k}
$$

Bearing in mind that H_{ρ} was formed from the rows $1, \cdots, s_{i}$ and columns $1, \cdots, \rho-1, \rho+1, \cdots, s_{i}, \sum_{k=i}^{m} s_{k}+1$, we have

$$
\begin{aligned}
\operatorname{det}\left(C_{i}-\lambda E_{i}\right)= & \sum_{\rho=1}^{s_{i}} \sum_{\tau=0}^{s_{i}-\rho}(-1)^{\tau+1} y_{\rho}^{i} x_{\rho+\tau}^{i}\left(\lambda_{i}-\lambda\right)^{s_{i}-\tau-1} \prod_{j=i+1}^{m}\left(\lambda_{j}-\lambda\right)^{s j} \\
& +\operatorname{det}\left(J_{i}-\lambda E^{i\rangle}\right) \operatorname{det}\left[\operatorname{comp}\left(J_{i}-\lambda E^{(i)}\right)\right]
\end{aligned}
$$

where the symbol comp $\left(J_{i}-\lambda E^{(i)}\right)$ means the complementary minor of $J_{i}-\lambda E^{(i)}$ in the matrix $C_{i}-\lambda E_{i}$. Interchanging the order of the first two sums, noting that $\operatorname{det}\left(J_{i}-\lambda E^{i)}\right)=\left(\lambda_{i}-\lambda\right)^{s_{i}}$ and that comp $\left(J_{i}-\lambda E^{i i}\right)=\operatorname{det}\left(C_{i+1}-\lambda E_{i+1}\right)$ we get

$$
\begin{aligned}
\operatorname{det}\left(C_{i}-\lambda E_{i}\right)= & \sum_{\tau=0}^{s_{i}-1} \sum_{\rho=1}^{s_{i-\tau}}(-1)^{\tau+1} y_{\rho}^{i} x_{\rho+\tau}^{i}\left(\lambda_{i}-\lambda\right)^{s_{i-\tau-1}} \prod_{j=i+1}^{m}\left(\lambda_{j}-\lambda\right)^{s_{j}} \\
& +\left(\lambda_{i}-\lambda\right)^{s i} \operatorname{det}\left(C_{i+1}-\lambda E_{i+1}\right) .
\end{aligned}
$$

Putting here successively $i=1,2, \cdots, m$ and writing for the sake of simplicity

$$
\begin{equation*}
b_{k \mu}=\sum_{\rho=1}^{\mu+1}(-1)^{s_{k}-\mu} y_{\rho}^{k} x_{\rho+s_{k}-1-\mu}^{k} \quad\left(\mu=0, \cdots, s_{k}-1\right), \tag{2.3}
\end{equation*}
$$

we get after some manipulation

$$
\begin{align*}
\operatorname{det}\left(C_{1}-\lambda E_{1}\right)= & \sum_{k=1}^{m}\left\{\left[\sum_{k=0}^{s_{k}-1} b_{k \mu}\left(\lambda_{k}-\lambda\right)^{\mu}\right]\left[\prod_{\substack{j=1 \\
j \neq k}}^{m}\left(\lambda_{j}-\lambda\right)^{s_{j}}\right]\right\} \tag{2.4}\\
& +(q-\lambda) \prod_{j=1}^{m}\left(\lambda_{j}-\lambda\right)^{s_{j}}
\end{align*}
$$

We are now ready for the proof of Theorem 1. Because of the lemma it is sufficient to prove the theorem assuming that A is in the Jordan normal form $J=\operatorname{diag}\left(J_{1}, \cdots, J_{m}\right)$ with $J_{j}(j=1, \cdots, m)$ given by (2.2). So what we have to do is to find out under what conditions it is possible to find columns X_{1}, \cdots, X_{m}, rows Y_{1}, \cdots, Y_{m} and a number q such that the characteristic polynomial (2.4) of the matrix C_{1} be $f(\lambda)$.

As in the Jordan normal form the order in which the diagonal blocks occur is arbitrary, we can suppose without loss of generality that

$$
\begin{aligned}
& \lambda_{1}=\cdots=\lambda_{u_{1}} \quad\left(=w_{1}\right) \\
& \lambda_{u_{\alpha-1}+1}=\cdots=\lambda_{u_{\alpha}}\left(=w_{\alpha}\right) \\
& \lambda_{u_{t-1}+1}=\cdots=\lambda_{u_{t}} \quad\left(=w_{t}\right) \\
& \text { (} u_{\alpha}=\sum_{\beta=1}^{\alpha} r_{\beta} ; r_{\beta} \text { defined in Theorem 1) }
\end{aligned}
$$

with $w_{\alpha} \neq w_{\beta}$ if $\alpha \neq \beta$. With this notation, in J the characteristic root w_{α} appears in the diagonal blocks $J_{u_{\alpha-1}+1} \cdots, J_{u_{\alpha}}$ which are of orders $s_{u_{\alpha-1}+1} \cdots, s_{u_{\alpha}}$ respectively. We will assume that

$$
s_{u_{\alpha-1}+1} \leqq \cdots \leqq s_{u}
$$

for every α.
Let

$$
\theta_{\alpha}=\sum_{\mu=u_{\alpha-1}+1}^{u_{\alpha}-1} s_{\mu}
$$

From (2.4) we have

$$
\operatorname{det}\left(C_{1}-\lambda E_{1}\right)=\left(w_{\alpha}-\lambda\right)^{\theta_{\alpha}} \varphi_{\alpha}(\lambda)
$$

where $\varphi_{\alpha}(\lambda)$ is a polynomial in λ which is not necessarily divisible by $w_{\alpha}-\lambda$. As $\alpha \neq \beta$ implies $w_{\alpha} \neq w_{\beta}$ we will have

$$
\begin{equation*}
\operatorname{det}\left(C_{1}-\lambda E_{1}\right)=\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{\theta_{\alpha}} \psi(\lambda) \tag{2.5}
\end{equation*}
$$

where $\psi(\lambda)$ is a polynomial in λ not necessarily divisible by any factor of $h(\lambda)=\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{\theta}$. Therefore, if $f(\lambda)$ is not divisible by $h(\lambda)$ it is impossible to find $X_{i}, Y_{i}(i=1, \cdots, m)$ and q such that $f(\lambda)=$ $\operatorname{det}\left(C_{1}-\lambda E_{1}\right)$. Let us now suppose that $f(\lambda)=h(\lambda) f_{1}(\lambda)$. All we have to prove is that it is possible to find $X_{i}, Y_{i}(i=1, \cdots, m)$ and q such that $\psi(\lambda)=f_{1}(\lambda)$.

Setting

$$
\begin{equation*}
S_{k}(\lambda)=\sum_{\mu=0}^{s_{k-1}-1} b_{k \mu}\left(\lambda_{k}-\lambda\right)^{\mu} \tag{2.6}
\end{equation*}
$$

and

$$
\xi_{\alpha}=\sum_{\mu=u_{\alpha-1}+1}^{u_{\alpha}} s_{\mu},
$$

(2.4) gives

$$
\begin{align*}
\operatorname{det}\left(C_{1}-\lambda E_{1}\right)= & \sum_{\beta=0}^{t-1} \sum_{k=u_{\beta+1}}^{u_{\beta+1}} S_{k}(\lambda) \frac{\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{\xi_{\alpha}}}{\left(w_{\beta+1}-\lambda\right)^{s_{k}}} \tag{2.7}\\
& +(q-\lambda) \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{\xi_{\alpha}} \quad\left(u_{0}=0\right)
\end{align*}
$$

Let us choose $b_{k \mu}=0$ for every $k \neq u_{\beta+1}(\beta=0, \cdots, t-1 ; \mu=0, \cdots$, $s_{k}-1$). With this choice (2.7) gives

$$
\begin{aligned}
\operatorname{det}\left(C_{1}-\lambda E_{1}\right)= & \prod_{\gamma=1}^{t}\left(w_{\gamma}-\lambda\right)^{\theta_{\gamma}}\left[\sum_{\beta=0}^{t-1} S_{u_{\beta+1}}(\lambda) \prod_{\substack{\alpha=1 \\
\alpha \neq \beta+1}}^{t}\left(w_{\alpha}-\lambda\right)^{s_{u_{\alpha}}}\right. \\
& \left.+(q-\lambda) \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{\xi_{\alpha}-\theta_{\alpha}}\right]
\end{aligned}
$$

and so by (2.5)

$$
\psi(\lambda)=\sum_{\beta=0}^{t-1} S_{u_{\beta+1}}(\lambda) \prod_{\substack{\alpha=1 \\ \alpha \neq \beta+1}}^{t}\left(w_{\alpha}-\lambda\right)^{s} u_{\alpha}+(q-\lambda) \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{s_{u_{\alpha}}} .
$$

By (2.6) $S_{u_{\beta+1}}(\lambda)$ is a polynomial in $\left(w_{\beta+1}-\lambda\right)$ of degree $s_{u_{\beta+1}}-1$. For the sake of simplicity we now change the notation (in an obvious way) writing

$$
\psi(\lambda)=\sum_{\beta=0}^{i-1} R_{\beta}(\lambda) \prod_{\substack{\alpha=1 \\ \alpha \neq \beta+1}}^{t}\left(w_{\alpha}-\lambda\right)^{t_{\alpha}}+(q-\lambda) \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{t_{\alpha}}
$$

Let

$$
R_{\beta}(\lambda)=\sum_{\mu=0}^{t_{\beta+1}-\tau} \delta_{\beta \mu}\left(w_{\beta+1}-\lambda\right)^{\mu} .
$$

We can write

$$
\begin{equation*}
\frac{\psi(\lambda)}{\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{t_{\alpha}}}=\sum_{\beta=0}^{t-1} \sum_{\mu=0}^{t_{\beta+1}^{-1}} \frac{\delta_{\beta \mu}}{\left(w_{\beta+1}-\lambda\right)^{t_{\beta+1}-\mu}}+q-\lambda . \tag{2.8}
\end{equation*}
$$

Let us resolve $f_{1}(\lambda) / \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{t_{\alpha}}$ into partial fractions. We will get

$$
\frac{f_{1}(\lambda)}{\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{t_{\alpha}}}=\sum_{\beta=0}^{t-1} \sum_{\mu=0}^{t_{\beta+1}^{-1}} \frac{A_{\beta \mu}}{\left(w_{\beta+1}-\lambda\right)^{t_{\beta+1}-\mu}}+Q-\lambda
$$

If now in (2.8) we take $\delta_{\beta \mu}=A_{\beta \mu}$ and $q=Q$ we will have $\psi(\lambda)=$ $f_{1}(\lambda)$ as required. So we have given a process to choose all the $b_{k \mu}$ appearing in (2.6). To conclude the proof we show that it is always possible to find valuse $x_{o}^{i}, y_{\sigma}^{i}$ satisfying (2.3), no matter what values we have given to the $b_{k \mu}$. In fact, let us give to the x_{σ}^{i} arbitrary nonzero values ($x_{\sigma}^{i}=1$, for example). Then, for each k, (2.3) becomes a system of linear equations in the y_{ρ}^{k} with a triangular matrix whose principal elements are different from zero. This means that the system is compatible. The proof of Theorem 1 is now complete.

Corollary. If A is a complex nonderogatory matrix, then the matrix B of Theorem 1 always exists.

Proof. If A is nonderogatory in its Jordan normal form there are no two diagonal blocks corresponding to the same characteristic root. So in Theorem 1 we have $r_{\alpha}=1$ and so $\theta_{\alpha}=0$. This means that B exists.

Proof of Theorem 2. If A is real and symmetric, the matrix T such that $T A T^{-1}=J$ can be chosen orthogonal and J will be a diagonal matrix. So using Theorem 1 we have $v_{1}^{(\alpha)}=\cdots=v_{r_{\alpha}}^{(\alpha)}=1$ and $\theta_{\alpha}=r_{\alpha}-1$. It follows that (a) is necessary and sufficient for the existence of a matrix B (not necessarily real and symmetric) of type $(n+1) \times(n+1)$ having A in the top left-hand corner and with $f(\lambda)$ as characteristic polynomial. Let us now find out the conditions for B to be real and symmetric. Choosing T orthogonal for B to fulfill this condition it is necessary and sufficient that there exist real $X_{j}, Y_{j}, q(j=1, \cdots, m)$ with $X_{j}=Y_{j}$. Let us write $x_{\rho}^{i}=$ y_{ρ}^{i}. We have now $\xi_{\alpha}=r_{\alpha}, \theta_{\alpha}=\xi_{\alpha}-1$ and $S_{k}(\lambda)=b_{k 0}$. Let

$$
\begin{equation*}
c_{\beta 0}=\sum_{k=u_{\beta}+1}^{u_{\beta+1}} b_{k 0} . \tag{2.9}
\end{equation*}
$$

The formula (2.7) gives
$\operatorname{det}\left(C_{1}-\lambda E_{1}\right)=\prod_{\gamma=1}^{t}\left(w_{r}-\lambda\right)^{r^{r}}{ }^{-1}\left[\sum_{\beta=0}^{t-1} c_{\beta 0} \prod_{\substack{\alpha=1 \\ \alpha \neq \beta+1}}^{t}\left(w_{\alpha}-\lambda\right)+(q-\lambda) \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)\right]$ and so

$$
\begin{equation*}
\psi(\lambda)=\sum_{\beta=0}^{t-1} c_{\beta 0} \prod_{\substack{\alpha=1 \\ \alpha \neq \beta+1}}^{t}\left(w_{\alpha}-\lambda\right)+(q-\lambda) \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right) . \tag{2.10}
\end{equation*}
$$

We are assuming that $f(\lambda)$ is divisible by

$$
h(\lambda)=\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)^{r_{\alpha}-1}
$$

Let $f(\lambda) / h(\lambda)=f_{1}(\lambda)$. Resolving $f_{1}(\lambda) / \prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)$ into partial fractions we get

$$
\frac{f_{1}(\lambda)}{\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)}=\sum_{\beta=0}^{t-1} \frac{B_{\beta}}{w_{\beta+1}-\lambda}+Q_{1}-\lambda
$$

with

$$
B_{\beta}=\frac{f_{1}\left(w_{\beta+1}\right)}{\prod_{\substack{\alpha=1 \\ \alpha \neq \beta+1}}^{t}\left(w_{\alpha}-w_{\beta+1}\right)}
$$

From (2.10) we have

$$
\frac{\psi(\lambda)}{\prod_{\alpha=1}^{t}\left(w_{\alpha}-\lambda\right)}=\sum_{\beta=0}^{t-1} \frac{c_{\beta 0}}{w_{\beta+1}-\lambda}+q-\lambda .
$$

So we must take

$$
c_{\beta 0}=\frac{f_{1}\left(w_{\beta+1}\right)}{\prod_{\substack{\alpha=1 \\ \alpha \neq \beta+1}}^{t}\left(w_{\alpha}-w_{\beta+1}\right)}, q=Q_{1} .
$$

The equations (2.3) now take the form

$$
b_{k 0}=-\left[x_{1}^{k}\right]^{2}
$$

or, by (2.9)

$$
\boldsymbol{c}_{\beta 0}=-\sum_{k=u_{\beta}+1}^{u_{\beta+1}}\left[x_{1}^{k}\right]^{2} .
$$

So B can be real and symmetric if and only if $c_{\beta 0} \leqq 0$ and Q_{1} is real. The condition $c_{\beta 0} \leqq 0$ is equivalent to (b). Bearing in mind that $\sum_{\alpha=1}^{t} w_{\alpha}$ is real we can see easily that Q_{1} is always real. With this the proof is complete.

In a similar way we could prove a theorem analogous to Theorem 2 but with 'real symmetric' substituted by 'hermitian'.

Note. After I had written this paper I noticed that Theorem 2 is not new. It is essentially equivalent to Theorem 1 in Fan and Pall, Imbedding Conditions for Hermitian and Normal Matrices, Canad. J. Math. 9 (1957), 298-304. However, the proof I have given here is a bit different from the proof of Fan and Pall. For further details see my forthcoming paper Matrices with prescribed characteristic polynomial and a prescribed submatrix-II (submitted to Pacific J. Math.).

I wish to thank the referee for his comments.

Reference

1. Farahat and Ledermann, Matrices with prescribed characteristic polynomial, Proc. Edinburgh Math. Soc. (2) 11 (1959), 143-146.

Received March 5, 1968.
Universidade de Coimbra
Coimbra, Portugal

