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DIVISORS OF POLYNOMIALS AND POWER SERIES
WITH POSITIVE COEFFICIENTS

T. S. MOTZKIN AND E. G. STRAUS

A polynomial P(xίf * *> %n) is positive if its coefficients are
^ 0 and not all 0, copositive if it is > 0 whenever the variables
are ^ 0 and not all 0. Evidently (if needed, after multiplication
by -1) every real divisor Q of a positive polynomial P with P(0) Φ 0
is copositive. Conversely, every real copositive polynomial Q
with copositive highest and copositive lowest homogeneous part
is a divisor of a positive polynomial P, and P/Q may be chosen (1)
as a product of positive 1-variable polynomials and positive homo-
geneous polynomials or, alternatively, (2) positive and so that
all terms of P from its lowest up to its highest degree are posi-
tive; or, if n = 1, (3) so that P has no more nonzero terms than
Q or, for n = 1 and quadratic Q, (4) as a power of a positive
linear function, or (5) so that (1) and (3) hold. For power series
in a multidisk analogous results hold, for n = 1 partly depending
on the finiteness of the number of complex zeros in the disk.

If P(x) is a positive polynomial, that is

P(x) = P(x19 , α?n) = Σ Σ < V . ^ ί f l •••«£•

with cμv..μ% ^ 0, co...o > 0, then P(x) Φ 0 for all x in the non-
negative orthant xμ ^ 0 μ = 1, , n. This property is obviously
inherited by all polynomial divisors of P. In this note we examine
to what extent, conversely, every polynomial without real nonnegative
zeros is the divisor of a positive polynomial and investigate the type
of multipliers that yield positive products as well as the type of positive
products obtainable.

In §2 we consider polynomials of one variable. In §3 we generalize
these results to functions of an arbitrary number of variables. In §4
we consider generalizations to power series.

2* Polynomials of one variable without nonnegative zeros*
We may clearly restrict attention to polynomials with real coefficients
since the l.c.m. of P(x) and P(x) has a nonnegative zero if and only
if P(x) does. Factoring the (monic) real polynomial P(x) over the reals
we may get some monic first degree polynomials, which by hypothesis
have positive coefficients, and some second degree factors

Q(x) = x2 - (2r cos Θ)x + r 2

corresponding to pairs of complex conjugate zeros τe±u\ 0 < θ < π.
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THEOREM 2.1. Let n be the integer such that (n — l)θ < π ^ nθ;
then a positive polynomial divisible by Q(x) — x2 — (2 cos θ)x + r2 must
be of degree d ^ n. If nθ = π then there exists a unique monic
polynomial P(x) = xn + rn divisible by Q(x). If nθ > π then for each
m, 0 < m < n, there exists a unique positive monic trinomial

(2.2) P m ( x ) = χ - -
sin mθ sin mθ

divisible by Q(x). The polynomials Pm(x) are the vertices of the simplex
of positive multiples of Q(x) in the space of all monic polynomials
of degree n.

If P(x) is a positive monic multiple of Q(x) and deg P = n then
P(x)/Q(x) is monic with all coefficients > 0.

Proof. Since the points l,reiθ, , rn~ιei{%~l)θ all lie in the angle
0 g arg z ^ (n — l)θ < π, any linear combination with nonnegative
coefficients lies in this angle it can therefore be zero only if all the
coefficients are zero. Hence if P(x) is monic positive and deg P < n
then P(reiθ) Φ 0 so that P is not a multiple of Q.

If nθ = π then the points 1, reί0, , r«-V(Λ~1)ί?, rneίn0 all lie in
the closed half-plane 0 <^ arg z ^ π and hence the only vanishing linear
combination with positive coefficients is a multiple of rnΛ + l.rnetnθ,
so that the only monic positive multiple of Q of degree n is P(x) = xn + r \
The ratio

P(x) __ 2 , s i n 2 # r ^ _ 3
Q(x) sin θ

• S i n άu 2 *n 4 I I oixi^/f
-f- — - T X ~Γ " " ~Γ .-

sin θ sin θ

has strictly positive coefficients.
If nθ > 7Γ then the point — rnein0 lies in the open angle 0 < arg z < mθ

for each m = 1, , w — 1. We therefore have a unique linear com-
bination with positive coefficients of 1 and rmeίmθ which yields — rneinθ,
namely

_ sin nθ n_m, m imθ, sin (n — m)θ _ _ n inθ

sin mθ sin m^

which shows that (2.2) yields the only positive monic trinomial involving
1, xm and xn which is divisible by Q. The ratio

Pm{%) _ ^n-2 , sin 2Θ ΛtΛiΛ_3 , . sin (n — l)θ «_2

Q(aj) sin 0 sin θ

_ sin ^0 w_m/ m__2 sin 20 m_3 sin (m — 1)0
sin m0 V sin 0 sin 0



DIVISORS OF POLYNOMIALS AND POWER SERIES 643

has all coefficients > 0.
It is clear that any combination ^LZ\XmPn(x) with λ m ^ 0 , Σ λ m = l

is a monic positive multiple of Q of degree n. Conversely, if

P = cQxn + c^-1 + cn , c0 > 0 ,

is a positive multiple of Q and P Φ c0Pm, then so is

for each m = 1, •••,% — 1. For, otherwise, let Xm be the maximal
number for which P — XmPm has nonnegative coefficients. Then either
Xm = cQ and deg (P — XmPm) < n, a contradiction or

r~n sin mθ
sin (n — m)θ

and P — XmPm is divisible by x. But then (P — XmPm)/xk is a positive
multiple of Q of degree n — k for some k ^ 1, a contradiction. Re-
peating this argument we get

COROLLARY 2.3. J/ Nθ > π ί/^β^ ί/̂ e set &N of positive poly-
nomials R(x) of degree N — 2 s^cλ ίΛαί J?(ί)?)Q(̂ ) is positive has a
nonempty interior in the space of all polynomials of degree at most
N — 2. In particular, there exists an R(x) with positive integral
coefficients so that all coefficients of R{x)Q{x) are positive.

Proof. If we prove the corollary for one N then it is proved
for N + 1 since the convex hull of &N and x&N is contained in ^ + 1

and has a nonempty interior in the space of all polynomials of degree
at most N — 1. Now if nθ > π in Theorem 2.1 then &nQ was shown
to consist of a nondegenerate simplex, so that έ%% possesses interior
points. If nθ = TΓ, then by the same argument as in the proof of
Theorem 2.1 there exist trinomials

+1 m
Xsmmθ

+ sin (n + 1- m)θ γn+1

smmθ

for each m = 1, , n — 1 which are positive multiples of Q. Together
with the two binomials xn + rn and xn+1 + rnx these polynomials are
the vertices of a nondegenerate simplex &n+ίQ so that ^ Λ + 1 has interior
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points. Since the polynomials with rational coefficients are dense, it
follows that &N contains polynomials with positive rational coefficients.
Multiplying by the denominator we therefore can find polynomials with
positive integral coefficients in <%N.

COROLLARY 2.4. // a real polynomial Q of degree d has no zeros
whose argument is less than π/n then there exists a positive polynomial
R so that RQ is positive and

deg RQ ^ max {d, nd/2}.

THEOREM 2.5. Let Q(x) be a monic real polynomial of degree d
without nonnegative real zeros. Then among the positive multiples
P of Q of minimal degree n there are either at least n — d + 1 dif-
ferent (d + l)-nomials or there is at least one d-nomial. (Here k-
nomial means the sum of k or fewer monomials.)

Proof. We know that Q(x) has positive multiples. Let m — n — d.
The set <% of all R(x) in the space of monic polynomials of degree
m is convex polyhedral, the intersection of m + d half spaces, deter-
mined by the linear inequalities which express the fact that the coef-
ficients of RQ are nonnegative. If & were unbounded then there
would exist R e & with arbitrarily large coefficients. Let ||JS|| de-
note the maximal absolute value of the coefficients. Then as || R \\ —> oo
the polynomials R/\\R\\ have a convergent subsequence which con-
verges to a nonzero polynomial S with deg S < m so that SQ is positive,
a contradiction. If & is a bounded nondegenerate polyhedron then it
has at least m vertices Vμ so that each VμQ is positive of degree n
with at least m coefficients equal to 0. Thus each VμQ is a (d + 1)-
nomial. If £% is a degenerate polyhedron then each vertex V lies on
at least m + 1 bounding hyperplanes. Thus VQ is a d-nomial.

It would be wrong to assume that the set & of multipliers R(x)
of minimal degree for which RQ is positive must contain a positive
polynomial. For example the cyclotomic polynomial Φ30(x) divides x15 + 1
but Φ30 has a quadratic factor x2 — (2 cos ττ/15)x + 1 that divides no
other monic positive polynomial of degree 15 or less, while

* " ! * - Φ2(x)ΦQ(x)Φ1Q(x)

= x7 - x6 + x5 + x2 - x + 1 .

We conclude this section by showing that every real quadratic
polynomial Q without nonnegative real zeros, and hence every real poly-
nomial without nonnegative real zeros, can be multiplied by powers of
linear positive polynomials to yield positive products.
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THEOREM 2.6. If cos θ ^ m/(m + 2) then

P(x) = (B* - (2r cos θ)x + r2)(£ + r) m

is positive.

REMARK. For small #, the smallest admissible m is asymptotically
4n2/π2, with w as in Theorem 2.1.

Proof. We have

P<*>(0) = rm- f c + 2m . . . (m - & + 3)

• [&(& - 1) - 2k(m -k + 2)cosθ + (m-k + 2)(m - & +1)]

> rm-*+2 m - -» (m - fe + 3)

~ m + 2

l)(m + 2) - 2k(m -k + 2)m

+ (m - k + 2)(m - k + l)(m + 2)]
i) . . . ( m _ ft + 3)( m _ 2Λ + 2)2(m + l)/(m + 2)

By choosing m odd we can make all P{k)(0) > 0.

COROLLARY 2.7. A reαί polynomial Q(x) without nonnegative
real zeros can be multiplied by a polynomial R(x) with only negative
real zeros so that R(x)Q(x) is positive. We can also require that all
coefficients of R(x)Q(x) are positive, and that the coefficients of R(x)
are integers.

3* Polynomials of several variables wi thout zeros in the real
nonnegative orthant* As in §2 we may assume that we are dealing
with real polynomials. Now assume that Q(xlf - - , xn) Φ 0 for all
xy ;> 0, , xn ^ 0. Writing x = rξ where r = || x ||2 and ξ = (ζlf •••,?»)
is a unit vector we can write

(3.1) Q(x) = Q0 + rQ^ξ) + + rdQd(ξ)

where Qδ(x) is the homogeneous part of degree δ of Q. If Qd(x) has
nonnegative zeros then it may be impossible to find nonzero homogeneous
multiples of Qd(x) with nonnegative coefficients, so that the leading
homogeneous part of any nonzero product R(x)Q(x) has some negative
coefficients. For example the polynomial Q(x, y) = 1 + (x — yf has
no real and hence no positive zeros, yet (x — y)2R(x, y) cannot have
nonnegative coefficients for any nonzero polynomial R(x, y). Thus, in
order to generalize the results of §2 we must modify our hypothesis,
by excluding " zeros at infinity " in the nonnegative orthant.
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THEOREM 3.2. If Q(x) is a real polynomial without zeros in
the nonnegative orthant and if the leading homogeneous part, Qd(x),
has no zeros on the nonnegative orthant of the unit sphere, then there
exist positive polynomials iZ^) , i22(a?2)> — ',Rn(%n) so that the homo-
geneous parts of P(x) — R^xJ Rn(xn)Q(x) are positive on the non-
negative orthant of the unit sphere.

Proof. As a consequence of §2 we know that for each non-
negative unit vector ξ there exists a positive polynomial Rξ(r) so that
Bξ(r)Q(rζ) is a strictly positive polynomial in r. Hence Rξ(r)Q(rrj) is
a positive polynomial in r for all unit vectors rj in a neighborhood Uξ

of ζ. By the Heine-Borel theorem there exists a finite set of neigh-
borhoods Uξl, , UξN which covers the nonnegative orthant of the
unit sphere. Hence Rξl(r) RξN(r)Q(rξ) is a positive polynomial in
r for all nonnegative vectors ξ. Now let

Rfa) = ΠRςi(x/ξl)

where the product is extended over all ξi whose nonzero component
of minimal index is the v-th component ζi. Then

P(x) = R^) Rn{xn)Q{x)

is a positive polynomial in r for all x in the nonnegative orthant.
In other words the homogeneous parts of P(x) are positive in the
positive orthant.

We have thus reduced the problem to that of homogeneous divisors
of positive polynomials.

LEMMA 3.3. // Q(x) is a homogeneous polynomial which is posi-
tive on the nonnegative orthant of the unit sphere then there exists
a positive homogeneous polynomial R(x) so that R(x)Q(x) has positive
coefficients.

Proof. We use induction on the number of variables, n. Consider
the polynomial Q*(y19 , yn^) = Q(yly , yn-19 1). Then by hypothesis
Q*(y) > 0 for all y in the nonnegative orthant and its leading homo-
geneous part Q(i/i, , 3/w_i, 0) is positive for all nonnegative unit
vectors y. Thus by Theorem 3.2 there exists multiplier

so that

P*(y) = R!(yi) - RU(y^)Q*(v)

has homogeneous parts which are positive on the nonnegative orthant
of the unit sphere in ?/-space. By the induction hypothesis each homo-
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geneous part Pf of P* has a positive homogeneous multiplier Sf(y)
so that Pί(y)S*(y) has positive coefficients.

Thus (ΠδS*(y))P*(y) has positive coefficients. The polynomial

D IT
^ w 1 1

x1

where D = deg[(/75S?(i/))P*(2/)], has now the desired property.
Combining Theorem 3.2 and Lemma 3.3 we get

THEOREM 3.4. For every real polynomial Q(x) which is positive
in the nonnegative orthant and whose leading homogeneous part is
positive on the nonnegative orthant of the unit sphere, there exist
positive polynomials R^x^, ^*,Rn{xn) and positive homogeneous poly-
nomials S^x), m ,SN(x) so that the product

<3.5) P(x) = Rfa) RMS^x) SN(x)Q(x)

has nonnegative coefficients.
If Q(0) — 0 is allowed then we must make a similar assumption

for the "trailing" (lowest-degree) homogeneous part.

The polynomial P(x) in (3.5) has homogeneous factors and there-
fore in general P(0) = 0. However, assuming again ζ)(0) > 0, it is
possible to construct positive multiples P(x) of Q(x) so that any pre-
scribed monomial has a positive coefficient or even so that all monomials
whose degree is no higher than d e g P have positive coefficients. To
see this we proceed by induction on the number of variables, to find
positive multipliers R,{x2, , xn), R2(xί9 x3, . . , xn), , Rn(x19 , xn^)
so that R»(0, , 0) > 0 v = 1, . . . , n and

has nonnegative coefficients. If

contains a monomial

cμi...μ%xp xt>

with c.tv..lin < 0 then μv > 0 for all v = 1, • , n. We consider the
usual partial ordering of the ^-tuples (μu •••, μn). If the polynomial
P(x) of (3.5) contains a monomial of lower index then there exists a
positive multiple P±(x) of P(x) so that Qx{x) + Px{x) contains a positive
multiple of xp x%*. The monomials with negative coefficients whose
indices are not above those of monomials in P(x) can be eliminated
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successively through multiplication by

1 + c'μv..μnx
!ϊ α?J

where

To sum up we have the following.

THEOREM 3.6. For every polynomial Q(x) which is nonzero in
the nonnegative orthant and whose leading homogeneous part is
nonzero on the nonnegative orthant of the unit sphere there exists a
positive polynomial R(x) so that P(x) — R(x)Q(x) has positive coef-
ficients for every monomial whose degree is no greater than degP.

If Q(0) = 0 is allowed then P(x) will only have positive coef-
ficients for every monomial whose degree is no greater than deg P
and no less than that of the trailing part of P.

We note that like Corollary 2.4 for polynomials of one variable,
and Lemma 3.3 for homogeneous polynomials, but unlike Theorem 3.4,
Theorem 3.6 implies that the class of divisors of polynomials with
specified positivity or nonnegativity properties of their coefficients
coincides with the class of polynomials which, together with their
leading and their trailing part, have no zeros, other than 0, in the
nonnegative orthant.

In a manner analogous to that used in the proof of Theorem 2.5
we could get bounds on the minimal number of monomials in a posi-
tive multiple of Q(x). The results are harder to state and we omit
them.

4* Divisors of positive power series*

THEOREM 4.1. Given a power series

f{χ) = 1 + Σ Cn%n

with radius of convergence r (0 < r ^ oo) and without zeros in the
interval [0, r), there exists a power series

P(x) = 1 + Σ VnXn

with pn ^ 0 n = 1, 2, with radius of convergence ^ r so that
P(x)/f(x) is analytic for \ x | < r.

Proof. Let the zeros of f{x) be x19x2, with xn = rne
i0* where

0 < rj. ̂  r2 ^ ^ rn ^ < r and 0 < θn < 2π. For each θn there
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exist arbitrarily large integers Nn so that NnΘn is in the closed second
quadrant, and xn satisfies the equation with nonnegative coefficients

If we choose N% so large that (rm/rn)
Nn < 2~n for all rm < rn then

the product

P(x) = Π ( l - (2 cos Nθ „)(-*-)** + (Λ\2Nn

converges for all | x | < r and has nonnegative coefficients. Since
every zero of f(x) in | x | < r is a zero of no lower multiplicity of
P(x), it follows that P/f is analytic in \x\ <r.

The function P(x) is a polynomial if / has a finite number of zeros
in I x I < r. Otherwise P(x) has infinitely many zeros in \x\ < r and
therefore its radius of convergence is r.

The construction of P(x) does not permit us to say that P/f can
be chosen to be a positive power series and we have not been able to
solve the following.

PROBLEM 4.2. Assume the power series f(x) of Theorem 4.1 is
real. Is it possible to find a positive power series g(x) with radius
of convergence r so that f(x)g(x) has positive coefficients!

We can answer the problem in the affirmative for any radius of
convergence p < r.

LEMMA 4.3. If f(x) ̂  0 in \ x | < r and f(x) is a real power
series, /(0) = 1, then there exists a positive power series g(x) con-
verging for I x I < r so that f(x)g(x) has positive coefficients.

Proof. Under our hypothesis φ(x) — log fix), normalized by φ(0) — 0,
is a real analytic function in | x | < r. Let φ(x) — ΣϊU bnx

n, then
g(x) = exp (ΣίΓ=i I bn | x

n) has the desired properties.

COROLLARY 4.4. Let f(x) be a real power series tvith radius of
convergence r and only a finite number of zeros in | x \ < r and no
zeros in the interval [0, r). If /(0) = 1 then there exists a positive
power series g(x) converging for \ x \ < r so that f(x)g(x) has positive
coefficients.

Proof. We can write f(x) = Q(x)f(x) where Q(x) is a polynomial
and f(x) satisfies the hypotheses of Lemma 4.3. Then by Corollary
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2.4 and Lemma 4.3 there exists a positive polynomial R(x) and a
positive power series g^x) so that Q(x)R(x) is positive and fj^g^x)
is positive. Hence g(x) = R(x)g1(x) has the desired properties.

THEOREM 4.5. Let f(x) be a real power series satisfying the
hypotheses of Theorem 4.1. Then for every p < r there exists a posi-
tive power series g(x) with radius of convergence ^ p so that f(x)g(x)
is a positive power series.

Proof. In | x | < p the function / satisfies the hypotheses of Co-
rollary 4.4, with r replaced by p.

In a manner analogous to that used in §3 we can now establish
the following generalization of Theorem 4.5 to power series in several
variables.

THEOREM 4.6. Let

f(xu . , xn) = 1 + Σ cμv .μjεP •••*#•
μi+—+μn=i

be a real power series which converges for \ xv | < rv v — 1, , n
and is positive for 0 ^ x» < ru v = 1, , n. Then for every p» with
pv < fv 1 v = 1, , n there exist positive power series

oo

gu(xv) = 1 + Σ ^uuXζ ruμ > 0
μ = ί

with radius of convergence ^ pv so that

ffj = Σ φΛχu »Xu-i, %v+ι, •$ #»)#? î  = l, , ^

where each φvμ is positive for

O^xχ^ ρλ; λ = 1, , v - 1, v + 1, , n.

Proof. For each vector ζ = (ζlf , ίv_1? ίv+1, •••,£») with 0 ̂  ί ; ^
ιθ;, there exists by Theorem 4.5 a positive power series Pς(x») with
radius of convergence pu so that P^O) = 1 and all the coefficients of
/(ίi, , ί,-i, Xv, ζu+u , , ί»)J°e(^) (considered as a power series in
xu) are positive. If, as we may, we further multiply by (1 — xjp[)~~*
where p» < p[ < ry then the power series

/(fi, , fv-i, Xu, ί,+i, , f .)A(^)(l ~ αWtf)-1

- Σ
0
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satisfies

P» Pu

where M is a positive constant independent of ξ. The upper bound
is just an application of Cauchy's inequality. The functions p[μcvμ(ξ)
are equicontinuous functions of ζ for 0 ^ ζλ ^ pξ and hence there
exists a neighborhood Uξ of ξ so that

has positive coefficients (as power series in xv) for every ΎJ e Uξ. By
the Heine-Borel theorem there is a finite set of neighborhoods

ί 1 ? * " " '

so that

satisfies

U N which covers

/Yr . . . Φ \P (Ύ

JK^iy y ^n)Γ

ξΛ^v

the conditions of

the

λ< =

) . . .

the

set

l,...,v-l,v

PfΛxv)(l - xjf

theorem.

+ l,- ,n

K)-1 = f(χ)g

REMARK 4.7. Theorem 4.6 does not insure the existence of a
multiple of f(x) which is a power series with positive coefficients in
xlf •••,#„. However the condition on the leading homogeneous part
which we had to impose in §3 becomes vacuous for power series. For
example the polynomial 1 + (x — y)2, which cannot be the divisor of
a positive polynomial, is the divisor of the positive entire function

0 0 ΛΛ I "1 / ΛΛ 1 \

+ Σ — - — ( x — 2 xy + y )(x + yfn~2 .
n=ι nl \ n + 1 /

Now by a homogeneous version of Theorem 2.6 each of the poly-
nomials

- Ύl J- i _ . 2 \ / - . i - -\2n—2
v n + 1 Jn + 1

= (x2 — 2 cos θxy + 2/%τ + τ/)m

has positive coefficients, since

1 1 22 m
cosg=

n + 1 n 2n m + 2

PROBLEM 4.8. Le£ / f e , * ,a?Λ) δβ a power series which con-
verges for \x»\<ru; v — 1, , n, so that f(x) > 0 for 0 <Ξ, xu < rv.
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Does there exist a power series g(x) which converges for \xv\ < rv;
v = 1, > ,n so that fg has positive coefficients'! If so, can g be
chosen to have positive coefficients ?

Received October 15, 1968. The preparation and research of this paper was parti-
ally supported by National Science Foundation Grants GP-7628 and GP-8622.

The synopsis is identical with the abstract in Notices Amer. Math. Soc, 15
(1968), 1027-1028.

UNIVERSITY OF CALIFORNIA, LOS ANGELES




