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RATIONAL APPROXIMATION ON
CERTAIN PLANE SETS

T. A. MCCULLOUGH

Let K be a compact subset of the complex plane and let
Ω denote its complement. In 1966 Vituskin [11] proved the
following generalization of Mergelyan's celebrated theorem
on rational approximation [9].

THEOREM. (Vituskin). If each boundary point of K is a
boundary point of some component of Ω then A(K)9 the subset
of continuous functions on K which are analytic on the interior
of K9 is the same as R(K)9 the uniform closure of the rational
functions with poles in Ω.

The complexity of Vituskin's techniques justifies the de-
velopment of alternate approaches to this problem. For a
complete discussion of Vituskin's techniques and results see
[14]. The alternate approach we have in mind exploits a
recent result of Garnett and Glicksberg [5]. Namely, R(K) —
A(K) if they have the same representing measures for each
point φeK.

We are unable, at present, to prove Vituskin's result. How-
ever, if Ωi denotes the ith component of Ω9 if A(n, z) denotes
the annulus {(J)w+1 = I ζ — % I = (i)91}, and if a denotes analytic
capacity, then we prove the following

THEOREM. If K is such that (1) d(K\ the boundary of
K, has finitely many components and (2) dK — {\J dΩi} u {xu

x2,- •}, where

£ 2«a(A(n, xk) f)Ω) = coi

for each xk, then R(K) = A(K).

We let 7 denote logarithmic capacity and we use the associated
definitions found in Tsuji [10]. For the definition of analytic capacity
and a proof of the fact that y(E) JΞ> a(E) see Zalcman [14],

In outline, the proof is as follows. We must show R{K) and
A(K) have the same representing measures.

If, for two real measures μx and μ2,

— &(£)) = 0 a.e. (plane Lebesgue measure)
z - ξ

1 Ahern has recently shown, among other things, (A Condition for Peak Points, to
appear) that the hypothesis on the analytic capacity near xic is unnecessary. See
addendum.
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then μx = μ2 [10]. In § 2 we prove a theorem to aid in evaluating
the function

P(μ,z) = Jin
z - ξ

dμ(ξ) ,

for z in the support of μ, in terms of its values off the support of μ.
The principal result of § 3 is that if conditions (1) and (2) above

are satisfied and if μ is the difference of two representing measures
for R(K) and the same φeK, then P(μ, z) is continuous for all z and
constant on each component of the boundary of K. This last fact
allows us to identify the representing measures for A{K) and R(K).
This proves the theorem.

The condition (due to Melnikov) on the inner boundary points x{

is used only to insure that the points xt are peak points for R(K).
We want to acknowledge observations made by Professor I.

Glicksberg (private communication), which (a) simplify our original
argument and (b) allow the presence of the exceptional points

K } £ {U dΩi} .

2* A theorem on logarithmic potential for plane measures*
Let E be a Borel set in the plane and let μ be a real measure sup-
ported on E. Define P(μ,z), the logarithmic potential of μ, by the
formula

P(μ, z)=\ '.In
z - ξ

dμ(ξ)

P(μ, z) is obviously harmonic off E. We will be concerned with its
behavior on E if μ is a linear combination of representing measures.

The proof of the following theorem structured after Carleson [3].
The use of the equilibrium distribution measures was suggested by
Professor P. C. Curtis, Jr.

THEOREM 1. Let μ be a real measure supported on a compact
plane set E. Let zoe E be such that

In
~ ξ

dμ(ξ) = P(μ,

converges absolutely. Let D(r, zQ) be the open disk with radius r and
center zQ. If V is an open set such that
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then there is a sequence rn—*0 and probability measures vn, inde-
pendent of μ and supported in V Π D(rn1r0), such that

lim , z)dvn(z) = P(μ, z0) .

Proof. Suppose z0 — 0. Choose a sequence rn —• 0 so that for some
a > 0

y(Vf)D(rn, 0))

Now choose compact sets FndVΠ D(rnί 0) so that

> 2arn .

Let vn be the equilibrium distribution for Fn. We shall show that {vn}
is the desired sequence of measures.

First we bound P(vn,ξ). If | £ | ^ 2rn then, since vn is positive
with total mass one,

dvκ(z)
- ξ

dv, In

In

1
ξ

1

ξ
+ In 2

1

•

1
-z/ξ

If I ξ I < 2rTC then, by Frostman's theorem [10]

i In
z - ξ

dvn{z) ^ In

a

Hence P(y., f) ^ c + In 11/ξ |.
Now, for fixed »̂,

I ί P(/«, 2)dυ,(z) -
I J | 2 | £ r Λ

In dμ(ξ)

In
\ξ\<P\J\z\£rn

(i.)

Clearly

+ I!
(ί
In

z - ξ
- I n

dj«(£) - ί In

(c + ln

* 2 = In-

\e\<f>
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Choose p so that /x + 73 < ε/2 and then choose N so that

In(
J\*\£rN I Z — ξ I

Then J2 ^ ε/2. So, for rΛ

In

I ( P(μ, z)dvn{z) - \ In

zjp-l
dvN{z) ^

< ε .

To apply Theorem 1 we will need the following estimate.

LEMMA 1. Let C(r, z0) denote the circle with center z0 and radius
r. Let V be an open set such that zQedV. If for all small r the
Lebesgue measure of {0 ^ x ^ r: C(x, z0) Π V Φ 0} = r, then

Proo/. Tsuji [10, Corollary 6, p. 85].

3* The potential generated by representing measures for R(K).
Let φ e K. Whenever it is convenient we will think of φ as a multi-
plicative linear functional on R(K). A positive measure of mass one
supported on dK is said to be a representing measure for R(K)(A(K))
and the functional (point) ψ if

f(φ) = \ fdμ for all feR(K)(A(K)) .
JdK

We let MψtR denote the collection of all representing measures for
R{K) and the point φ.

There is a distinguished member of Mφ>R if φ is an interior point
of K. Let E be the component of K\ the interior of K, which
contains φ. We have in mind the unique measure, λ ,̂ supported on
3E with the property that for all fe C{K) which are harmonic on K°

f{φ) = \ fd\φ .

We call λ̂  the harmonic measure for φ. It is not difficult, using
hypothesis (2) and the fact that two plane measures with the same
logarithmic potential are equal, to see that λ̂  is unique. Also observe
that (2) guarantees that P(λ9, z) is continuous for all z. To see this,
note that each x e BE is a peak point for R{K) and hence is a regular
point for E. Now use the formula (Tsuji [10], p. 88)

g(z, φ) = In
Z — φ

- [ m
JdE z - ξ

dxφ(ξ)
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and recall that g(z, φ) (Green's function) vanishes at regular points.
Let SΨ,R denote the real linear span of {v — Xφ: v e Mφ>R}. The

main result of this section is that hypothesis (2) implies P(μ, z) is
constant on each component of dK for each μ e Sφ,R. We begin with
some technical lemmas.

LEMMA 2. If φe K° and v e MΨίR,

P(μ, z0) = In
z-ξ

dμ{ξ)

converges absolutely for each z0 in the boundary of some component
of the complement of K.

Proof. Let Ω{ denote a component of Ω for which z0 e dΩ{. If zγ

and z2 belong to Ωif

In - I n d(μ - Xφ) = 0 ,

i.e., P(μ — Xφ,z) is constant on Ωιm Let zneΩ{ and
δ is the diameter of K then we may assume

If

In- P(μ, zn) - P(μ - X9, zn) , zn)

Now P(μ — Xψί zn) = C and

(*) \P(X9,zn)\ =

imply

In
ψ -

< M

lim inf P(μ, zn) < oo .
zn~*z0

By the lower continuity,

P(μ, «o) ^ lim inf P(μ, z) g C + M ,
Z-+ZQ

and the lemma is proved.

LEMMA 3. Fix a φeK° and a v e Mφ>R. For each ze\J dΩit

where Ωt is a component of Ω, let the set W(z) be the union of all
connected subsets of Ω containing z on which P(v — Xψ, z) is a constant.
We assert that

P{», t) = JIn
t-ζ

dυ(ζ)
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converges absolutely for te W(z).

Proof. We need only consider tedW(z). For such t use the
proof of Lemma 2 (beginning with line 4) with Ωt replaced by W{z).

LEMMA 4. For φe K° and μ e Sφ>R, P(μ, z) is constant on Ω{ for
each component Ω5 of Ω.

Proof. By definition μ = Ia^i9 where the summation is finite,

μ{ = Vi — Xφ, and v< e MψtR. Then

P(μ, z) = Σa.Piμ,, z) = Σa.Piy, - xφ, z)

and

P(v, - x φ , z) \Ω. = Ci5 .

By Lemma 2, P(Vi — Xψ, z) converges absolutely for each z e dΩά. Taking
Ωj to be the open set in the hypothesis of Lemma 1, we conclude
from Theorem 1 and Lemma 1 that for zedΩjf

Vi - XΨ1 z) = P(μt, z) .

Thus P(μ, z) — Σa{Ci5 is a constant on Ω5.

THEOREM 2. If dK satisfies (2) and φ e K° then, for each v e MψfRi

P(v — Xφ, z) is constant on each component of dK.

Proof. Let W(z) be as in Lemma 3. If xn e W(z) for some
ze\JdΩi9 then by Lemma 3, P(v — Xφ,xn) converges absolutely. If

ΐjedΩi}, then set W{xn) = {xn}.
Assert that each W(z) is a closed set. To prove this we verify

the hypothesis of Lemma 1 so that we may use Theorem 1. Fix
ze U dΩi, let z^dWiz), and pick n > 0 so that C{r, zλ) Π W(z) Φ 0
for all 0 < r <̂  rι (recall that W(z) is connected). Let

E = {0 < r g rx: C(r, zj Π Ω Π W(z) = 0 } U {0} .

Evidently the complement of E is open. We assert that E is countable.
First observe that for each component Ωi of Ω there can be at most
two distinct reE with C(r, z)C[ΩiΦ 0 . Now if r eE there is a
y G C(r, Zy) Π W(z) Π Ω and either y = xn, for some n, or y e dΩi for
some i. Hence E is countable. Since E is closed and countable, we
have, for small r, the Lebesgue measure of

{x g r; C(x, z,) Π W(z) Π Ω Φ 0} = r .

By Lemma 1
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n Z ^ > n ^ ϊ> c > 0 .

By Theorem 1, with V = W(z) f] Ω, we have

P(v - \φ, zλ) = P(v - \φ, z)

and hence W(z) is closed.

Finally note that, by Lemma 4 there are only countably many
distinct sets W(z) for ze\J dΩi \J {xu x2, •}.

Let F be a component of dK. If Γ ς£ W(z) for some z, then a
countable union of the W(z) cover Γ. However it is standard fact [8]
that a connected set cannot be the disjoint union of countably may
closed sets. Hence Γ c W(z) for some ze\J dΩi U {χi> χ2> " *} (indeed
for some z e \J dΩif if dK contains no singletons) and P(v — Xψ,z) is
constant on Γ.

COROLLARY. //, in addition to the above hypothesis, dK has a
finite number of components then, for μ e SΨtR, P{μ, z) is a continuous
function of z and is harmonic except on dK.

Proof. Write P{μ, z) = Σj^iPi^u %) where μi + Xφ = y< e MψfR. Thus
i, z) \dκ is continuous. Hence, by Tsuji III. 2. [10], P(/^, z) —

P(vi9 z) — P(Xψf z) is continuous for all z.

4* Representing measures for R(K) and A(K). A(K) is the
Banach algebra of all functions on K and analytic on K°. Arens [2]
shows that multiplicative linear functionals on A(K) can be identified
with the points of K, so that A(K) and R(K) have the same maximal
ideal space. In this section we show that R(K) and A(K) have the
same representing measures for each φe K provided that hypothesis
(1) and (2) hold.

As Glicksberg observed, it is sufficient to show that for each φe K
any μeSΨ,R annihilates A(K). For if veMψ>R then v — \eSφ>B so
that v is a representing measure for A(K). Hence by Garnett and
Glicksberg [5] we are done. Finally note (i) by Silov's Idempotent
theorem we can assume K is connected and then (ii) there are no
isolated points in dK since K is compact.

LEMMA 5. // dK has n + 1 components and φeK° then dimension
of Sφ,R ^ n.

Proof. First suppose v19 •• , ^ + 2 G S W . For each vj9 let Cjk =
P(vj> z)\rk, where Γk is the kth component of dK. By Theorem 2 the
Cjk's are constant. The matrix (Cjk) is obviously singular and hence
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there are real scalars a19 ---,an+2 such that

( * ) ΣasP{vs, « ) | 9 x = 0 j e {1, .., n + 2} .

However, by the corollary to Theorem 2 the potential generated by
the measure

Σadvd e Sφ>R

is a continuous function and is harmonic except on dK where, by (*),
it is zero. Hence by the maximum principle for harmonic functions

P(Σadι>d, z) = 0 all z .

Since the zero measure is the only measure with zero potential we
conclude that the dimension of Sφ,R tί n + 1.

Finally, if Ω^ is the unbounded component of Ω then P(v, z) = 0
on fiL for all v e S<p>R. Hence dimension of Sφ,R ^ n.

LEMMA 6. If K satisfies (1) and (2) and φ e K° then Sφ,B an-
nihilates A(K).

Proof. Essentially the proof is the identification of a basis for
Sφ,A We construct measures μ{ on dK as suggested by Ahern and
Sarason [1] (see also Garnet and Glicksberg [5]).

The hypothesis on K implies Ω has a finite number of components.
Each component, Γ*, of Ω may separated from the other components
by a finite number of simple smooth oriented contours whose union
we denote by ΛiΛ For feC(dK), let / be its harmonic extension to
K° and for each Γf, except the one containing oo, let

(d/dn is the normal derivative). The following facts about μ{ are
easily established:

(1) if feA(K) A fdμi = 0

(1 if a eΓf
( 2 ) ί In

z — a
dμ, =

(0 if aeΩ\Γ*
By Theorem 2, for v e SΦ,R, P(v, z) is constant on each component Γf
of Ω hence, for all z,

P(v, z) = Σa.Piμ,, z) i = 1, . , n - 1 .

Thus v = Σa{μi9 i.e., v±A(K).

COROLLARY. R(K) and A(K) have the same representing measures.
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Proof. Now we need only concern ourselves with points z e dK.
If z e \J dΩi then it is easy to see that

Σ2na(A(n, z) n Ω) = co .

If z e dK — U dΩi then, by assumption,

Σ2na(A(n, z) n Ω) = oo .

In either case by [4, Th. 3.5], z is a peak point for R(K) so that the
only representing measure is the unit mass at z. Hence A(K) and R{K)
have the same representing measures for each ze K.

The desired generalization of Mergelyan's theorem now follows
from Garnett and Glicksberg [5, Th. 1.7].

5. Added August 19, 1968* Since this paper was written Ahern
(A condition for Peak Points, to appear in the Duke Math. Journal)
has proven, among other things, that each xn e dK — {{J 942J is a peak
point provided that dK — {\J 9£?J is countable. Ahern's argument
can be simplified as follows. First, as Ahern observes, because dK
has finitely many components each xn is a regular point for K, we
can apply Theorem 2. Suppose xn is not a peak point. By Wilkin's
theorem, the part, P, containing xn has positive planar measure. Since
P Π ( U dΩi) = Φ,P contains a point φ e K\ Let μ e MXn,R, μ({xn}) = 0.

By a theorem of Bishop there exists 0 < c < 1 and μφ e MΦ,R such that
μΦ — cμ i> 0. Hence vφ = ( ^ - cμ) + c5a.Λ e M ,̂̂  and P(vφ, xn) = oo.
This contradicts Theorem 2. (An argument along these lines was
suggested to me independently by A. M. Davie and J. Garnett.)
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