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INFINITE SEMIGROUPS WHOSE NONTRIVIAL
HOMOMORPHS ARE ALL ISOMORPHIC

BRUCE A. JENSEN

An infinite semigroup S such that every nontrivial homo-
morph of it is isomorphic to S is called an HI semigroup.
Every commutative HI semigroup is a group and thus it is
isomorphic to the group Z(p)°°9 for some prime P. An infinite
Brandt semigroup is HI if and only if it has a trivial struc-
ture group. An inverse HI semigroup containing a primitive
idempotent is either Brandt or else it is isomorphic to a
trasfinite chain of extensions of a Brandt semigroup K by
isomorphic copies of K (where K has the trivial group as its
structure group). Necessary and sufficient conditions are
given for a semigroup of the latter type to yield an HI
semigroup and an example is constructed.

In his monograph Infinite Abelian Groups, I. Kaplansky in-
cludes as exercises the following results concerning an infinite abelian
group G:

(1) If every subgroup of G is isomorphic to G, G is cyclic.
(2) If every subgroup of G is finite, G is isomorphic to the

group Z{p~) for some prime p.
(3) If every proper homomorph of G is finite, G is cyclic.
(4) If every nontrivial homomorph of G is isomorphic to G, G

is isomorphic to the group Zip00) for some prime p.

In generalizing these results to semigroups, (1) can easily be
disposed of. Suppose S is a semigroup such that every subsemigroup
of S is isomorphic to S. It is clear that S must be cyclic, say
S = {α, α2, •}. However, T = {α2, α3, •} is a noncyclic subsemi-
group of S and thus T is not isomorphic to S, a contradiction.

In [3], Jensen and Miller prove that any infinite semigroup S such
that every subsemigroup of S is finite is a group. Thus in particular,
if S is commutative, S is isomorphic to Z{p°°) for some prime p.

Defining an HF semigroup to be an infinite semigroup with the
property that every proper homomorph is finite, it is shown in [3]
that a commutative semigroup S containing at least three elements
is an HF semigroup if and only if S can be (isomorphically) imbedded
in an infinite cyclic group with zero adjoined. In [2] the structure
of HF inverse semigroups is investigated. The structure of all HF
inverse semigroups that contain a primitive idempotent is determined
up to the determination of all HF groups. The author is unaware
Of any general results concerning nonabelian HF groups although
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obviously some exist, e.g., any infinite simple group.
Throughout this paper, Es denotes the set of idempotents of the

semigroup S and A* denotes the set of nonzero elements of any
A S S. If S is a Brandt semigroup with structure group G and index
set Λ, we write S = B(G;A) and we denote the elements of S* by
{(i, g, j) \ί,jeΛ,ge G}. Then

' ..,., , .,. l(i,99',9') i f i = * ' ,
(0 otherwise .

If / is an ideal of the semigroup S, we identify (S/I)* with S\I =
{a; G S I α £ /}. Thus S/I = (S\I) U {0}, where "0 is the zero of S//.
Except when variations are noted in this paper, the terminology and
notation is the same as that used in [1],

!• Commutative HI semigroups*

THEOREM 1. If S is a commutative HI semigroup, then S is a
group.

Proof. Assume that S is not a group. Thus there is an x e S
such that xS Φ S. Then S = S/xS so S contains a zero. We first
show that under this assumption S is nil.

Let Z = {x e S | xy = 0 for some y e S*}. Since Z is an ideal of
S either S ~ S/Z or S = Z. If S ^ S/£, it follows that Z = {0}, so
S* is a proper subsemigroup of S and the map Θ:S—>{0, 1} which
sends each element of S* onto 1 and sends 0 onto 0 is a homo-
morphism of S onto the multiplicative semigroup {0,1}, a contradic-
tion of the HI property of S. Thus S = Z.

For a fixed element ae S* define the set A — {x e S \ xan = 0 for
some postive integer n). Clearly A is an ideal of S. If a $ A, a e S/A
and since Z = S ~ S/A, there is an element b e S\A such that ab e A>
say (ab)an = 0 or ban+1 = 0, so b e A, a contradiction. Thus α e A and
hence α is nilpotent. Since a was arbitrary it follows that S is nil.

Let x e S such that x e xS, say x = xe. Then # = xen for each
positive integer n. Since S is nil, this implies that x = 0. Thus, if
xeS*, xeS/xS and S/xS = S. But x(S/xS) = 0" so there exists
2/ e S* such that τ/S = 0. Let J = {x e S \ xS = 0}. J is an ideal of
S so either J = S or S ~ S/J. lΐ S = J, every nonempty subset of
S is an ideal of S and thus S = S/A for each 4 c S , A ^ 0 . Clearly
this is not the case. By a similar argument, it follows that
S = S2. We now have S = S/J, so there is an α 6 S// such that
a(S/J) = 0", i.e., α(S\J) c J, and hence aSaJ. Therefore, αS =
αS2 c JS = 0, so αS — 0. But this contradicts the choice of α, and
our proof is complete.
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COROLLARY. If S is a commutative HI semigroup, then S =
°), for some prime p.

2* Inverse HI semigroups containing a primitive idempotent*
Following the notation of [1], p. 72, let J(x) = S'xS1 and I(x) =
{y e J(x) I J(y) Φ J(X)}. It easily follows (see [1], p. 73) that if J(x) Φ 0 ,
I(x) is an ideal of S such that J(x)/I(x) is either 0-simple or the null
semigroup of order 2.

LEMMA 1. If S is an inverse HI semigroup, either S is simple
or else S = S° and S contains a unique 0-simple ideal K contained
in every nonzero ideal of S.

Proof. Suppose S is not simple, say ae S such that S Φ SaS =
S^S1 = J(a). Then S ~ S/J(a), so S contains a zero. It follows
from the remark above that J(a)/I(a) is 0-simple. S = S/I(a) implies
S contains a 0-simple ideal K ~ J(a)/I(a).

Let U denote the union of all ideals B of S such that K Π B = 0.
U is a proper ideal of S(K Φ 0) so S ~ S = S/U. Since K f] U = 0,
we can consider K as an ideal of S. It easily follows that every
nonzero ideal of S has nonzero intersection with the 0-simple ideal K.
S ~ S implies the desired result.

We call this unique 0-simple ideal the kernel of S.

LEMMA 2. Let S = S° be an inverse semigroup and let B be an
ideal of S. Then B is a Brandt subsemigroup of S if and only if
B = SeS for some primitive idempotent e e S.

Proof. Let e be primitive in S and let / be an ideal of S such
that IξΞ SeS. Suppose e$I and let feEj^IξZSeS, say / = aeb.
Then a~ιfb~ι = he, where h = a-ιabb~L e Es. If he = β, ee SfS S /,
contrary to our assumption. Therefore, by the primitivity of e,
he = 0, so / = aheb = 0 and thus EI = {0}. It follows that I = {0}.
Clearly (SeS)2 = SeS, so SβS is 0-sίmple and hence Brandt.

Conversely, suppose B is Brandt ideal of S and let eeEB*.
Clearly 5 = SeS. If feEs, since e / e ΰ and (ef)e = ef, either β/= 0
or β/ = β, so e is primitive in S.

THEOREM 2. The Brandt semigroup B = i?(G; /I) is J?/ ί/ and
only if \G\ — 1 αtid yi is infinite (i.e., if and only if B is homo-
morphically simple and infinite).

Proof. By [5], B(l; A) is a homomorph of B and \B(1; A) \ ̂  2.
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Hence B is HI if and only if B — B(l Λ) where Λ is infinite.

LEMMA 3. Let S be an inverse HI semigroup with Brandt
kernel K. Then K— B(1;Λ) for some index set Λ.

Proof. Let p be a congruence relation on K such that | K/p | > 1.
If pf denotes the identity extension of p to all of S {%p'y if and only
if x — y or xpy), it follows from [2] that pf is a congruence relation
on S. Since | S/p' \ > 1, S = S/ρ'. Thus K, the unique Brandt kernel
of S, is isomorphic to Z/^' — JK//O, the unique Brandt kernel of S/p'.
It follows from Preston [5], that B(G; Λ) ~ B(GΘ; Λ) and thus G ~ GΘ
for every homomorphism θ on G. Therefore G = 1.

THEOREM 3. Lβ£ S δe α^ inverse HI semigroup containing a
primitive idempotent e. Then S satisfies one of the following:

(1) S is an HI group,
(2) S is an HI Brandt semigroup,
(3) S has a transfinite composition series such that every factor

is isomorphic to a (fixed) Brandt semigroup B(l Λ) for some index
set Λ.

Proof. If 0 ί S, S is simple so SeS = S. Therefore Es = ESeS =
{e}, so S is a group.

Next assume 0 e S. If SteS = S, it follows from Lemma 2 that
S is Brandt, so suppose SeS Φ S. By Lemma 3, the kernel K —
SeS = B(1;Λ) for some index set A. If xeS*, then S = S/I(x) so
S//(a?) contains a unique kernel K = K. By the remark at the
beginning of this section, J(x)/I(x) is Brandt and hence it is the
Brandt kernel of S/I(x); that is, the factor J(x)/I(x) in the composi-
tion series of S is isomorphic to K. Moreover, S cannot contain a
maximal proper ideal A since this would imply S = S/A is 0-simple.
Thus the composition series is infinite.

THEOREM 4. The ideals of an inverse HI semigroup S contain-
ing a primitive idempotent are well ordered by inclusion such that
for each proper ideal A of S there is a unique ideal A! of S with
the properties (1) A a A! and (2) AaB implies A' Q B for any ideal
B of S. We call A' the successor of A.

Proof. If 0 g S, S is simple and the theorem holds trivially, so
assume 0 e S. Suppose S has ideals A and B such that A£B and
B£A. Then S = S = S/(Af)B), and A=_A/(AnB) and B =
B/(A Π B) are ideals of S such that A Π B — 0, a contradiction of
Lemma 1. Thus the ideals are linearly ordered by the inclusion
relation.
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If A is a proper ideal of S, S = S/A so S/A contains an ideal
K = K (the Brandt kernel of S). Then K is of the form A'/A for
some ideal A! of S. Since inclusion linearly orders the ideals, it
follows that Af is unique. Clearly A' satisfies conditions (1) and (2)
of the theorem.

Next let Jϊf denote a nonempty collection of ideals of S. Let
B = n {A I A e s$f}, so either B = S (and hence B e s%? and B is the
least element of jzf) or else S ~ S/B. Let B' denote the successor
of B and let x e B'\B. It follows from the definition of B that there
is an ideal Ax e Ssf such that xί Ax. By Lemma 1 applied to S/B = S
we have B S Axcz B'. Therefore, B = AxeSsf and B is the least
element of

THEOREM 5. Lβί £ 6β cm inverse semigroup containing a primi-
tive idempotent e such that S is the union of the chain of ideals

{0} - So c S, c S2 c

and such that for each i ^ 1,

where A is some (fixed) index set. Then S is HI if and only if
for each i ^ 2, there exist distinct idempotents f, gL and g2 with
feSi\Si-ι and gγ, g2e S^S^ such that gλ<f and g2 < / . Further-
more, if this is the case, then every idempotent of S\Si~ι has at
least two nonzero idempotents under it.

Before proving the theorem, we introduce the following notation:

nn — on\on-.lf n ^ 1 .

Thus Sn can be considered as the extension of jί?Λ-i by Bn. Note
that Bx = S1 is the kernel of S.

Bn = B(ln A) = {(i, n, j) \i,jeA}U {OJ

where

[0n otherwise .

Therefore, under the multiplication of S, if j = i', the above product
remains the same, while if j Φ if, the above product lies in Sw_1#

For simplicity, we write

Thus, the theorem asserts that S is HI if and only if for each n ;> 2
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there exists i, r, s e A such that
(1) eHfi > en-ltr and enΛ > βn_ l f8, where en-Ur Φ en-ί>s.

Proof of Theorem 5. First assume that S is HI. It follows
from Lemma 2 that for each ieA, e2>i is not primitive in S so there
exists v1 = v^i) e A such that eltVι < e2ti. Assume inductively that for
each ieA, there exists vn-γ = v^i) e A such that βn_1,1,w_1 < enΛ.
Since S = S/Sn-U it follows that for each ieA there exists vn e A
such t h a t entVn < en+lyi.

Suppose that for each ieA, e2Λ has exactly one nonzero idem-
potent under it. Let p be the congruence relation on S generated
by the relation p0 = {e2>1, eltV), where euv < e2tl. If p is not one-to-one
on Si it follows that S2/p = 0 so there exist x, ye S such that
#02,i2/ ^ 0 and xeltVy — 0. Therefore the idempotent e = x~1xe2>1yy~1 Φ
0. Since e ^ e2fl, it follows from our assumption that either e = e2tl or
e — eltV. Thus in either case, we have

Kv = Kv ' β = e^x^xe^yy-1 = x~ιxeuvyy~ι = 0 ,

a contradiction. Therefore, ^ merely identifies corresponding terms
of Bx and B2. Relabeling if necessary, we have eltί < e2)j for each j
in A, and by induction enJ < βΛ + l f i, n^l,jeA. Define a to be the
congruence relation on S generated by the relation

tfo = {(βΛ,ί, <*„,<) I ̂ , m ^ 1, i G yl} .

Clearly σ is one-to-one on S1? and since Sjo has no proper nonzero
ideals, we cannot have S = S/σ, a contradiction.

To prove the sufficiency of the condition let S be an inverse
semigroup of the type described in the theorem and suppose that for
each n ^ 1 there exist distinct a(n) and b(n) in A such that

and let r be a congruence relation on S that is not one-to-one.
Since xτy implies xx^τyy-1 and x~ιxτy~ιy, it follows from the struc-
ture of S that τ is not one-to-one on Es.

If en,uτen,v, u Φ v, then en,uτen>uen>v so that we may assume with-
out loss of generality that there exist integers n and m with n > m
and r, seA such that

Then

(2) (1, n, r)en,r(r, n, l )r( l , w, r)βm>s(r, n, 1) .

Upon multiplying both sides of (2) by eΛ_lfβ we obtain the relation
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en_UaτeryS for some r < n — 1 and some s e Λ. As above, this implies

β—i.i^β^,^, where u2 < n - 1 .

(If eUl>t>1 = en_Ua multiply both sides of (2) by en_ub.)
Continuing in this manner we conclude that eίtlτ0 and thus by

the transitivity of τ we conclude that | SJτ | = 1. If there exists
an integer N such that τ is not one-to-one on SN but is one-to-one
on S/SN, then S/τ = S/SN ~ S. If no such integer N exists, \S/τ\ =
1. Hence S is HI.

The final assertion will follow if, when S is HI, for each ieA,
there exist r, seA,r Φ s, such that

Without loss of generality assume eitl > eul and e2fl >elf2. For each

ieΛy

(i, 2,1)(1,1,1) = (α*, 1,1) for some a{ e A ,

and

(i, 2,1)(2,1, 2) = (6ί, 1, 2) for some 6* e A .

Therefore

(i, 2,1)(1, 1, 1)(1, 2, i) = β l fβί

and

(i, 2,1)(2,1, 2)(1, 2, i) = euh. .

Clearly eUa. < e2fi and βlf6< < e2>i. Furthermore,

ei.a4i.bi = (h 2, l)el9l(l, 2, i)(ί, 2, I)β1>2(i, 2, i)

- (1, 2,1)^,^,^,2(1, 2, ί) - (i, 2, 1)^,^,^ ! , 2, i) = 0 .

Therefore, α̂  ̂  6̂ , and the proof is complete.
We conclude with an example of an HI inverse semigroup of

the type described in Theorem 5. Let N denote the set of positive
integers, and let {Bn \neN} be a collection of pairwise disjoint
isomorphic copies of the Brandt semigroup JB(1, JV). As in Theorem
5, write the nonzero elements of Bn in the form (i, n, j), for ΐ, j e N,
let 0n denote the zero of Bn, and write 0 for 0lβ

Let Si = Bι and let Sn+1 be the extension of Sn by Bn+i where
multiplication is defined as follows:

If α, β € Sn, a o β = aβ .
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β i f

If a,βsB+u aβ

(0 it aβ = 0n+ί

Products between i?*+1 and SΛ are defined recursively as follows:

ί(2ί -l,n-l,s) if r = 2j - 1 ,(i, n, j) o (r,n - 1, s) = (2i, w - 1, s) if r - 2i ,

^ otherwise .

(s, n-l,r)o (j, n, i) = [(i, n, j) o (r, n - 1, s)]"1

(i, w, i) ° (r, w - Λ - 1, s) = [(i, w, i) o (/(r), ^ - k, f(τ))] o

(r, n — & — 1, s) ,

where /(r) is the greatest integer less than or equal to η—^-—.

(s, n - k - 1, r) o ( j , %, i) = [(i, n, j) o (r, w - k - 1, s)]-1

(i, ^ , i ) o θ = 0o (i, ^, i) = 0 .

Defining S = I J ^ A , it can be shown that S is a semigroup as
follows:

Let φ1 — (i, n, j), φ2 = (r, m, s) and ^3 = (u, p, v). First observe
that iΦ^Φz — Φι{φ2φz) if \n — m\ ^1 and | m — p\ ^ 1. Because of
the way multiplication is defined it is sufficient to consider the
following cases to show this: (i) m = n, p — n — 1 (ii) m = p =
n — 1; (iii) m = n — 1, p = n; (iv) m = n + 1, p = n; (v) m = ^ — 1,
p = w — 2. Associativity can be shown in each of the above cases
by direct computation. Clearly this can be generalized to show that
any product where consecutive factors come from B* U Bf, with
I i — j I <; 1, can be associated in any manner.

Next, observe that en>r < en+ltf{r) < en+2,f2{r) < , where fk+1(r) =
f(fk(r)). Thus every product in S can be written as a product where
consecutive factors are of the form (ί, n, j) o (r, m, s) such that
I n — m I ̂  1. Therefore, applying the observation made above, we
see that S is a semigroup. Furthermore,

e»,i < ^+i,i and eΛf2 < en+ltl for each w ^ 1 ,

so by Theorem 4, S is
The following example illustrates the associativity of S:
Let φ, = (3, n, 2), ^2 = (3, n - 1, 2) and ^3 = (3, n - 2, 2). Then

(ΦiΦ*)Φz = (5, w - 1, 2 ) ^ = (9, n - 2, 2)

and

= Λ(5, w - 2, 2) = [&(3, w - 1, 3)](5, n - 2,Γ2)

= (5, n - 1, 3)(5, w - 2, 2) - (9, n - 2, 2) .
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