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THE ARENS PRODUCTS AND AN IMBEDDING

THEOREM

JϋLIEN HENNEFELD

Let X be a separable Banach space, B(X) be the algebra
of all bounded linear operators on X, and & be the algebra
of all compact linear operators. This paper centers around the
general question of giving a construction of B(X) as a Banach
algebra starting from <&.

It is a result of Schatten and von Neumann that if H is
a Hubert space, then there is an isometric imbedding of B(H)
onto <^'**, where ^ * * denotes the second dual of ^ \ More-
over, each of the two Arens products on <^7** coincides with
the multiplication induced on &** by operator multiplication
on B(H). The proofs of these results make strong use of the
Hubert space structure.

In this paper we generalize these results to a large class
of uniformly convex spaces. Moreover, we show that even
when B(X) is not equal to &** it is still possible to con-
struct B(X) as a Banach algebra starting from 9?\

We now amplify the above statements. The theorem of Schatten
and von Neumann is proved in [9, p. 48]. See Civin and Yood [2,
p. 869] or Rickart [8, p. 289] for the result on the Arens products.

In § 2 we give basic definitions and elementary results concerning
Banach space bases and linear operators. In § 3 we prove the exis-
tence of an isometric imbedding from B(X) into ^ * * , under the as-
sumption that X has a shrinking, unconditionally monotone basis.
Also, we show that under the same assumptions, a sufficient condition
for the imbedding to be surjective is that X be uniformly convex.
In § 4 we prove that the imbedding is surjective <̂  = ]> the two Arens
products on <g?** coincide, and in that case they coincide with the
multiplication on <Sf ** induced by operator multiplication on B{X).
Finally, we show that for a certain class of Banach spaces, B(X) is
characterized as the largest subset of (g7** in which ^ is a 2-sided
ideal.

2* Preliminary definition and results*

DEFINITION 2.1. A basis (eβ) in a Banach space X is a sequence
of elements of X, such that for each xe X, there is a unique sequence
of scalars (a/) depending on x such that lim*-*. 11 Σ?=i afiά — &|| = 0.
The coefficient ad is called the j t h coordinate of x. It is a theorem of
Ήanach's that if you define ef by ef(es) = δίjf then ef is in X*. A
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basis is called shrinking if (ef) is a basis for X*. A basis is called
unconditional if for each xe X, the series ΣΓ=i el(χ)ej ^ unconditional-
ly convergent.

DEFINITION 2.2. If (ed) is a basis for X, let Umx = Σ**» <
Then (ed) is called a monotone basis if 11 Umx \\ g 11 x \| for all x in X
and integers m.

DEFINITION 2.3. If (ed) is an unconditional basis and D is a sub-
set of the positive integers, let xD = ΣΓ=i,*eD ef(x)ei. It is clear that
xD is convergent, since in a Banach space an unconditionally conver-
gent series is also subseries convergent. Then (ed) is called uncondi-
tionally monotone if \\xD\\ tί for all a; in I and subsets Daω.

PROPOSITION 2.1. // X is a Banach space with an unconditional
basis (ey), then X can be renormed isomorphically so that (eό) is an
unconditionally monotone basis.

Proof. The norm || x ||' = sup {|| xD ||: D is a finite subset of ω) is.
isomorphic to the original norm, and has the property that every rear-
rangement of (eό) is a monotone basis for X[4, p. 73], Suppose that
(βj) is not unconditionally monotone with respect to the new norm.
Then there exists a subset S c ω such that

Σ aJ Σ aJeJ

Hence, for n large enough

Σ a>& Σ
j

But this contradicts the fact that if we rearrange the basis (eό) so<
that we take first all the j in S and ̂ n, then it is a monotone basis.

Next we use a theorem of Maddaus to investigate ^ , the space
of compact operators and its dual.

NOTATION 2.1. Ei3 will denote the elementary matrix with a one
in the ijth coordinate and zeros elsewhere.

DEFINITION 2.4. By a matrix concentrated in the j t h column (row),
we will mean a matrix whose entries outside the j t h column (row),
are all zero.

THEOREM 2.1. Let X be a Banach space with a basis (eά). For
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each compact operator A, let An be the operator whose matrix consists
of the first n rows of A and zeros elsewhere. Then A is the uni-
form limit of the An.

Proof. This is proved in Maddaus [6].

PROPOSITION 2.2. Let X be a Banach space with a basis (ek).
Then for each fixed j , the set of matrices of & concentrated in the
jth r o w is nneariy isometric as a Banach space to X*.

Proof. Let R be the matrix of an operator in ^ concentrated
in the j t h row. Define a(ek)=Rjk and extend a linearly to finite linear
combinations of (elc). Let x = Σ2=i M*. Then a(x) = Σί- i &*#** and
R(χ) ~ (Σ£-i W ĵfcK . Then since \a(x)\ = ||j?(ίc)|| for each such x,a
can be extended to a functional a e X* and the map R \->a is isometric.
This map is surjective because given aeX*, define the matrix R con-
centrated in the j t h row with Rjk — a(ek).

PROPOSITION 2.3. Let X be a Banach space with an uncondi-
tionally monotone basis (ek). Then for each fixed j the set of matrices
of & concentrated in the j t h column is linearly isometric as a
Banach space to X.

Proof. Let Cj be a matr ix in & concentrated in the i t h column.

Consider the map Cj^Cjβj. Clearly | | C Ά || ^ | |Cil l- For the other

inequality, consider x = bjβj + Σ w ^ w ^ h 11 #11 — l Then by un-

conditional monotonicity \bj} ^ 1. Hence,

PROPOSITION 2.4. Let X be a Banach space with a shrinking
basis (eά). Then, with each f in ΐ f * we can associate a matrix so
that f= g^=y their matrices coincide.

Proof. First, we will show that the marices with a finite number
of nonzero entries span a dense linear manifold of ^ .

Given a compact operator A and ε>0, choose n so that || A — An \\ <
(ε/2), where An is the matrix consisting of the first n rows of A.
Let Rj be the operator An followed by the canonical projection onto
the 1-dimensional subspace spanned by [βj], for j = 1, 2, • , n. The
matrix for Rό is simply the j t h row of An and all other rows zero.
Using the fact that the map in Proposition 2.2. is isometric and the
hypothesis that (ek) is a shrinking basis, it follows that each of the
matrices Rj can be approximated to within e/2n by deleting (i.e., re-
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placing by zeros) the tail of the j t h row. Therefore, by the triangle
inequality A can be approximated to within ε by a finite matrix.

For / i n c<f* we can define the matrix (fid) by fid = f(Eid). Then
if / and g have the same matrices they are equal.

PROPOSITION 2.5. Suppose X is a Banach space with an uncon-
ditionally monotone basis (ed) and T is in B(X). Then the matrix
obtained by deleting (i.e., replacing by zeros) any set of rows or
columns from T is in B{X) and has norm <̂  || T\\.

Proof. Fix a subset Dczω. Define Px = Σ^BDe*(x)ejm Then,
|| TP(x)\\ ^ || Γ | | II Pa? II £ \\ T\\ \\x\\. Thus, || Γ P | | ^ || Γ | | . Also note
that the matrix for TP is formed by deleting the j t h column from T
for every j £ D.

Similarly, || PT\\ ^ || Γ | | and the matrix for PT is formed by
deleting the j ί h row from T for every j £ D.

PROPOSITION 2.6. Suppose X is a Banach space with an uncon-
ditionally monotone, shrinking basis (βd), and that f is in &*. Then
the matrix obtained by deleting any set of rows or columns from the
associated matrix for f, is the matrix associated with a functional
in c^* with norm ^\\ f \\.

Proof. Fix a subset Daω. Let d:^-*^ be the linear trans-
formation which deletes the j t l 1 column for each j £ D. Then its ad-
joint d* has norm 1. Note that (d*f)A = f(dA). Hence, the matrix
for d*f is formed by deleting every j t h column for j £ D.

The argument for deleting rows is similar.

PROPOSITION 2.7. Let X be a Banach space with an uncondi-
tionally monotone, shrinking basis.

(1) For each fixed j , the set of matrices in ^* which are
concentrated in the j i h row is linearly isometric as a Banach space
to X**.

(2) For each fixed j , the set of matrices in ^* which are
concentrated in the j t h column is linearly isometric to X*.

Proof. (1) Let fd eW* be concentrated in the j t h row. Define
φ(et)=-fdk. Extend ψ linearly to finite linear combinations of (el). It
follows from Proposition 2.2 that φ can be extended to a functional
in X**. Moreover, | | ό | | = | | / y | | since fd approaches its norm on com-
pact operators of norm one, concentrated in the j t h row. The map
fi^Φ is surjective because given ^eX**, the matrix whose j ί h row
is given by fjk = (el) and whose other rows are zero is in ̂ * .
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( 2) The proof is similar.

3. An imbedding theorem. We are now ready to give an iso-
metric imbedding of B(X) into ^ * * .

THEOREM 3.1. If {eό) is an uncondionally monotone, shrinking
basis for the Banach space X, then there is a linear isometric map
from B(X) —> ^ * * such that each A in ^ is taken onto its usual
image under the evaluation map of ^ —>^**.

Proof. Given T in B{X) let R3 be the matrix consisting of the
j t h row of T with zeros elsewhere. Define Φτ in <ĝ ** by Φτ(f) =
ΣΓ=i/(#/)> where / is in ^T* and | | / | | = 1. We must show that the
series ΣΓ=i/(^ ) *s convergent. By Proposition 2.5.

\f(Rh + ••• + Ri%)\£\\τ\\

for an arbitrary set of integers {j19 * ,iw}, since the left side repre-
sents / applied to a compact operator formed by deleting rows from
T. It is clear then that the series ΣΓ=i/(^ ) *s unconditionally con-
vergent.

The map Tv->ΦT is obviously linear, since matrix addition and
taking limits are linear operations.

I ΦAf) I = = lim '(§*<) ii/uim

since Σ?=i-Ky is a compact operator of norm ΞΞ|| Γ| |. Hence, Φτ is
bounded and || Φτ \\ ̂  || T| | . To prove the reverse, first, we note that
||Σΐ=i-βjll approaches \\T\\ as n approaches oo. Then, given s > 0,
take |IΣ?=i-Bjll > II ΪΊ | — s. Since ΣΊ^iRj is compact, we can find
by the Hahn Banach theorem a g in ^* of norm 1, such that

Then let gD be the matrix formed by deleting the columns of g past
the nth. By Proposition 2.6., | | ^ | | ^ 1, and we have that Φτ(gD) >
|| Γ|| — ε. Hence, || Φτ \\ ^ || Γ|| and the Imbedding is isometric.

Then as we noted in Proposition 2.4., the finite matrices form a
dense manifold of ^ . It is clear that Φ and the evaluation map agree
on all finite matrices in & and hence on all of ^ .

PROPOSITION 3.1. Let X be a Banach space with an uncondi-
tionally monotone, shrinking basis. Then B(X) = <&** under the
previous imbedding ζ = y the set of finite matrices in &* is a dense
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linear manifold. Moreover, in that case X is reflexive.

Proof. If the set of finite matrices is not dense in <g**, then
there exists a nonzero F in ^ * * , which is 0 on all finite matrices.
However no Φτ for nonzero T in B(X) can have this property, since
if T has the entry Ti3 Φ 0, then φτ(fij)=Tij where fid is an elemen-
tary matrix in <g?*.

Assume the finite matrices are dense in ^ * . Let π be an arbi-
trary functional in X**. Then by Proposition 2.7., π can be identified
with an / e ^ * which is concentrated in the j t h row. Since the finite
matrices are dense in c ^ * , Σlc=1fjkek converges in norm to π and hence
X is reflexive.

Given F e ^ * * , define the matrix (Fi3) by Fi3 = F ί / ^ ). ί7 is de-
termined by this associated matrix. By reflexivity and Proposition
2.7., it follows that each column of F represents an element of X
with respect to (e3). Then let Tn be the matrix consisting of the
first n columns of F. It is the matrix of a compact operator. Fur-
thermore ΦTn(f) = F(fD) for each /e<if*, where fD is the matrix
formed from / by deleting all the columns past nth. Hence, || Tn\\ =
\\ΦTJ\^\\F\\. Define the operator T by T{ΣUaόe3) = TJ^Ua3e3).
T is well defined on the set of all finite linear combinations of the
(e, ), and has norm ^\\F\\. Hence, it can be extended uniquely to a
bounded operator on all of X. It is clear that F = Φτ, since F and
Φτ agree on all finite matrices in ^ * .

The next proposition puts Proposition 3.2. into a more workable
form for applications.

PROPOSITION 3.2. Let X be a Banach space with an uncondi-
tionally monotone shrinking basis (e3). Then, B(X) = W** <( = )> for
each f in cά?*, \\fN\\ -+0, where fN is the matrix formed from f by
deleting the first N rows and N columns.

Proof. We will show that the condition on the right is satisfied
< = > the set of finite matrices in ^ * span a dense manifold.

Suppose that the finite matrices are norm dense in ^ * : . Given
ε > 0 and fe ^ * there exists a finite g such that \\f~g\\ < ε. Then
since g is finite we can pick N large enough so that fN — (f — g)N.
By Proposition 2.6. || (/ - g)N \\ ̂  \\f - g | | < ε.

Conversely, suppose | | / v | | — * 0 . Given ε > 0 choose N large enough:
||/tf || = 11/ - (/ - f») | | < ε/2. The matrix for / - fN is not finite,
but can be approximated to within ε/2 by a finite matrix.

The next proposition shows that if B(X) Φ c&**, then the Banach
space X behaves very much like (c0), the space of sequences which
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converge to 0.

PROPOSITION 3.3. Let X be a Banach space with an uncondi-
tionally monotone shrinking basis {eό). If B(X) Φ ^ * * , then for
every ε > 0, and integer n, we can find an x of norm 1, such that
x = xι + + xn9 where each α?< is a finite linear combination of
distinct sets of basis vectors and \\Xi\\ ^ 1 — ε.

Proof. By the previous proposition there exists an / in ^ * such
that \\fN\\ does not approach 0. The fN decrease in norm, since fN+ι

is formed by deleting a row and a column from fN. We can assume
without loss of generality that 11 fN \ \ —> 1 and never achieve it as
N—> oo. Then, given λ>0, there exists an integer N^. \\fNl\\ < 1+λ.
Since the finite operators are dense in the compact operators there
exists an integer N[> N19 and a finite operator T1 of norm 1: Tx is
concentrated on the manifold Xλ spanned by [eNl, , eN

fJ and fNl(T1)>l.
Let N2 = N{ + 1. For fN2 there exists a finite operator T2 of norm
1, concentrated on the manifold X2 = [eNl, , eN'2]ι fN*(Ts) > 1. Repeat-
ing this process n times, we can construct ϊ\, , Tn such that
fNk(Tk) > 1, and the Tk are concentrated on disjoint basic blocks of
X. Hence

n < rm + ... + r*(τn) = FKT, + + τn)

and n/1 + λ < || ΓL + + Tn ||. This means that there exists an x
of norm 1, where x = xι + + #», each «< is in Xi9 and such that

71 < II (Γ + + Tn)x || ^
1 + λ

However, λ > 0 was arbitrary. By picking λ > 0 small enough, we
can find T19 , Tn: the sum || T& || + + || Tnxn || is as close to n
as we wish. By unconditional monotonicity, each H^H ^ 1. Thus,
|| TiXi\\ ^ 1. Hence, each || T^W and || α?̂  || will be close to 1.

LEMMA 3.1. A uniformly convex Banach space is reflexive.

Proof. See Wilansky [10, p. 109].

LEMMA 3.2. If X is a reflexive Banach space with a basis, then
the basis is shrinking.

Proof. See [10, p. 213].

THEOREM 3.2. // X has an unconditionally monotone basis (e^)
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and X is isomorphic to a uniformly convex Banach space Z, then
B(X) = ΐ f **.

Proof. For each x in X call its norm \\x\\, and for its image in
Z call its norm \x\. Uniform convexity means that for every e > 0,
there exists a δ(e) > 0 such that if x,x' are in the unit ball of Z,
and I x — xr | > ε, then j x + xf \β <, 1 — δ(s). Clearly, if we renorm
Z by multiplying the old norm by some constant, the renormed Z will
still be uniformly convex. Hence, we may assume without loss of
generality that there exists a constant M: \\x\\ fί \x\ ^ Λf 11 sc 11. Let
t = δ(l/2M). Choose r large enough so that, (1/1 - t)r(l/2M) > 1.
Suppose B(X) Φ &**. By Proposition 3.3. there exists an x of norm
1, such that x = xι + + a w where each \\Xi\\ ^ 1/2 and where
each Xi is a linear combination of distinct (βj). We want to construct
an element v: \\ v \\ > 1 and ] v \ ̂  1. This will contradict the fact that
\\v\\£\v\.

Consider the following system of elements like the seeding chart
of a tennis tournament. In the first round put the elements wly , w2r
where wk = {xι + + xk)/M and x{ as above. Then we construct
the second round consisting of 2r~1 elements by letting the nth element
of the second round be un — (w2n-i + ^2n)/2(l — t). To form the nth

element yn of the third round, let

The elements for the other rounds are formed in the same manner.
We claim that every element in this system lies in the unit ball

of Z. For the first round, each wk is in the unit ball of Z, because
\\wk\\ ̂  1/M by unconditional monotonicity. We can assume that two
paired elements u and uf from the nth round are in the unit ball of
Z. Note that there exists an xk: v! = (1/M(1 — t)n~ι)xk + other terms
not involving xk, whereas u does not involve any of the (et) used in
expressing (xk). By unconditional monotonicity

" - M " "~ 2M

Hence,

u — u' \ > and
~ 2M 2(1 - t)

(u + u') < 1

Thus an arbitrary element of the (n + l)st round is in the unit ball of
Z. Let v be the element in the rth round. Then, v = {l/(l-t)rM}x1 +
other terms not involving xλ. Hence | | Ί ; | | > 1 . This is impossible
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since | v | ^ 1.

COROLLARY 3.1. // X is isomorphίc to a uniformly convex space
and has an unconditional basis, then B(X) is isomorphic to ^ * * .

Proof. Renorm X so that the basis is unconditionally monotone.

EXAMPLE 3.1. The canonical basis for lp for 1 < p < oo is uncon-
ditionally monotone and lp is uniformly convex, see Clarkson [3].
Lp[0,1] for 1 < p < oo, has an unconditional basis and is uniformly
convex. See Pelczynski [7].

4* The Arens products* The two Arens products are defined
in stages according to the following rules. Let J^ be a Banach algebra.
Let A, B e s/\ fe j ^ * ; F, Ge**.

DEFINITION 4.1.

(fΐA)B = f(AB) . This defines f*A as an element of
(G?f)A = GiffA) . This defines Gff as an element of
(F?G)f = F(Gΐf) . This defines F*G as an element of
We will call F*G the first Arens product, or the mι product.

DEFINITION 4.2.

(Atf)B = f(BA). This defines Aϊf as an element of
(f2*F)A = F(Atf) . This defines f?F as an element of
(F2*G)f= G(f2*F) . This defines F*G as an element of
F2*G is the second Arens product or the m2 product.

It is proved in Arens [1] that m^ and m2 are both Banach algebra
products on j ^ * * , which extend the original multiplication on
when it is imbedded in

DEFINITION 4.3. A Banach algebra s*f is called Arens regular if
the two Arens products coincide on

DEFINITION 4.4. Let Ea be a net of elements in the unit ball of
,jy. Then Ea is a weak identity if for every Ae j%f,fejzf*, both
f(EaA)-+f(A) and f(AEa)-+f(A).

LEMMA 4.1. // j& has a weak identity Ea, then there exists
an element Iejzf**, which is simultaneously (1) a right identity
for mx (2) a left identity for m2. Call such an element I a simul-
taneous identity.



560 JULIEN HENNEFELD

Proof. (1) is proved in [2, p. 855]. The proof of (2) is similar.
A subnet of the {Ea} converges to I in the weak star topology.

DEFINITION 4.5. Let X be a normed space. Then, /«—•/ in the
bounded weak star topology ζ = y the {/„} consititute a bounded set
and fa—*f in the weak star topology.

LEMMA 4.2. s/ is Arens regular <=> there is a multiplication
m3 on Jϊf** which extends the multiplication on Sϊf to j^f** in a
way such that (1) F*G is weak star bounded continuous in F for
each fixed G and (2) F*G is weak star bounded continuous in G for
each fixed F.

Proof. Arens [1, p. 843].

THEOREM 4.1. If X is a Banach space with an unconditionally
monotone, shrinking basis (βj), then B(X) — ̂ * * <( = )> r<f is Arens
regular.

Proof. Assume B(X) = cέ?**. We claim that ordinary matrix
multiplication satisfies (1) and (2) of the above lemma. Let Sa, S9 and
T all be in the unit ball of B(X) and Sa -> S weak star. Let fί3 be
the matrix in ^ * with a 1 in the ijth coordinate and zeros elsewhere.
First, we claim that (SaT)fid-> (ST)fi3 . Clearly, only the ith rows of
Sa and S and the j t h column of T are relevant. By Proposition 2.3.
given ε > 0, there exists an integer n such that the tail of the j t h

column of T after the first n terms has norm <ε/2.
Since Sa—+S weak star, it is clear that Sa approaches S coordinate-

wise. Let a be large enough so that each of the first n entries of
the ΐth row of S are within ε/2^ of the corresponding entry of S.
Then | (S α Γ)/ ί y -(SΓ)/ < y | ^ε . Hence, (SaT)fiS->(ST)fiS. Since B(X) =
^ * * implies that the finite matrices are norm dense in ^ * , it follows
that for arbitrary # e ^ * , (SaT)g -> (ST)g. The argument that (2)
is satisfied is similar.

Now assume B(X) Φ c<^**. Then the finite matrices do not span
a dense manifold of ^ * . Hence, there exists a nonzero F in ^ * *
which is 0 on all finite matrices. Let En be the matrix in ^ with
ones down the first n entires of the diagonal and zeros elsewhere.
Then, (En) is a weak identity since it is actually an approximate iden-
tity by the fact that finite matrices are norm dense in &.

Let I be the simultaneous identity in Lemma 4.1., and / e ? * .
By Theorem 3.2. [1]

(Fϊl)f = lim [(FfEn)f] = lim [En(f?F)]

= lim [(fi*F)En] = lim [F(EJf)] .
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However, E*2f is the matrix in ^ * which consists of the first n
columns of /, and thus can be approximated in norm by a finite matrix,
since the basis is shrinking. Hence {F?I) = 0 whereas F?I = F.

LEMMA 4.3. // there is a continuous homomorphism of the
Banach algebra j&[, onto the Banach algebra j^ζ, and if the mul-
tiplication in s/x is regular, then so is the multiplication in

Proof. Civin and Yood [2], Corollary 6.4.

COROLLARY 4.1. If X is a Banach space with an unconditional
basis (βj), and which is isomorphic to a uniformly convex space, then
its space of compact operators is Arens regular.

Proof. By Proposition 2.1., X can be renormed isomorphically to
X' so that (βy) is an unconditionally monotone basis for X'. Let i be
an isomorphic map from X to Xr. Then the map A i—> i~~ιAi, where

7', is a continuous homomorphism from &' onto W.

THEOREM 4.2. Let X be a Banach space with an unconditionally
monotone, shrinking basis, and for which the matrices in ^ * with
a finite number of rows are norm dense. Then B(X) = {Fe^**:
F*A and AfF are both in c^ for all Ae^ 7 } . Furthermore, each of
the Arens products coincides with operator multiplication on B(X).

Proof. Let F be in ^ * * . Let D3 denote the elementary matrix
E5j. Call D%F the j t h row of F. Note that Df,F is concentrated on
the j t h row of matrices in ^ * . In fact,

(DlF)f = DAFΐf) = (F*f)Dd = FiffDj) .

But the matrix for f?Dά is easily seen to be the matrix formed from
/ by deleting all but the j t h row. By Proposition 2.7., the j t h row of
F can be identified with a functional in X***.

Call FfDj the j t h column of F. It is concentrated on the j t h

column of matrices in c<^*, because D%f is the matrix formed by de-
leting all but the j t l i column of /. Then by Proposition 2.7. it can
be identified with an element of X**.

We claim FeB(X) <=> each of its rows is in X* and each of
its columns is in X. Suppose F e ^ * * with each of its rows in X*
and columns in X. Let T be the actual matrix formed by writing
down the columns of F as elements in X with respect to the basis
(βy). Let Tn be the first n columns of T. It is a compact operator
since each column is in X. Also by Proposition 2.6.
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\\Tu\\ = \\ΦTn\\£\\F\\

where Φ is the isometry defined in Theorem 3.1. Hence, the {Tn} de-
fine a single bounded operator on the dense linear manifold of finite
linear combinations of (e,-). This bounded operator has the same matrix
as T.

Clearly Φτ and F agree on any elementary matrix in <£**. Hence
they agree on any matrix in ̂ * concentrated in a single row, since
each row of ί7 is in J * and the (ef) form a basis for X*. Then by
the hypothesis that the matrices in c^?* with a finite number of rows
are dense, Φτ = F.

Conversely, if FeB(X) it is clear that its generalized rows and
columns will be in X* and X respectively.

Using this characterization of B(X) as a subspace of if**, it is
clear that if FgB(X), then for some j either D^F or F?DS lies out-
side B{X) and hence outside ^ . But Dj is a compact operator.

To finish the proof we will show that on JB(X), mι is equal to
operator multiplication. The proof for m2 is similar.

Clearly it is enough to show that (ST)fd = (SϊT)fd for fd a matrix
in <gf * concentrated in the j t Ά row and where || S| | = \\ T\\ = \\fs || = 1.
Given ε > 0, we can approximate the j t h row of S in norm to within
ε by deleting after the first n terms for n large enough.

Then

(ST)Λ - (SnTn + Sj2T21 + . . . + SjnTnί)fόι

+ (bjl-Llk + &j2J-2k + * ' ' + SjnTnk)fjk

+ (error term <ε) .

We claim that (Tϊf/) is concentrated in the j t h row. In fact,

{T*fό)Emk = nfZE^) = 0 if m Φ j ,

whereas (T?fj)ESk = dot product of kth row of T with j t h row of fjm

Then,

S(Tffd) = (TnU + T12fj2 +... +)Sjί

+ (Tnlfil+ Tn2fj2+ . . . +)Sjn

+ (error term <ε) .

Hence | (ST)fj - (SfT)fj \ < 2ε, since for a finite collection of conver-
gent series
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+ αϊ) = Σ αi + + Σ

DEFINITION 4.6. A shrinking basis {eά) for a Banach space is cal-
led boundedly growing if there exists an ε>0 and an integer n, such
that xι + + xn < n — e whenever the a?Js have norm 1 and are
linear combinations of distinct basic vectors. For example the canoni-
cal bases for c0 or lp, p > 1 are boundedly growing. Finite direct
sums of boundedly growing Banach spaces are boundedly growing.
Also lp(Xi) for p > 1 is boundedly growing if the X{ have a common
n and ε.

COROLLARY 4.2. // a Banach space X has an unconditionally
monotone, boundedly growing basis then B(X) is the largest subset
in cέ?** in which cέ? is a two sided ideal.

Proof. In proving Proposition 3.3. we showed that if the finite
matrices are not dense in ^ * then the basis is not boundedly grow-
ing. Similarly, if the matrices with a finite number of rows are not
dense in ^ * , then the basis is not boundedly growing.
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