TRANSLATION KERNELS ON DISCRETE ABELIAN GROUPS

William R. Emerson

Let G be a compact Abelian group with discrete countable dual group $\Gamma=\hat{G}$ and let $f \in L^{1}(G)$ with Fourier transform $F=\hat{f}$. If V is a finite subset of Γ we consider the operator F_{V} on $L^{2}(V)$:

$$
\left(F_{V} \varphi\right)(\gamma)=\sum_{\tau \in V} F(\gamma-\tau) \varphi(\tau) \quad \varphi \in L^{2}(V), \gamma \in V .
$$

Then if $\left\{V_{n}\right\}$ is any suitably restricted sequence of finite subsets of Γ we show that

$$
\lim _{n \rightarrow \infty}\left|F_{V_{n}}\right|=\lim _{n \rightarrow \infty}\left\{\max _{\|\varphi\|_{2}=1}\left|\left(F_{V_{n}} \varphi, \varphi\right)\right|\right\}=\|f\|_{\infty}
$$

where $\left|F_{V}\right|$ is the operator norm of F_{V} on $L^{2}(V)$ and $\left(F_{V} \varphi, \varphi\right)$ denotes the inner product of $F_{V} \varphi$ and φ (over V).

This result is then translated into a statement concerning a special class of infinite matrices which generalize the classical Toeplitz matrices. We then apply these results in evaluating the norm of a special type of linear operator.

In [1] the author considered the asymptotic distribution of eigenvalues and characteristic numbers of certain sequences of operators $\left\{F_{V_{n}}\right\}$ over a locally compact group Γ associated with sequences $\left\{V_{n}\right\}$ of Borel sets of Γ of finite nonzero measure satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\gamma V_{n} \triangle V_{n}\right| /\left|V_{n}\right|=0 \quad \text { for all } \gamma \in \Gamma \tag{*}
\end{equation*}
$$

where $\left|\mid\right.$ is left Haar measure on Γ. We write $\left\{V_{n}\right\} \in W_{\Gamma}$, and say $\left\{V_{n}\right\}$ has the weak ratio property in case (*) is satisfied (see [2]). In this paper we are considering countable Abelian Γ and a more general family T_{Γ} of sequences $\left\{V_{n}\right\}$ than those in W_{Γ} (and hence in general the asymptotic distribution of the characteristic numbers of $\left\{F_{V_{n}}\right\}$ does not exist, [2]) but still restricted enough to guarantee an asymptotic formula for the maximal characteristic number of $F_{V_{n}}$ as $n \rightarrow \infty$.

1. The basic theorem. Γ denotes an arbitrary countably infinite discrete Abelian group equipped with the counting measure.

Definition 1. A sequence $\left\{V_{n}\right\}$ of finite nonempty subsets of Γ has the translation property, written $\left\{V_{n}\right\} \in T_{\Gamma}$, if and only if to every finite subset $\Gamma_{0} \cong \Gamma$ there corresponds an $n_{0}=n_{0}\left(\Gamma_{0}\right)$ such that for $n \geqq n_{0}$ there exists a $\tau_{n}=\tau_{n}\left(\Gamma_{0}\right) \in \Gamma$ with the property that $\tau_{n}+\Gamma_{0} \cong V_{n}$.

Proposition 1. (i) $\left\{V_{n}\right\} \in T_{\Gamma}$ and $V_{n} \cong V_{n}^{*}$ for $n \in N^{+}$implies $\left\{V_{n}^{*}\right\} \in T_{\Gamma}$. (ii) W_{Γ} is properly contained in T_{Γ}.

Proof. (i) is immediate from the definition. To prove (ii), first assume $\left\{V_{n}\right\} \in W_{\Gamma}$ and fix any finite nonempty subset $\Gamma_{0} \subseteq \Gamma$. Set $C=\Gamma_{0} \cup\{0\}$. We then readily conclude (see [2] where many properties of W_{Γ} are established)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|C+V_{n}\right|}{\left|V_{n}\right|}=1 \tag{1}
\end{equation*}
$$

But $C+V_{n}=\bigcup_{\tau \in V_{n}}\left(\tau+\Gamma_{0}\right) \cup V_{n}$. Hence if $\tau+\Gamma_{0} \nsubseteq V_{n}$ for all $\tau \in V_{n}$, we have $\left|\left(\tau+\Gamma_{0}\right) \sim V_{n}\right| \geqq 1$ for all $\tau \in V_{n}$ and consequently

$$
\begin{equation*}
\left|C+V_{n}\right| \geqq\left|V_{n}\right|+\frac{\left|V_{n}\right|}{\left|\Gamma_{0}\right|} \tag{2}
\end{equation*}
$$

since we may choose $\left|V_{n}\right|$ elements $\tau+\gamma_{\tau} \in\left(\tau+\Gamma_{0}\right) \sim V_{n}$, where $\tau \in V_{n}$ and $\gamma_{\tau} \in \Gamma_{0}$, and no element is duplicated more than $\left|\Gamma_{0}\right|$ times. But for sufficiently large n (2) violates (1) and therefore there is a $\tau_{n} \in V_{n}$ for which $\tau_{n}+\Gamma_{0} \subseteq V_{n}$. Hence $W_{r} \subseteq T_{\Gamma}$.

We now show inclusion is proper. For let $\left\{V_{n}\right\} \in W_{\Gamma}(\neq \varnothing$, by [2]); we shall construct a sequence $V_{n}^{*} \supseteq V_{n}$ such that $\left\{V_{n}^{*}\right\} \notin W_{\Gamma}$, which completes the proof of (ii) upon appealing to (i). Fix any $\gamma \in \Gamma \sim\{0\}$. We inductively construct a sequence $\nu_{1}^{(n)}, \cdots, \nu_{\left|V_{n}\right|}^{(n)}$ as follows: $\nu_{1}^{(n)} \notin V_{n}+\{0, \pm \gamma\}$, and

$$
\begin{equation*}
\nu_{k}^{(n)} \notin\left(V_{n} \cup\left\{\nu_{1}^{(n)}, \cdots, \nu_{k-1}^{(n)}\right\}\right)+\{0, \pm \gamma\} \quad\left(2 \leqq k \leqq\left|V_{n}\right|\right) . \tag{I}
\end{equation*}
$$

We set $V_{n}^{*}=V_{n} \cup\left\{\nu_{1}^{(n)}, \cdots, \nu_{|V|}^{(n)}\right\}$ and verify that

$$
\frac{\left|\left(\gamma+V_{n}^{*}\right) \cap V_{n}^{*}\right|}{\left|V_{n}^{*}\right|} \leqq \frac{1}{2} \quad\left(n \in N^{+}\right)
$$

implying $\left\{V_{n}^{*}\right\} \notin W_{\Gamma}$. For

$$
\begin{aligned}
& \left(\gamma+V_{n}^{*}\right) \cap V_{n}^{*} \\
= & \left(\left(\gamma+V_{n}\right) \cap V_{n}^{*}\right) \cup\left(\left\{\gamma+\nu_{1}^{(n)}, \cdots, \gamma+\nu_{\left|V_{n}\right|}^{(n)}\right\} \cap\left(V_{n} \cup\left\{\nu_{1}^{(n)}, \cdots, \nu_{\left|V_{n}\right|}^{(n)}\right\}\right)\right) \\
= & \left(\left(\gamma+V_{n}\right) \cap V_{n}^{*}\right)
\end{aligned}
$$

since the second term in the union is empty by (I). Hence $\left|\left(\gamma+V_{n}^{*}\right) \cap V_{n}^{*}\right| \leqq\left|\gamma+V_{n}\right|=\left|V_{n}\right|$, and therefore for $n \in N^{+}$

$$
\frac{\left|\left(\gamma+V_{n}^{*}\right) \cap V_{n}^{*}\right|}{\left|V_{n}^{*}\right|}=\frac{\left|\left(\gamma+V_{n}^{*}\right) \cap V_{n}^{*}\right|}{2\left|V_{n}\right|} \leqq \frac{\left|V_{n}\right|}{2\left|V_{n}\right|}=\frac{1}{2} .
$$

We now prove a result, of independent interest, which is critical in the proof of Theorem 1.

Proposition 2. Let G be a compact Abelian group (with measure normalized to one), let $f \in L^{1}(G)$, and let ρ be any positive number. Then

$$
\|f\|_{\infty}=\left.\sup _{\omega}\left|\int_{G}\right| \omega(x)\right|^{\rho} f(x) d x \mid
$$

where ω ranges over all trigonometric polynomials on G satisfying $\|\omega\|_{\rho} \leqq 1$.

Proof. Recall that a trigonometric polynomial is a finite linear combination of characters on G. Clearly

$$
\left.\left.\left|\int_{G}\right| \omega(x)\right|^{\rho} f(x) d x\left|\leqq\|f\|_{\infty} \int_{G}\right| \omega(x)\right|^{\rho} d x=\|f\|_{\infty}\|\omega\|_{\rho}^{\rho} \leqq\|f\|_{\infty}
$$

We divide the proof of the converse inequality into two cases:
To prove the converse inequality, we first consider the case $\|f\|_{\infty}<+\infty$. Fix any $\delta>0$ (until the conclusion of the argument). Let $S=S(\delta)$ be a measurable subset of the complex plane of diameter less than δ and such that

$$
E=f^{-1}(S),\left\|\chi_{E} f\right\|_{\infty}=\|f\|_{\infty},
$$

where χ_{E} denotes the characteristic function of E. Hence for $s \in S$ and $x \in E$ we have

$$
\left||s|-\left|\left(\chi_{E} f\right)(x)\right|\right| \leqq\left|s-\left(\chi_{E} f\right)(x)\right|<\delta
$$

and consequently also

$$
\left||s|-\|f\|_{\infty}\right|=\left||s|-\left\|\chi_{E} f\right\|_{\infty}\right| \leqq \delta
$$

Therefore, if $g=\chi_{E} /|E|$ then
(3) $\leqq\left|\|f\|_{\infty}-|s|\right|+\left|s-\int_{G} f g d x\right|$

$$
=\left|\|f\|_{\infty}-|s|\right|+\left|\frac{1}{|E|} \int_{E}\left(s-\chi_{E} f\right) d x\right| \leqq 2 \delta
$$

We next wish to approximate g by a continuous function h, and at this point the estimate is rather delicate because this is also needed later in the case $\|f\|_{\infty}=+\infty$ and consequently we must avoid $\|f\|_{\infty}$ as a factor in the error of estimation. Now since $f \in L^{1}(G)$, to every $\varepsilon>0$ there corresponds an $\eta=\eta(\varepsilon)$ such that for all measurable subsets T of G of measure at most η

$$
\int_{T}|f| d x<\varepsilon
$$

We now choose $\gamma=\gamma(\delta)$ satisfying
(4)
(i) $\gamma<\delta|E|$,
(ii) $\int_{T}|f| d x<\delta|E|$ if $|T|<\gamma$.

Furthermore, since Haar measure is regular, we may find an open set E^{+}and a closed set E^{-}such that

$$
E^{-} \sqsubseteq E \subseteq E^{+}, \quad\left|E^{+} \sim E^{-}\right|<\gamma
$$

Finally (by Urysohn's Lemma, since G is a normal topological space) there exists a continuous $h_{0}: G \rightarrow[0,1]$ such that $h_{0} \mid E^{-} \equiv 1$ and $h_{0} \mid G \sim E^{+} \equiv 0$. Our candidate for h is then defined to be the nonnegative function $h=h_{0} /|E|$. Let us now estimate $\int_{G} f g d x-\int_{G} f h d x$:

$$
\begin{align*}
& \left|\int_{G} f g d x-\int_{G} f h d x\right| \leqq \int_{G}|f||g-h| d x \\
= & \left(\int_{E^{-}}+\int_{E^{+} \sim E^{-}}+\int_{G \sim E^{+}}\right)|f||g-h| d x=\int_{E^{+} \sim E^{-}}|f||g-h| d x \tag{5}\\
& \leqq \max |g-h| \int_{E^{+} \sim E^{-}}|f| d x \leqq \frac{1}{|E|} \cdot \delta|E|=\delta
\end{align*}
$$

by (4), (4') and the definitions of g and h. Also, we have

$$
\int_{E^{-}} h d x \leqq \int_{G} h d x=\int_{E^{+}} h d x \leqq\|h\|_{\infty}\left|E^{+}\right|
$$

implying the estimate
(6) $\quad \frac{\left|E^{-}\right|}{|E|} \leqq\|h\|_{1} \leqq \frac{\left|E^{+}\right|}{|E|} \leqq 1+\delta$ by virtue of (4) and (4').

Lastly, to any $\alpha>0$ we may correspond a trigonometric polynomial ω_{α} satisfying $\left\|h^{1 / \rho}-\omega_{\alpha}\right\|_{\infty}<\alpha$, and consequently $\left\|h^{1 / \rho}-\left|\omega_{\alpha}\right|\right\|_{\infty}<\alpha$ since $h^{1 / \rho} \geqq 0$. Thus by choosing $\alpha_{0}=\alpha_{0}(\delta)$ sufficiently small we may conclude

$$
\begin{equation*}
\left\|h-\left|\omega_{\alpha_{0}}\right|^{\rho}\right\|_{1} \leqq\left\|h-\left|\omega_{\alpha_{0}}\right|^{\rho}\right\|_{\infty}<\delta \tag{7}
\end{equation*}
$$

Also,

$$
\left\|\omega_{\alpha_{0}}^{\rho}\right\|_{1} \leqq\left\|h-\left|\omega_{\alpha_{0}}\right|^{\rho}\right\|_{1}+\|h\|_{1} \leqq \delta+(1+\delta)=1+2 \delta
$$

We now let

$$
\omega=\omega_{\alpha_{0}} /(1+2 \delta)^{1 / \rho}, \text { implying }\|\omega\|_{\rho} \leqq 1
$$

Finally,
(8) $\geqq \frac{1}{1+2 \delta}\left(\left|\int_{G} f g d x\right|-\left|\int_{G} f g d x-\int_{G} f h d x\right|-\left.\left|\int_{G} h f d x-\int_{G}\right| \omega_{\alpha_{0}}\right|^{\rho} f d x \mid\right)$

$$
\geqq \frac{1}{1+2 \delta}\left(\left(\|f\|_{\infty}-2 \delta\right)-\delta-\delta\|f\|_{1}\right) .
$$

By (3), (5), and (7). Our assertion follows upon letting $\delta \rightarrow 0$.
In case $\|f\|_{\infty}=+\infty$, we let S_{n} be a measurable subset of the complex plane of diameter less than δ and such that $E_{n}=f^{-1}\left(S_{n}\right)$, $\left\|\chi_{E_{n}} f\right\|_{\infty}>n$. Equations (3) - (8) still hold with $\|f\|_{\infty}$ replaced by $\left\|\chi_{E_{n}} f\right\|_{\infty}>n$ wherever it occurs, and we readily construct trigonometric polynomials ω_{n} with $\left\|\omega_{n}\right\|_{\rho} \leqq 1$ and such that $\int_{G}\left|\omega_{n}\right|^{\rho} f d x$ is unbounded as $n \rightarrow+\infty$.

We now are ready to prove the basic theorem.
Theorem 1. Let G be a compact group (with measure normalized to one), let $f \in L^{1}(G)$, and let $F=\hat{f} \in L^{\infty}(\Gamma)$, the Fourier Transform of f. Furthermore, let $\left\{V_{n}\right\} \in T_{\Gamma}$ and let $F_{V_{n}}$ be the Hilbert-Schmidt operator on $L^{2}\left(V_{n}\right)$:

$$
\begin{aligned}
&\left(F_{V_{n}} \psi\right)(\gamma)=\int_{V_{n}} F(\gamma-\tau) \psi(\tau) d \tau=\sum_{\tau \in V_{n}} F(\gamma-\tau) \psi(\tau) \\
&\left(\psi \in L^{2}\left(V_{n}\right), \gamma \in V_{n}\right)
\end{aligned}
$$

Let $\left(F_{V_{n}} \psi, \psi\right)_{V_{n}}$ denote the inner product of $F_{V_{n}} \psi$ and ψ over V_{n}, and let $\left|F_{V_{n}}\right|$ denote the maximal characteristic number of $F_{V_{n}}$ as an operator on the Hilbert space $L^{2}\left(V_{n}\right)$. Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \max _{\|\psi\|_{2}=1}\left|\left(F_{V_{n}} \psi, \psi\right)_{V_{n}}\right|=\|f\|_{\infty} . \tag{i}\\
& \lim _{n \rightarrow \infty}\left|F_{V_{n}}\right|=\|f\|_{\infty} . \tag{ii}
\end{align*}
$$

Proof. (i) By definition,

$$
\begin{aligned}
& \left(F_{V_{n}} \psi, \psi\right)_{V_{n}}=\sum_{r, \tau \in V_{n}} F(\gamma-\tau) \psi(\tau) \psi(\bar{\gamma}) \\
= & \sum_{\gamma, \tau \in V_{n}}\left[\int_{G} \overline{(\gamma-\tau, x)} f(x) d x\right] \psi(\tau) \overline{\psi(\gamma)} \\
= & \int_{G}\left[\sum_{r, \tau \in V_{n}}(\tau, x) \psi(\tau) \overline{(\gamma, x) \psi(\gamma)}\right] f(x) d x \\
= & \int_{G}\left|\sum_{\tau \in V_{n}}(\tau, x) \psi(\tau)\right|^{2} f(x) d x .
\end{aligned}
$$

Note that

$$
\omega_{\psi}(x)=\sum_{\tau \in V_{n}}(\tau, x) \psi(\tau)
$$

is a trigonometric polynomial on G, and $\psi \rightarrow \omega_{\psi}$ is an isometry of $L^{2}\left(V_{n}\right)$ into $L^{2}(G)$ since $\left\|\omega_{\psi}\right\|_{2}^{2}=\sum_{\tau \in V_{n}}|\psi(\tau)|^{2}=\|\psi\|_{2}^{2}$. Therefore

$$
\max _{\|\psi\|_{2}=1}\left|\left(F_{V_{n}} \psi, \psi\right)_{V_{n}}\right|=\left.\max _{\|\omega!\|_{2}=1}\left|\int_{G}\right| \omega(x)\right|^{2} f(x) d x
$$

where ω ranges over linear combinations of characters on G generated by elements in V_{n}. Hence by Proposition $2(\rho=2)$,

$$
\lim _{n \rightarrow \infty} \max _{\left\|q_{n}\right\|_{2}=1}\left|\left(F_{V_{n}} \psi, \psi\right)_{V_{n}}\right| \leqq\|f\|_{\infty} .
$$

On the other hand, let ω be any trigonometric polynomial on G, say

$$
\omega(x)=\sum_{1 \leq i \leq k}\left(\gamma_{i}, x\right) c_{i} \quad\left(c_{i} \in \mathbb{C}, \gamma_{i} \in \Gamma\right)
$$

Let $\Gamma_{0}=\left\{\gamma_{1}, \cdots, \gamma_{k}\right\}$, a finite subset of Γ. Now since $\left\{V_{n}\right\} \in T_{\Gamma}$ there exists an n_{0} such that for $n \geqq n_{0}$ there exists $\tau_{n} \in \Gamma$ such that $\tau_{n}+\Gamma_{0} \cong V_{n}$. Hence for $n \geqq n_{0}$,

$$
\omega_{n}(x)=\left(\tau_{n}, x\right) \omega(x)=\sum_{1 \leqq i \leq k}\left(\tau_{n}+\gamma_{i}, x\right) c_{i}
$$

is a linear combination of characters on G generated by elements of V_{n}. Since $|\omega(x)|=\left|\omega_{n}(x)\right|$ for all $x \in G$, the proof of (i) is completed by again applying Proposition 2 with $\rho=2$.
(ii) Recall that $\left|F_{V_{n}}\right|$ is the norm of $F_{V_{n}}$ considered as an operator on $L^{2}\left(V_{n}\right)$, i.e.,

$$
\left|F_{V_{n}}\right|=\max _{\|\psi\|_{2}=1}\left\|F_{V_{n}} \psi\right\|_{2}
$$

but by the Cauchy-Schwarz Inequality, for $\|\psi\|_{2}=1$

$$
\left|\left(F_{V_{n}} \psi, \psi\right)_{V_{n}}\right| \leqq\left\|F_{V_{n}} \psi\right\|_{2}\|\psi\|_{2}=\left\|F_{V_{n}} \psi\right\|_{2} \leqq\left|F_{V_{n}}\right|
$$

and therefore by (i),

$$
\lim _{n \rightarrow \infty}\left|F_{V_{n}}\right| \geqq \lim _{n \rightarrow \infty} \max _{\|\psi\|_{2}=1}\left|\left(F_{V_{n}} \psi, \psi\right)_{V_{n}}\right|=\|f\|_{\infty}
$$

Thus, if $\|f\|_{\infty}=+\infty$ nothing remains to be proved. If $\|f\|_{\infty}<+\infty$ we have $f \in L^{1}(G) \cap L^{\infty}(G)$, and therefore by [3], p. 445, $\left|F_{V_{n}}\right| \leqq\|f\|_{\infty}$ for all $n \in N^{+}$. Hence $\varlimsup_{n \rightarrow \infty}\left|F_{V_{n}}\right| \leqq\|f\|_{\infty}$, and consequently $\lim _{n \rightarrow \infty}\left|F_{V_{n}}\right|=\|f\|_{\infty}$ in this case as well.

We now conversely prove that the hypothesis $\left\{V_{n}\right\} \in T_{r}$ is in fact necessary for the conclusion of Theorem 1. More precisely,

Theorem 1'. Using the notation of Theorem 1, if $\left\{V_{n}\right\}$ is any sequence of finite subsets of Γ for which conclusion (i) holds for all trigonometric polynomials f on G, then $\left\{V_{n}\right\} \in T_{\Gamma}$.

Proof. Assume $\left\{V_{n}\right\} \notin T_{\Gamma}$, i.e., there exists a finite subset Γ_{0} of Γ such that no translate of Γ_{0} lies in V_{m} for an appropriate subsequence $m \rightarrow \infty$. We then assert that

$$
f(x)=\frac{1}{\left|\Gamma_{0}\right|} \sum_{\tau \in \Gamma_{0}}(\tau, x) \quad\left(\|f\|_{\infty}=f(0)=1\right)
$$

is a trigonometric polynomial for which (i) fails. More precisely we show for all these m :

$$
\operatorname{Max}_{\|\psi\|_{2}=1}\left|\left(F_{V_{m}} \psi, \psi\right)_{V m}\right| \leqq\left(1-\frac{1}{2\left|\Gamma_{0}\right|}\right)\|f\|_{\infty} .
$$

Recalling relation (\dagger) of the proof of Theorem 1. We have:

$$
\operatorname{Max}_{\|\psi\|_{2}=1}\left|\left(F_{V m} \psi, \psi\right)_{V m}\right|=\left.\operatorname{Max}_{\|\omega\|_{2}=1}\left|\int_{G}\right| \omega(x)\right|^{2} f(x) d x \mid
$$

where ω ranges over all linear combinations of characters on G generated by elements in V_{m}.

However, any such ω is of the form

$$
\omega(x)=\sum_{\tau \in V_{m}}(\tau, x) a_{\tau}
$$

where

$$
\sum_{\tau \in V_{m}}\left|a_{\tau}\right|^{2}=\|\omega\|_{2}^{2} \leqq 1
$$

implying

$$
|\omega(x)|^{2}=\sum_{\tau_{1}, \tau_{2} \in V_{m}}\left(\tau_{1}-\tau_{2}, x\right) a_{\tau_{1}} \bar{\alpha}_{\tau_{2}}
$$

and finally

$$
\int_{G}|\omega(x)|^{2} f(x) d x=\frac{1}{\left|\Gamma_{0}\right|} \sum_{\substack{\tau_{1}, \tau_{2} \in V_{m} \\ \tau_{2}-\tau_{1} \in F_{0}}} a_{\bar{\tau}_{1}} \bar{a}_{\tau_{2}}
$$

Consequently,

$$
\begin{aligned}
\left.\left|\int_{G}\right| \omega(x)\right|^{2} f(x) d x \mid \leqq & \frac{1}{\left|\Gamma_{0}\right|} \sum_{\substack{\tau_{2}, \tau_{2} \in V_{m} \\
\tau_{2}-\tau_{1} \in F_{0}}}\left|a_{\tau_{1}}\right|\left|a_{\tau_{2}}\right| \leqq \frac{1}{2\left|\Gamma_{0}\right|} \sum_{\substack{\tau_{1}, \tau_{2} \in V_{m} \in V_{m} \\
\tau_{2}-\tau_{1} \in \Gamma_{0}}}\left(\left|a_{\tau_{1}}\right|^{2}+\left|a_{\tau_{2}}\right|^{2}\right) \\
= & \frac{1}{2\left|\Gamma_{0}\right|}\left(\left.\sum_{\tau_{1} \in V_{m}}\left|a_{\tau_{1}}\right|\right|^{2}\left(\sum_{\substack{\tau_{2} \in V_{m} \\
\tau_{2}-\tau_{1} \in \Gamma_{0}}} 1\right)+\sum_{\tau_{2} \in V_{m}}\left|a_{\tau_{2}}\right|^{2}\left(\sum_{\substack{\tau_{1} \in V_{m} \\
\tau_{2}-\tau_{1} \in \Gamma_{0}}} 1\right)\right) \\
= & \frac{1}{2\left|\Gamma_{0}\right|}\left(\sum_{\tau_{1} \in V_{m}}\left|a_{\tau_{1}}\right|^{2}\left|\left(V_{m}-\tau_{1}\right) \cap \Gamma_{0}\right|\right. \\
& \left.+\sum_{\tau_{2} \in V_{m}}\left|a_{\tau_{2}}\right|^{2}\left|\left(\tau_{2}-V_{m}\right) \cap \Gamma_{0}\right|\right) \\
\leqq & \frac{1}{2\left|\Gamma_{0}\right|}\left\{\left(\left|\Gamma_{0}\right|-1\right) \sum_{\tau_{1} \in V_{m}}\left|a_{\tau_{1}}\right|^{2}+\left|\Gamma_{0}\right| \sum_{\tau_{2} \in V_{m}}\left|a_{\tau_{2}}\right|^{2}\right\} \\
= & \left(1-\frac{1}{2\left|\Gamma_{0}\right|}\right) \sum_{\tau \in V_{m}}\left|a_{\tau}\right|^{2} \leqq\left(1-\frac{1}{2\left|\Gamma_{0}\right|}\right) \\
= & \left(1-\frac{1}{2\left|\Gamma_{0}\right|}\right)\|f\|_{\infty}
\end{aligned}
$$

since no translate $V_{m}-\tau_{1}$ contains Γ_{0} by hypothesis. Our assertion now readily follows.
2. A class of doubly-infinite matrices. We now translate the theorem of the preceding section into a statement concerning a class of doubly-infinite complex matrices $M=\left(\alpha_{i, j}\right)_{i, j=1}^{\infty}$ whose entries $\alpha_{i, j}$ are determined by a "group law".

Definition 2. Let $M=\left(\alpha_{i, j}\right)_{i, j=1}^{\infty}$ be a matrix with complex entries. We then write

$$
M \sim(\Gamma, \Lambda, F)
$$

if and only if
(i) Γ is a countable Abelian group.
(ii) Λ is a subset of Γ.
(iii) $F: \Gamma \rightarrow \mathbb{C}$.
(iv) There exists an ordering of $\Lambda=\left\{\lambda_{1}, \cdots, \lambda_{n}, \cdots\right\}$ such that for all $i, j \in N^{+}$,

$$
\alpha_{i, j}=F\left(\lambda_{i}-\lambda_{j}\right)
$$

Remark. For any $M=\left(\alpha_{i, j}\right)_{i, j=1}^{\infty}$ with complex entries we may take Γ to be Q^{\times}, the multiplicative group of rational numbers, and Λ to be $P=\left\{p_{n}: n \in N^{+}\right\}$, the set of all positive integral primes, upon defining F by

$$
F(r)= \begin{cases}\alpha_{i, j} & \text { if } r=p_{i} / p_{j} \\ 0 & \text { otherwise }\end{cases}
$$

We then have $M \sim\left(Q^{\times}, P, F\right)$.
Under suitable restrictions on ($\Gamma, \Lambda, F)$ we shall be able to compute the norm and quadratic norm of the matrix M, which are defined as follows:

Definition 3. The norm of $M,|M|$, and the quadratic norm of $M,|M|_{I}$, are defined by

$$
|M|=\sup _{\|X\|_{2} \leq 1}\|M X\|_{2}, \quad|M|_{I}=\sup _{\|X\|_{2} \leq 1}|(M X, X)|
$$

where $X=\left(\left\{x_{i}\right\}\right)$ ranges over elements of the complex Hilbert space l^{2} with only finitely many $x_{i} \neq 0$, and $M X=\left(\left\{\sum_{j} \alpha_{i, j} x_{j}\right\}\right)$.

Lemma 1. If M induces a bounded operator on l^{2}, then
(i) $|M|=\sup _{\|X\|_{2} \leq 1}\|M X\|$,
(ii) $|M|_{I}=\sup _{\|X\|_{2} \leq 1}|(M X, X)|$,
where $X=\left(\left\{x_{i}\right\}\right)$ ranges over all elements of l^{2} (with $\|X\|_{2} \leqq 1$). Hence in this case $|M|$ is the standard norm of M considered as a bounded linear operator on l^{2}.

Proof. For $x \in l^{2}$, let X_{n} be the projection of X on its first n components (0 elsewhere). Since M is bounded and consequently closed, $\lim _{n \rightarrow \infty} M X_{n}=M X$ and (i) follows since X_{n} has at most n nonzero components. Also

$$
(M X, X)=\left(M X_{n}, X_{n}\right)+\left(M\left(X-X_{n}\right), X_{n}\right)+\left(M X, X-X_{n}\right),
$$

and therefore

$$
\begin{aligned}
& \left|(M X, X)-\left(M X_{n}, X_{n}\right)\right| \\
\leqq & \left\|M\left(X-X_{n}\right)\right\|_{2}\left\|X_{n}\right\|_{2}+\|M X\|_{2}\left\|X-X_{n}\right\|_{2} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, and (ii) clearly follows.
Theorem 2. Let $M \sim(\Gamma, \Lambda, F)$ where
(i) $F \in A(\Gamma)$, i.e., $F=\hat{f}$ for some $f \in L^{1}(G)$.
(ii) To each finite subset $\Gamma_{0} \subseteq \Gamma$ there corresponds a $\gamma=\gamma\left(\Gamma_{0}\right)$ such that $\gamma+\Gamma_{0} \cong \Lambda$.

Then $|M|=|M|_{I}=\|f\|_{\infty}$.
Proof. Assume $\Lambda=\left\{\lambda_{1}, \cdots, \lambda_{n}, \cdots\right\}$ as in Definition 2, and set $V_{n}=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$. Then hypothesis (ii) clearly implies $\left\{V_{n}\right\} \in T_{r}$. The theorem will follow from the two inequalities
(i) $|M| \leqq\|f\|_{\infty}$
(ii) $\|f\|_{\infty} \leqq|M|_{I}$,
since $|M|_{I} \leqq|M|$ by the Cauchy-Schwarz inequality.
(i): If $\|f\|_{\infty}=+\infty$ there is nothing to prove. Otherwise $f \in L^{1}(G) \cap L^{\infty}(G)$, and therefore the operator $M^{\prime}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ defined by

$$
\left(M^{\prime} \varphi\right)(\gamma)=\sum_{\tau \in \Gamma} F(\gamma-\tau) \varphi(\tau) \quad\left(\varphi \in L^{2}(\Gamma), \gamma \in \Gamma\right)
$$

has norm $\left|M^{\prime}\right|=\|f\|_{\infty}$ by [3], §3.2., p. 441. Hence if we only consider ρ with support in Λ and restrict γ to Λ, M^{\prime} restricts to an operator $M^{\prime \prime}: L^{2}(\Lambda) \rightarrow L^{2}(\Lambda)$ with $\left|M^{\prime \prime}\right| \leqq\left|M^{\prime}\right|$. Now consider the isometry of l^{2} onto $L^{2}(\Lambda)$ given by $X=\left(\left\{x_{n}\right\}\right) m \varphi_{X}$ where $\varphi\left(\lambda_{n}\right)=x_{n}$ for $n \in N^{+}$. Then for this $\varphi=\varphi_{X}$ and $\lambda_{i} \in \Lambda$,

$$
\left(M^{\prime \prime} \varphi\right)\left(\lambda_{i}\right)=\sum_{\lambda \in A} F\left(\lambda_{i}-\lambda\right) \varphi(\lambda)=\sum_{j} F\left(\lambda_{i}-\lambda_{j}\right) \varphi\left(\lambda_{j}\right)=\sum_{j} \alpha_{i, j} x_{j}
$$

which is the $i^{\text {th }}$ component of $M X$, and therefore $|M|=\left|M^{\prime \prime}\right| \leqq$ $\left|M^{\prime}\right|=\|f\|_{\infty}$ (and thus M induces a bounded linear operator if $\left.\|f\|_{\infty}<+\infty\right)$.
(ii): For $n \in N^{+}$, consider the isometry of $L^{2}\left(V_{n}\right)$ (which is none other than n-dimensional Euclidean space) into l^{2} given by $\varphi \rightarrow X_{\varphi}$ where $X_{\varphi}=\left(\left\{x_{j}^{\varphi}\right\}\right)$ and $x_{j}^{\circ}=\varphi\left(\lambda_{j}\right)$ for $1 \leqq j \leqq n$ and 0 otherwise. Hence X_{φ} has only finitely many nonzero components, and each $X \in l^{2}$ with only finitely many nonzero components is in the image of $L^{2}\left(V_{n}\right)$ under the above isometry for $n=n(X)$ sufficiently large. Now consider $F_{V_{n}}$ on $L^{2}\left(V_{n}\right)$:

$$
\begin{align*}
\left(F_{V_{n}} \varphi, \varphi\right)_{V_{n}} & =\sum_{1 \leqq i \leqq n} \sum_{1 \leqq j \leqq n} F\left(\lambda_{i}-\lambda_{j}\right) \varphi\left(\lambda_{j}\right) \varphi \overline{\left(\lambda_{i}\right)} \\
& =\sum_{1 \leqq i, j \leqq n} \alpha_{i, j} x_{j} \bar{x}_{i}=\left(M X_{\varphi}, X_{\varphi}\right) \tag{2}
\end{align*}
$$

But by Theorem 1 (i) $\lim _{n \rightarrow \infty} \max _{\|\varphi\|_{2}=1}\left|\left(F_{V_{n}} \varphi, \varphi\right)_{V_{n}}\right|=\|f\|_{\infty}$ and therefore $|M|_{I}=\|f\|_{\infty}$ since

$$
|M|_{I}=\sup _{\substack{\|x\|_{2} \leq 1 \\ x_{2} \neq 0}}|(M X, X)|=\lim _{n \rightarrow \infty} \max _{n \rightarrow e \operatorname{lin} y} \mid\left(\left\|_{2} \leq 1 \leq 1\left(F_{V_{n}} \varphi, \varphi\right)_{V_{n}} \mid=\right\| f \|_{\infty}\right.
$$

Corollary 1. (1) Hypothesis (i) of Theorem 2 is satisfied if

$$
\begin{equation*}
\sum_{\gamma \in I}|F(\gamma)|^{2}<+\infty \tag{i}
\end{equation*}
$$

(2) Hypothesis (ii) of Theorem 2 is satisfied if

$$
\begin{equation*}
\Lambda+\Lambda \cong \Lambda \quad \text { and } \quad \text { (ii)' } \Lambda \text { generates } \Gamma . \tag{ii}
\end{equation*}
$$

Proof. (1), (i)' implies $f(x)=\sum_{\gamma \in \Gamma}(\gamma, x) F(\gamma) \in L^{2}(G)$ and therefore also $f \in L^{1}(G)$ since G is compact and hence of finite measure. Clearly $F=\hat{f} \in A(\Gamma)$.
(2) First note that any element of Γ is the difference of two elements in Λ, i.e., $\Gamma=\Lambda-\Lambda$. For by (ii)", if $\gamma \in \Gamma$ we have $\gamma=\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}-\cdots-\lambda_{i_{n}}$ for some suitable finite sequence of integers i_{1}, \cdots, i_{n} (if no terms with a plus sign occur we may take $k=0$, if none with a minus sign occur take $k=n$). But by (ii)', $\gamma^{+}=\lambda_{i_{1}}+\cdots+\lambda_{i_{k}} \in \Lambda$ if $k>0, \gamma^{-}=\lambda_{i_{k+1}}+\cdots+\lambda_{i_{n}} \in \Lambda$ if $k<n$. If $k=0$ we may write $\gamma=\lambda_{1}-\left(\lambda_{1}+\cdots+\lambda_{n}+\lambda_{1}\right)$ and similarly $\gamma=\left(\lambda_{1}+\cdots+\lambda_{n}+\lambda_{1}\right)-\lambda_{1}$ if $k=n$.

Now let $\Gamma_{0}=\left\{\gamma_{1}, \cdots, \lambda_{k}\right\}$ be a nonempty finite subset of Γ. Then for appropriate $a_{i}, b_{i} \in N^{+}$we have

$$
\gamma_{i}=\lambda_{a_{i}}-\lambda_{b_{i}} \quad(1 \leqq i \leqq k)
$$

Consequently, for $1 \leqq i \leqq k$,

$$
\gamma_{i}=\lambda_{a_{i}}+\lambda_{b_{1}}+\cdots+\hat{\lambda}_{b_{i}}+\cdots+\lambda_{b_{k}}-\left(\lambda_{b_{1}}+\cdots+\lambda_{b_{k}}\right)
$$

where (^) denotes deletion of a term. Hence if we set $\gamma=$ $\lambda_{b_{1}}+\cdots+\lambda_{b_{k}}$ we have $\gamma+\Gamma_{0} \cong \Lambda$ since

$$
\lambda_{a_{i}}+\lambda_{b_{1}}+\cdots+\hat{\lambda}_{b_{i}}+\cdots+\lambda_{b_{k}} \in \Lambda
$$

by (ii)'.
We now apply Theorem 2 to completely solve the norm evaluation in the case $M \sim(\Gamma, \Lambda, F)$ where $F \geqq 0$ and Λ satisfies (ii). We make use of the following simple lemma:

Lemma 2. If $M=\left(\alpha_{i, j}\right)_{i, j=1}^{\infty}$ and $M^{\prime}=\left(\alpha_{i, j}^{\prime}\right)_{i, j=1}^{\infty}$ where

$$
\alpha_{i, j} \geqq \alpha_{i, j}^{\prime} \geqq 0 \quad \text { for all } i, j \in N^{+}
$$

then

$$
\begin{equation*}
|M|=\sup _{\|x\|_{2} \leq 1}\|M X\|, \quad|M|_{I}=\sup _{\|x\|_{2} \leq 1}(M X, X) \tag{i}
\end{equation*}
$$

where $X=\left(\left\{x_{i}\right\}\right)$ has only finitely many nonzero coordinates, all positive.

$$
\begin{equation*}
\left|M^{\prime}\right| \leqq|M|, \quad\left|M^{\prime}\right|_{I} \leqq|M|_{I} \tag{ii}
\end{equation*}
$$

Proof. For $X=\left(\left\{x_{i}\right\}\right) \in l^{2}$ we define $X^{+}=\left(\left\{\left|x_{i}\right|\right\}\right)$. Note $\|X\|_{2}=$ $\left\|X^{+}\right\|_{2}$ and X^{+}and X have the same cardinality of nonzero coordinates. Also, $\alpha_{i, j} \geqq 0$ clearly implies $\|M X\|_{2} \leqq\left\|M X^{+}\right\|_{2}$ and $|(M X, X)| \leqq\left(M X^{+}, X^{+}\right)$and (i) readily follows. But $\alpha_{i, j} \geqq \alpha_{i, j}^{\prime} \geqq 0$ also implies each component of $M^{\prime} X^{+}$is dominated by the corresponding component of $M X^{+}$and hence (ii) follows from (i).

Theorem 3. Let $M \sim(\Gamma, \Lambda, F)$ where
(i) $F(\gamma) \geqq 0$ for all $\gamma \in \Gamma$.
(ii) If Γ_{0} is any finite subset of Γ there exists a $\gamma=\gamma\left(\Gamma_{0}\right)$ such that $\gamma+\Gamma_{0} \subseteq \Lambda$. Then

$$
|M|=|M|_{I}=\sum_{\gamma \in T} F(\gamma) \quad(\text { possibly }+\infty)
$$

Proof. Since $|M|_{I} \leqq|M|$ it suffices to show that
(1) $|M| \leqq \sum_{\gamma \in \Gamma} F(\gamma)$,
(2) $|M|_{I}=\sum_{\gamma \in I} F(\gamma)$.

If $\sum_{\gamma \in \Gamma} F(\gamma)<+\infty$ there is nothing to prove since in this case the result is included in Theorem 2 because $f(x)=\sum_{\gamma \in \Gamma}(\gamma, x) F(\gamma)$ is a continuous function on $G, F=\hat{f}$, and $\|f\|_{\infty}=f(0)=\sum_{\gamma \in \Gamma} F(\gamma)$.

On the other hand, if $\sum_{\gamma \in \Gamma} F(\gamma)=+\infty$ then F may not be in $A(\Gamma)$ and hence we cannot apply Theorem 2 directly. Clearly (1) is true in this case and we need only verify (2). Let $\Gamma^{\prime}=\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$ be any finite subset of Γ and define

$$
M_{\Gamma^{\prime}}=\left(\alpha_{i, j}^{\Gamma^{\prime}}\right)_{i, j=1}^{\infty}
$$

where

$$
\alpha_{i, j}^{\Gamma^{\prime}}= \begin{cases}F\left(\gamma_{\nu}\right) & \text { if } \lambda_{i}-\lambda_{j}=\gamma_{\nu} \in \Gamma^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

i.e., $M_{\Gamma^{\prime}} \sim\left(\Gamma, \Lambda, F_{\Gamma^{\prime}}\right)$ where $F_{\Gamma^{\prime}}(\gamma)=F(\gamma) I_{\Gamma^{\prime}}(\gamma)$. Since $F \geqq 0, \alpha_{i, j} \geqq$ $\alpha_{i, j}^{\Gamma^{\prime}} \geqq 0$ for $i, j \in N^{+}$, and Lemma 2 implies $|M|_{I} \geqq\left|M_{\Gamma^{\prime}}\right|_{I}$. But by Theorem 2

$$
\left|M_{\Gamma^{\prime}}\right|_{I}=\underset{x \in G}{\operatorname{ess} \sup }\left|\sum_{\gamma \in I^{\prime}}(\gamma, x) F_{\Gamma^{\prime}}(\gamma)\right|=\sum_{\gamma \in I^{\prime \prime}} F(\gamma)
$$

since $\sum_{\gamma \in \Gamma}(\gamma, x) F_{\Gamma^{\prime}}(\gamma)$ is continuous and $F_{\Gamma^{\prime}} \geqq 0$. This in turn implies

$$
|M|_{I} \geqq \sup _{\left|\Gamma^{\prime}\right|<+\infty} \sum_{\gamma \in \Lambda^{\prime}} F(\gamma)=+\infty
$$

Corollary 2. Under the hypothesis of Theorem 3.

$$
|M|=|M|_{I}=\sup _{i \in N^{+}}\left(\sum_{j \in N^{+}} \alpha_{i, j}\right)=\sup _{j \in N^{+}}\left(\sum_{i \in N^{+}} \alpha_{i, j}\right) .
$$

Proof. We prove only $|M|=|M|_{I}=\sup _{i \in N^{+}}\left(\sum_{j \in N^{+}} \alpha_{i, j}\right)$ the proof \mid of the other equality being similar. By Theorem 3. we need only verify $\sup _{i \in N^{+}}\left(\sum_{j \in N^{+}} \alpha_{i, j}\right)=\sum_{r \in \Gamma} F(\gamma)$. First

$$
\sum_{j \in N^{+}} \alpha_{i, j}=\sum_{j \in N^{+}} F\left(\lambda_{i}-\lambda_{j}\right)=\sum_{r \in \lambda_{\imath}-A} F(\gamma) \leqq \sum_{\gamma \in I^{\prime}} F(\gamma) .
$$

Let $\Gamma^{\prime}=\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$ be any finite subset of Γ and let $\Gamma_{0}=$ $\left\{0,-\gamma_{1}, \cdots,-\gamma_{n}\right\}$. Condition (ii) insures the existence of an $\alpha \in \Gamma$ such that $\alpha+\Gamma_{0} \subseteq \Lambda$. In particular $\alpha \in \Lambda$, say $\alpha=\lambda_{k(\alpha)}$. But

$$
\Gamma^{\prime} \cong-\Gamma_{0}=\alpha-\left(\alpha+\Gamma_{0}\right) \subseteq \lambda_{k(\alpha)}-\Lambda,
$$

and thus for $i=k(\alpha)$ we have

$$
\sum_{j \in N^{+}} \alpha_{i, j}=\sum_{\gamma \in \lambda_{k(\alpha)-1}} F(\gamma) \geqq \sum_{\gamma \in \Gamma^{\prime}} F(\gamma)
$$

since $F \geqq 0$, and our assertion follows.
3. An application. In this section we apply the results of $\S 2$ to evaluate the norm of a special type of linear operator.

Definition 4. Let T be the circle group, considered as the real numbers $R^{+} \bmod 2 \pi$, and let $L^{2}=L^{2}(T, d t)$ be the associated Hilbert function space with respect to normalized Lebesgue measure. Let $\mathscr{M} \subseteq L^{2}$ be the submanifold

$$
\mathscr{M}=\left\{f \in L^{2}: \int_{T} f(t) d t=0\right\} .
$$

Furthermore, let $\boldsymbol{Z}^{\prime}=\boldsymbol{Z} \sim\{0\}$ and for $a=\left\{a_{n}\right\}_{n \in \boldsymbol{Z}^{\prime}} \in L^{1}\left(\boldsymbol{Z}^{\prime}\right)$ define $H_{a}: \mathscr{M} \rightarrow \mathscr{M}$ by

$$
\left(H_{a} f\right)(t)=\sum_{n \in \boldsymbol{Z}^{\prime}} \alpha_{n} f(n t)
$$

(where equality of functions is to be taken in the L^{2} sense).
We now show that the mapping $a \rightarrow H_{a}$ is a one-to-one bounded linear transformation from $L^{1}\left(\boldsymbol{Z}^{\prime}\right)$ into \mathscr{L}^{*}, the dual space of \mathscr{M}. For

$$
\begin{aligned}
& \left\|H_{a} f\right\|_{2}^{2}=\|\left.\sum_{n \in Z^{\prime}} a_{n} f(n t) \sum_{m \in Z^{\prime}} \overline{a_{m} f(m t)}\right|_{1} \\
= & \left\|\sum_{m, n \in \mathbb{Z}^{\prime}} a_{n} \overline{a_{m}} f(n t) f(\overline{m t})\right\|_{1} \leqq \sum_{m, n \in \mathcal{Z}^{\prime}}\left|a_{n}\right|\left\|a_{m} \mid\right\| f(n t) f(m t) \|_{1} \\
\leqq & \left\|\sum_{m, n \in \mathbb{Z}^{\prime}}\left|a_{n}\right|\left|a_{m}\right|\right\| f(n t)\left\|_{2}\right\| f(m t)\left\|_{2}=\left(\sum_{n \in \mathbb{Z}^{\prime}}\left|a_{n}\right|\right)^{2}\right\| f\left\|_{2}^{2}=\right\| a\left\|_{1}^{2}\right\| f \|_{2}^{2}
\end{aligned}
$$

since $\|f(n t)\|_{2}=\|f(t)\|_{2}$ for all $n \in Z^{\prime}$. Therefore $\left\|H_{a}\right\|_{o p} \leqq\|a\|_{1}$. Also, $f \in \mathscr{M}$ implies $H_{a} f \in \mathscr{M}$ since

$$
\int_{T}\left(H_{a} f\right)(t) d t=\sum_{n \in \boldsymbol{Z}} a_{n} \int_{T} f(n t) d t=0 .
$$

Therefore, since H_{a} is clearly linear, $H_{a} \in \mathscr{I}^{*}$ and the mapping
$a m H_{a}$ is bounded and linear from $L^{1}\left(\boldsymbol{Z}^{\prime}\right)$ to \mathscr{M}^{*}. Finally, the mapping is one-to-one since

$$
H_{a}\left(e^{i t}\right)=\sum_{n \in \mathbb{Z}^{\prime}} a_{n} e^{i n t}=0 \Leftrightarrow a=0 .
$$

We now apply Corollary 1 to evaluate the norm of H_{a}.
Theorem 4. Let $a=\left\{a_{n}\right\}_{n \in Z^{\prime}} \in L^{1}\left(\boldsymbol{Z}^{\prime}\right)$, and for $r \in Q^{\times}$let

$$
F(r)=\sum_{\substack{m, n=r \\ m, n \in \boldsymbol{Z}^{\prime}}} a_{m} \bar{a}_{n}
$$

Then

$$
\left\|H_{a}\right\|_{o p}=\max _{x \in \widehat{Q}^{\times}}\left|\sum_{r \in Q^{\times}}(r, x) F(r)\right|^{\frac{1}{2}}
$$

where \hat{Q}^{\times}is the compact dual of the discrete group Q^{\times}.
Proof. Let $f \in \mathscr{M}$, and let the Fourier expansion of f be

$$
f(t)=\sum_{m \in Z^{\prime}} b_{m} e^{i m t}
$$

Then

$$
\begin{aligned}
& \left(H_{a} f\right)(t)=\sum_{n \in \boldsymbol{Z}^{\prime}} a_{n} f(n t)=\sum_{n \in \boldsymbol{Z}^{\prime}} a_{n}\left[\sum_{m \in \boldsymbol{Z}^{\prime}} b_{m} e^{i m n t}\right] \\
= & \sum_{m, n \in \boldsymbol{Z}^{\prime}} a_{n} b_{m} e^{i m n t}=\sum_{p \in \boldsymbol{Z}^{\prime}} c_{p} e^{i p t}
\end{aligned}
$$

where $c_{p}=\sum_{m n=p m, n \in Z^{\prime}} a_{n} b_{m}$, and L^{2} convergence is the justification for the rearrangement of summation. Therefore

$$
\begin{aligned}
& \left\|H_{a} f\right\|_{2}^{2}=\sum_{p \in \boldsymbol{Z}^{\prime}}\left|c_{p}\right|^{2}=\sum_{p \in \boldsymbol{Z}^{\prime}}\left(\sum_{\substack{m, n \\
m, n \\
m, Z^{\prime}}} \overline{a_{n} b_{m}} \sum_{\substack{m^{\prime}, n^{\prime}, p \\
m^{\prime}, n^{\prime} \in \boldsymbol{Z}^{\prime}}} a_{n^{\prime}}, b_{m^{\prime}}\right) \\
& =\sum_{\substack{m, n, m, m^{\prime}, n^{\prime}, \dot{Z} \\
m n=\boldsymbol{Z}^{\prime}}} \bar{a}_{n} \bar{b}_{m} a_{n^{\prime}}, b_{m^{\prime}}=\sum_{m, m^{\prime} \in \boldsymbol{Z}^{\prime}}\{(\underbrace{}_{\substack{n, n, \in \mathcal{Z}^{\prime} \\
n^{\prime} \mid n=m / m^{\prime}}} a_{n^{\prime}} \overline{a_{n}}) b_{m^{\prime}}, \overline{b_{m}}\}
\end{aligned}
$$

where the manipulation of the quadruple sum is justified by absolute convergence:

$$
\begin{aligned}
& \quad \sum_{\substack{m, n, m, n^{\prime}, \in \boldsymbol{Z}^{\prime} \\
m n=m^{\prime} n^{\prime}}}\left|\bar{a}_{n} \bar{b}_{m} a_{n^{\prime}}, b_{m^{\prime}}\right|=\sum_{n, n^{\prime} \in \boldsymbol{Z}^{\prime}}\left|a_{n}\right|\left|a_{n^{\prime}}\right|\left(\sum_{\substack{m, n^{\prime} \in, \mathbb{Z}^{\prime}, n^{\prime} / n=m^{\prime} / m^{\prime}}}\left|b_{m}\right|\left(b_{m^{\prime}}\right)\right) \\
& \leqq \sum_{n, n^{\prime} \in \boldsymbol{Z}^{\prime}}\left|a_{n}\right|\left|a_{n^{\prime}}\right|\left(\sum_{m \in \boldsymbol{Z}^{\prime}}\left|b_{m}\right|^{2}\right)=\|a\|_{1}^{2}\|f\|_{2}^{2}<+\infty
\end{aligned}
$$

by Cauchy-Schwarz. Upon setting

$$
\alpha_{i, j}=\sum_{m \mid n=i / j} a_{m} \bar{a}_{n}=F\left(\frac{i}{j}\right) \quad \text { for } i, j \in Z^{\prime}
$$

and

$$
M=\left(\alpha_{i j}\right) \quad\left(\text { order } Z^{\prime}=(1,-1,2,-2, \cdots)\right)
$$

we obtain

$$
M \sim\left(Q^{\times}, Z^{\prime}, F\right)
$$

Also, upon identifying \mathscr{M} with \mathscr{L}^{2} by $f \leftrightarrow X_{f}=\left(b_{1}, b_{-1}, b_{2}, b_{-2}, \cdots\right)$ we have

$$
\left\|H_{a} f\right\|_{2}^{2}=\left(M X_{f}, X_{f}\right)
$$

But

$$
\begin{aligned}
\sum_{r \in Q^{\star}}|F(r)| & =\sum_{\substack{i, j \in \in Z^{\prime} \\
i, j, j=1 \\
i>0}}\left|F\left(\frac{i}{j}\right)\right| \leqq \sum_{\substack{\left.i, j, Z^{\prime}=1 \\
i, j\right)=1 \\
i>0}} \sum_{m / n=i / j}\left|a_{n}\right|\left|a_{m}\right| \\
& =\left(\sum_{n \in Z^{\prime}}\left|a_{n}\right|\right)^{2}=\|a\|_{1}^{2}<+\infty,
\end{aligned}
$$

and hence

$$
f(x)=\sum_{r \in Q^{\times}}(r, x) F(r)
$$

is a continuous function on \hat{Q}^{\times}with Fourier transform F. The theorem follows upon applying Theorem 2 (Corollary 1 (i)) to $M \sim\left(Q, Z^{\prime}, F\right)$.

Corollary 3. If $a=\left\{a_{n}\right\}_{n \in \boldsymbol{Z}^{\prime}} \in L^{1}\left(\boldsymbol{Z}^{\prime}\right)$ and $a_{n} \geqq 0$ for all $n \in \boldsymbol{Z}^{\prime}$, then

$$
\left\|H_{a}\right\|_{o p}=\|a\|_{1} .
$$

Proof. By Theorem 4,

$$
\left\|H_{a p}\right\|_{o p}=\max _{x \in \hat{Q}^{\times}}\left|\sum_{r \in Q^{\times}}(r, x) F(r)\right|^{\frac{1}{2}} \leqq\left(\sum_{r \in Q^{\times}}|F(r)|\right)^{\frac{1}{2}}=\|a\|_{1}
$$

since

$$
a_{n} \geqq 0,|F(r)|=\sum_{\substack{m, n=r \\ m, n \in Z^{\prime}}} a_{n} a_{m} \text {, and } \sum_{r \in Q^{\times}}|F(r)|=\|a\|_{1}^{2} .
$$

But upon setting $x=0$ we obtain

$$
\left|\sum_{r \in Q^{\times}}(r, 0) F(r)\right|^{\frac{1}{2}}=\left|\sum_{r \in Q^{\times}} F(r)\right|^{\frac{1}{2}}=\left(\sum_{r \in Q^{\times}}|F(r)|\right)^{\frac{1}{2}}=\|a\|_{1}
$$

and thus the proof is complete.

Bibliography

1. W. R. Emerson, Asymptotic results for certain sequences of integral operators defined over groups, J. Math. Mech. 17 (1968), 737-758.
2. -, Ratio properties in locally compact groups, Trans. Amer. Math. Soc. 133 (1968), 179-204.
3. H. A. Krieger, Toeplitz operators on locally compact abelian groups, J. Math. Mech. 14 (1965), 439-478.

Received April 14, 1967, and in revised form November 22, 1968.
New York University
New York, New York

