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TRANSLATION KERNELS ON DISCRETE
ABELIAN GROUPS

WiLLiaAM R. EMERSON

Let G be a compact Abelian group with discrete countable
dual group I' =G and let fe L(G) with Fourier transform
F=f, If Vis a finite subset of /" we consider the operator
Fy on L¥(V):

(Fro)r) = E‘VF (r—oex) ¢elXV), reV.

Then if {V,} is any suitably restricted sequence of finite
subsets of I" we show that
lim | Fy, | = lim ﬁ“ﬁaill Frpe, o) I} =1 Fll

oo 1191 1p
where | F'y | is the operator norm of F on L% V') and (Fyo,p)
denotes the inner product of F¢ and ¢ (over V).

This result is then translated into a statement concerning
a special class of infinite matrices which generalize the
classical Toeplitz matrices, We then apply these results in
evaluating the norm of a special type of linear operator.

In [1] the author considered the asymptotic distribution of eigen-
values and characteristic numbers of certain sequences of operators
{F,,} over a locally compact group /" associated with sequences {V,}
of Borel sets of I of finite nonzero measure satisfying

* bm vV, AV, /| V.| =0 for all verl,

where | | is left Haar measure on /I'. We write {V }e€ W, and say
{V.} has the weak ratio property in case (x) is satisfied (see [2]).
In this paper we are considering countable Abelian 7" and a more
general family T, of sequences {V,} than those in W, (and hence in
general the asymptotic distribution of the characteristic numbers of
{F, } does not exist, [2]) but still restricted enough to guarantee an
asymptotic formula for the mawximal characteristic number of F, as

N — oo,

1. The basic theorem. ' denotes an arbitrary countably in-
finite discrete Abelian group equipped with the counting measure.

DEFINITION 1. A sequence {V,} of finite nonempty subsets of I”
has the tramslation property, written {V,}e T, if and only if to
every finite subset ", & I" there corresponds an m, = n,(I",) such that
for n = n, there exists a 7, = 7,(I)eI” with the property that
o, +HEV,.
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ProrosiTiON 1. (i) {V,}e T, and V,S Vi for ne Nt implies
{Vite T, (ii) W, is properly contained in T..

Proof. (i) is immediate from the definition. To prove (ii), first
assume {V,}e W, and fix any finite nonempty subset I, < I". Set

C=1TI,U{0}. We then readily conclude (see [2] where many pro-
perties of W, are established)

1) lim L€+ Val _ ¢
T

But C+V,=U.er (t+T)UV,. Hence if t+I,ZV, for all
teV,, we have |[(c+I') ~ V,| =1 for all ze V, and consequently

@) 1C+ Valz| V| + el

[ 1]
since we may choose |V,| elements 4+ v.e(c + ;) ~ V,, where
teV, and 7. e, and no element is duplicated more than |I7,| times.
But for sufficiently large = (2) violates (1) and therefore there is a
z,€V, for which z, + I, V,. Hence W,< T..

We now show inclusion is proper. For let {V,le W, (@, by
[2]); we shall construct a sequence V; 2 V, such that {V}}¢ W,
which completes the proof of (ii) upon appealing to (i). Fix any
vel' ~{0}. We inductively construct a sequence v, <ee, Vi, as
follows: v ¢ V, + {0, 7}, and

D v e (V, UM, -, v + {0, 27 @=k=|V.,)).
We set Vi=7V,U{™, ..., vi"} and verify that

lr+ VN Val
|Vl -

1
= N+
5 (neNY)

implying {V}}¢ W,. For

r+VHINV,
= ((7 + Vn) N V::) U ({7 + UY”, ce, Y+ vw;l} N (Vn U {uin)’ Tty Vf%;}))
=((r+ V.)nvo

since the second term in the union is empty by (I). Hence
[+ VHnNnViiZ|vy+ V,|=1V,|, and therefore for nec N+

G+ VHOVE _ 10+ VONVE _ [ Val _ 1

| V| 2|V, 2(V,] 2°

We now prove a result, of independent interest, which is critical in
the proof of Theorem 1.
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ProPOSITION 2. Let G be a compact Abelian group (with measure
normalized to one), let fe L(G), and let o be any positive number.
Then

1£1le = sup | | (@) Aa)da

where @ ranges over all trigonometric polynomials on G satisfying
o, = 1.

Proof. Recall that a trigonometric polynomial is a finite linear
combination of characters on G. Clearly

| 1o@ rr@ds | <1171 lo@ds = (£l @ = 11£]. .

We divide the proof of the converse inequality into two cases:

To prove the converse inequality, we first consider the case
[ flle < +oo. Fix any 6 > 0 (until the conclusion of the argument).
Let S = S(6) be a measurable subset of the complex plane of dia-
meter less than 6 and such that

E =78, I eflle = [ flle

where y, denotes the characteristic function of E. Hence for se S
and x <€ E we have

sl = 1eN@ = 1s — (@) [ <0,
and consequently also
sl =lIfllel=1ls] = llxeflls] = 0.
Therefore, if g = y,/| E| then

01l = | | fodw| < 11 F1 = 1511+ 151 = | | fodz ||
® Sl 5]l + |5~ | fods |

= [l = Is]]+ |1%1L(8“%Ef>dxl < 2.

We next wish to approximate g by a continuous function i, and
at this point the estimate is rather delicate because this is also
needed later in the case ||f|l. = + < and consequently we must
avoid || f|l. as a factor in the error of estimation. Now since
feLY(G), to every & > 0 there corresponds an 7 = 7(¢) such that for
all measurable subsets T of G of measure at most 7
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STIf]dx<s.

We now choose v = v(9) satisfying
@ () v<d|E| (i gT]f|doc<5[E| it T <.

Furthermore, since Haar measure is regular, we may find an open
set £+ and a closed set £~ such that

4 E-cECE*, |Et ~E-| <7.

Finally (by Urysohn’s Lemma, since G is a normal topological space)
there exists a continuous #,: G—[0,1] such that A,|E- =1 and
hy|G~E* = Our candidate for % is then defined to be the nonnega-

tive function = hy/| E'|. Let us now estimate S fodx — S fhdx :
G G

|| foao = | rnaw| <[ 17110 —n1 a0

& =+, +| Jirg=nias={  1fllg—nide

smax|g =l |fldes g 0B =0

by (4), (4') and the definitions of g and h. Also, we have
S hdxgg hdx:S hdw < || bl | E* |,
E— G Et

implying the estimate

6 LE7l < ip i < 22 < 1 + 5 by virtue of (4) and (4') .
(6) ]El_” HI—IE]"' y (4) (4"

Lastly, to any a > 0 we may correspond a trigonometric polynomial
o, satisfying || r'* — w,]||. < a, and consequently || 2" — |®,]||l. < «
since h'? > 0. Thus by choosing a, = a,(0) sufficiently small we may

conclude
M 17 = gl = | = [@4 |7 [le <0 .
Also,
gl = Th — ol + 1kl =0+ 1 +0) =1+25.

We now let

® = 0,/(1 + 20)"*, implying [|@|, <1.
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Finally,
| orste| =55 onorie|
© = [ o] | g ]| (o]
2 (1Nl = 20) =0 =3 1711

By (8), (5), and (7). Our assertion follows upon letting ¢ — 0.

In case || fl|l. = +, we let S, be a measurable subset of the
complex plane of diameter less than 6 and such that E, = f~(S.),
| 2%z, f le > m. Equations (3) — (8) still hold with || f|l. replaced by
[| Xz, f ll- > m wherever it occurs, and we readily construct trigono-
metric polynomials @, with ||®,||l, <1 and such that Sglcon |Pfde is

unbounded as n — + oo,
We now are ready to prove the basic theorem.

THEOREM 1. Let G be a compact group (with measure normalized
to one), let fe LNG), and let F = fe L=(I"), the Fourier Transform
of f. Furthermore, let {V,}e€ Tr and let F, be the Hilbert-Schmidt
operator on L¥V,):

(Fr)) = | FO = (@) = 3, For = (o)
(W e LX), e V).

Let (Fy Ar, v)y, denote the immer product of F, + and + over V,,
and let | Fy | denote the maximal characteristic number of F, as
an operator on the Hilbert space LXV,). Then

(1) Nm max | (Fy v ¥, | =11 f ]l
(i) m [ Fy | = [[fll .

Proof. (i) By definition,
(Fy s ¥, = X0 F(r — 9 (@)y ()

TsT€Vy,

s, [1,0= = ar@ds oo 7

7TeV,

- SG[Z (z x)«lr(r)@,x—)«/r(?)]f(m)dw

= |,|.3 € o) Fiarie

Note that
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Oy(@) = 3, (7, 2)(0)

is a trigonometric polynomial on G, and + — wy is an isometry of
LXV,) into L*G) since ||y ||} = .y, |¥(7) " = [| ¥ [;. Therefore

() max | (Fy, v, ¥, | = max || |o@]| s

Y lg=1 wllg=1

where @ ranges over linear combinations of characters on G generated
by elements in V,. Hence by Proposition 2 (o = 2),

lim max [(Fy 4, )y, | £ || flle .

n—oo [|4pllo=1

On the other hand, let @w be any trigonometric polynomial on G,
say

o(x) =1§%k(7¢y x)e; (e, viel).

Let I'y = {7y, +++,7:}, a finite subset of I". Now since {V, e T-
there exists an n, such that for n = n, there exists ¢, e I” such that
z, + IS V,. Hence for n = n,,

w'n(x) = (T'n’ x)(l)(x) zlgzsk(fn + Vis x)ci

is a linear combination of characters on G generated by elements of
V.. Since |w(z)| = |w,(x)| for all ze G, the proof of (i) is completed
by again applying Proposition 2 with o = 2.

(ii) Recall that |F, | is the norm of F, considered as an
operator on L*V,), i.e.,

| Fy,| = max || Fy v, .
[yl lg=1

but by the Cauchy-Schwarz Inequality, for ||+ ]|, =1

[ (Ey s W, | S N Fy el |9l = [| Fy ¥ ll. = | Fy, |
and therefore by (i),

Lim [ Fy, | = lim max [(Fy,$¥)r, | = [If]l .

Thus, if || f|l. = + e nothing remains to be proved. If || f]|l.. < + o
we have fe L'(G) N L(G), and therefore by [3], p. 445, | F | < || ]l

for all neN*. Hence lim,..|F, |<|f|l., and consequently
lim,_. | Fy | = || fll~ in this case as well.
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We now conversely prove that the hypothesis {V,} € T is in fact
necessary for the conclusion of Theorem 1. More precisely,

THEOREM 1. Using the notation of Theorem 1, if {V,} is any
sequence of finite subsets of I for which conclusion (i) holds for all
trigonometric polynomials f on G, then {V,}e T;.

Proof. Assume {V,}¢ T, i.e., there exists a finite subset I, of
I" such that no translate of I, lies in V, for an appropriate sub-
sequence m — oo, We then assert that

f6) = o 35,69 (£l = £0) = 1)

is a trigonometric polynomial for which (i) fails. More precisely we
show for all these m:

1
Max | (Fy ¥ S (1 = g7 )1

Recalling relation (f) of the proof of Theorem 1. We have:
) Max | (Fyu, #)rm| = Max | | | 0(@) f@)do |
Hapllg=1 law|lg=1 G

where @ ranges over all linear combinations of characters on G
generated by elements in V.
However, any such  is of the form

o(x) = ZV (7, ®)a.

where
Slaf=lolst,
implying
0@ = 3 (= T2,
and finally

[ Jo@ frads =L 5 aa.,.
G IFO rl,rzeVrm e
T9—7T1€l

Consequently,
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|[Je@ @i <= 5 Jalle,lS 52 5 (agl+a,l)
IFO lrl T9€V 2[110'71”26"1»
T9—11€0) to—t1€ly
- P 1)+ e |2 1
"o F 3 ) B )
T9g—71€ 9g—71€l
_ 1 2
—ZIFI<ZI%H(V — )N
+ ZV @, @ = V) N T 1)
< {rol—l)z|af112+1ro|21ar2|2}

T lers(t- 55)

7o) 171

(
( 2|1, |

since no translate V, — 7, contains 7", by hypothesis. Our assertion
now readily follows.

2. A class of doubly-infinite matrices. We now translate the
theorem of the preceding section into a statement concerning a class
of doubly-infinite complex matrices M = («; ;)7;-, whose entries a;;
are determined by a “group law?.

DEFINITION 2. Let M = (a;;)7;-, be a matrix with complex
entries. We then write

~([‘1AyF)

if and only if

(i) I is a countable Abelian group.

(ii) 4 is a subset of I.

(iii) F:I'—¢.

(iv) There exists an ordering of 4 = {\, ++-,\,, --+} such that
for all 7,7e N*,

Oli,j - F(K, _ )\:J) .

REMARK. For any M = («; ;)7;-, with complex entries we may
take I" to be @*, the multiplicative group of rational numbers, and
A to be P = {p,: ne N+}, the set of all positive integral primes, upon
defining F' by

F(r) = {a«;,j if r = pi/p;
0 otherwise .
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We then have M ~ (@%, P, F).
Under suitable restrictions on (I, 4, F') we shall be able to compute

the norm and quadratic norm of the matrix M, which are defined
as follows:

DerFINITION 3. The norm of M, | M|, and the quadratic norm of
M, | M|,, are defined by
M| = sup || MX|., Ml = sup |(MX,X),

11X ]l1ps1

where X = ({z;}) ranges over elements of the complex Hilbert space
I* with only finitely many x; = 0, and MX = ({3;a;,;2:}).

LEMMA 1. If M induces a bounded operator on I*, then

(i) |M|= sup || MX|, (i) |M|[;= sup [(MX,X)],
11X [lgst 11X [lgs1

where X = ({x;})) ranges over all elements of " (with || X|; < 1).
Hence in this case | M| is the standard morm of M considered as a

bounded linear operator on [

Proof. For xzel?, let X, be the projection of X on its first n
components (0 elsewhere). Since M is bounded and consequently
closed, lim,_ ., MX, = MX and (i) follows since X, has at most =

nonzero components. Also
(MX, X) = (MX,, X,) + (MX - X,), X,) + (MX, X — X,),
and therefore

SIMX - X)L Xl + | MX | || X — X, |, — 0

as n— oo, and (ii) clearly follows.

THEOREM 2. Let M ~ (I", A, F) where

(i) FeA(), i.e., F = f for some fe L{G).

(ii) To each finite subset I'y < I" there corresponds a v = v(I",)
such that v+ Iy & A.

Then | M| = |M|; = || flle.

Proof. Assume A = {\, -+, N,, ---} as in Definition 2, and set
V.= {\, -+, 7\,}. Then hypothesis (ii) clearly implies {V,} € T,. The
theorem will follow from the two inequalities

(1) [MI=|flle

(ii) || flle = | M|y,
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since |M|; < | M| by the Cauchy-Schwarz inequality.

(i): If {|f]le = + o there is nothing to prove. Otherwise
fe LNG) N L=(G), and therefore the operator M’: LX) — L*I") de-
fined by

(M')(m) = X F(r = 0p(t)  (pelXD), vel)

has norm |M'|=||f|l. by [3], §38.2., p. 441. Hence if we only
consider ¢ with support in 4 and restrict v to 4, M’ restricts to an
operator M": L¥A) — L*A) with |M"”|<|M’'|. Now consider the
isometry of I* onto L*/4) given by X = ({=,}) ~ @ where o(\,) =,
for ne N*. Then for this ¢ = ¢, and \; € 4,

(MP)(a) = 2 F(hi — Mp(h) = ;F i = M)p(ny) = Ej]%,ﬂﬁj

which is the ™ component of MX, and therefore |M|=|M"|<
| M| =]||flle (@and thus M induces a bounded linear operator if
[ flle < A o0).

(ii): For me N™, consider the isometry of L*V,) (which is none
other than n-dimensional Euclidean space) into I* given by ¢ — X,
where X, = ({x¢}) and ¢ = p(\;) for 1=<j<mn and 0 otherwise.
Hence X, has only finitely many nonzero components, and each
X e l* with only finitely many nonzero components is in the image of
LA(V,) under the above isometry for = = n(X) sufficiently large.
Now consider F', on LXV,):

Fr,@, P, = > > FOu— 1)p()e(h)

1Sign 15750

= 2\ @k = (MX,, X,) (in &%) .

1=4,95n
But by Theorem 1 (i) lim max |[(Fy o, )y, | =||fll. and therefore
n—oo ||P]lg=1
| M|, =||fll. since

| M|, = Sup JMX, X)| =lim max [(Fy,, @)y, | = fll .

n—oo |1@]]g=
ﬁeo fmltely

COROLLARY 1. (1) Hypothesis (i) of Theorem 2 is satisfied if
(1) SHFM P < +oo

rerlr
(2) Hypothestis (ii) of Theorem 2 is satisfied if
(ii)y A+ A4S 4 and (1) 4 generates I' .
Proof. (1), (i) implies f(x) = 3 cr(7, 2)F(7) € LYG) and therefore

also fe LYG) since G is compact and hence of finite measure. Clearly
F = fe A(D).
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(2) First note that any element of I" is the difference of two
elements in 4, ie.,, I"=4 — 4. For by (ii)”, if veI’ we have
Y=N, + ¢+ + N, — -+ —N; for some suitable finite sequence of
integers ¢,, ---, ¢, (if no terms with a plus sign occur we may take
k = 0, if none with a minus sign occur take &k = n). But by (ii),
TE=Ny F e N, €A ES0, Y=, e+ €40 k< m,
If k=0 we may write vy=x — (A + +++ + A, + ) and similarly
Y= 4 e F N N) =N I =

Now let Iy ={v,---,n,} be a nonempty finite subset of I
Then for appropriate a;, b;€ N* we have

Yi = Na; — Mgy

2

Consequently, for 1 <1 < k,
Vi =N, + Mgy, + oot +’)§bi+ s Ny — gy e N

where (*) denotes deletion of a term. Hence if we set 7=
Ny, + o+ 4+ N, we have v + I, & 4 since

Moy + Ny e Ny, e N, €4
by @i).
We now apply Theorem 2 to completely solve the norm evalua-
tion in the case M ~ (I", 4, F) where F = 0 and A satisfies (ii). We
make use of the following simple lemma:

LEmMMA 2. If M = (@,,;)7= and M' = (a; ;)= where
o za; =0 for all 1,7e N*
then
(i) M| = sup | MX ||, | M= sup (MX, X)

where X = ({x;}) has only finitely many nonzero coordinates, all
positive.

(ii) M =M, [M[=|M|].

Proof. For X = ({z;}) € I’ we define X+ = ({|;|}). Note || X||, =
X+, and X* and X have the same cardinality of nonzero co-
ordinates. Also, «; ;=0 clearly implies || MX]|,<| MX*|, and
|(MX, X)| = (MX*, X*) and (i) readily follows. But «;;=>aj; =0

also implies each component of M’'X* is dominated by the correspond-
ing component of MX™* and hence (ii) follows from (i).

THEOREM 3. Let M ~ (I, A, F') where
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(i) F(7v) =0 for all vel.
(ii) If I'y is any finite subset of I’ there exists a v = v(I)
such that v+ I'y &S A. Then

| M|=|M| = §~F(7) (possibly + o) .

Proof. Since | M|, < | M| it suffices to show that

O IMi=XFM, @ [Mi=2%F®").

If 3),.,F(7v) < 4+ there is nothing to prove since in this case
the result is included in Theorem 2 because f(x) = > (7, 2)F(7) is
a continuous function on G, F = f, and || fll. = £(0) = .. F ().

On the other hand, if 3,..F(Y) = +<c then F' may not be in
A(I') and hence we cannot apply Theorem 2 directly. Clearly (1) is
true in this case and we need only verify (2). Let I” = {7, «--, 7.}
be any finite subset of I" and define

M, = (af )7
where

roo__
2%

{F(’Y,,) if N,-—-?\,Z’)’,,GF’
0 otherwise ,

i.e., My, ~ (", 4, F;)) where F.(v) = F(")I.(v). Since FF =0, a;; =
al’; =0 for 4,je N+, and Lemma 2 implies |M|, = | M, |,. But by

1, = =

Theorem 2

| My |; = essesGup %(7, ) Fr.(7) =T§, F(7)

since >, (7, 2)Fr(7) is continuous and F, = 0. This in turn implies

|IM|, =z sup X, F(v) = +o .

M |<too7es’

COROLLARY 2. Under the hypothesis of Theorem 3.

M= M|, =sup (5 a,)=sup( 3 ).

ieNtT Njent jent Nient

Proof. We prove only | M| =|M|, = sup;ey+(3;ex+a;,;) the proof |
of the other equality being similar. By Theorem 3. we need only
verify sup;.y+(Sjen+®,;) = D erF(Y). First

> = 3 Fu—N) = 3 F() = 3 F0) .
JjenN jenN red,—4 rel
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Let I"={v,---,7,} be any finite subset of I" and let I, =
{0, —v, --+, —7,}. Condition (ii) insures the existence of an a € I" such
that a + I'y & 4. In particular a e 4, say a = N\;,. But

F,g_roza_(a+Fo)g>"k(a)_Ay
and thus for 7 = k(a) we have

;= S FmzXFO)

jeNt 7€) (q)—4
since F' = 0, and our assertion follows.

3. An application. In this section we apply the results of
§ 2 to evaluate the norm of a special type of linear operator.

DEFINITION 4. Let T be the circle group, considered as the real
numbers R* mod 27, and let L* = L¥T, dt) be the associated Hilbert
function space with respect to normalized Lebesgue measure. Let
#Z < L* be the submanifold

A = {fe 2 STf(t)dt - 0} .

Furthermore, let Z'=Z ~ {0} and for a = {a,},c, € L'(Z’) define
H,. #7 — _# by

(H ) = 3, @, f(nt)

(where equality of functions is to be taken in the L* sense).

We now show that the mapping a -~ H, is a one-to-one bounded
linear transformation from LZ’) into _# *, the dual space of 7.
For

VHAI: = | S aufnt) S an7omd) |

S e fedfm) || < 3 a.]anl | fmdfm) ||

m,ne Z!

<15 laullanl (700N fmol = (5 lal) 1F1E = laltllF]E

nez

since || f(nt)|l, = || f(t)|. for all ne Z’. Therefore || H,|l,, =<|lall.
Also, fe _ implies H,fe _« since

ST(H,, FB)dt = nze‘,langrf(nt)dt =0.

Therefore, since H, is clearly linear, H,e_~* and the mapping
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a~> H, is bounded and linear from L'Z’') to _.#*. Finally, the
mapping is one-to-one since

H,(¢)= S a,e”=0=a=0.

nez'

We now apply Corollary 1 to evaluate the norm of H,.

THEOREM 4. Let a = {@,},ep € LN(Z’), and for re@* let

Then

| H,ll,, = max | 5 (r, 0)F(r)|*

2e9® ! re@*
where Q* is the compact dual of the discrete group Q.
Proof. Let fe_, and let the Fourier expansion of f be
fit) = m§g_‘,ZI b.e™ .
Then

(H.)(@) = n%] a,f(nt) = n%, a,l 3 bmeimm]

mezZ
— Z anbmeimnt — Z Cpeipt ,

myneZ’ pez’

where ¢, = >inn=p mnez@®.bn, and L° convergence is the justification
for the rearrangement of summation. Therefore

IHS = S 1o k=5 (5 @be 3 ab)
peZ pez :nnfbn—epz/ =p

- S ab.anb, = 3 {( S an,an>bm,bm,}
m,n,m',rf’ez’ m,m’ ez’ n,n’ ez’

mn=m'n n’[n=m/m’

where the manipulation of the quadruple sum is justified by absolute
convergence :

S 1@Eaabe = 3 Jalanl( 3 (bl ()

m,n,m’,n’ €z’ m'eZ ,
mn=m’'n’ n'[n=m[m’

< S lallawl( 218 F) = lalfIfIE < +eo

n,n' €Z

by Cauchy-Schwarz. Upon setting
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Q= S and, :F(i:) for i,je 2’
min=i/j J
and
M = (a;;) (order Z' = (1, —-1,2, -2, -++)),
we obtain

~ (@, 2", F).

Also, upon identifying .# with &* by f— X; = (b, b_, b,, by, -+ +)
we have

W H.fl; = (MX;, X;) .

But
)
S IR0 = 5 |F(3)] 5, el lan]
re@X i,jez’ J i,jez’ mln=i|j
(4,7)=1 (4,7)=1
>0 >0
2
=(Zlal)=llalt< +e,
and hence

f@) = 3 (v, 2)F(r)

freQX

is a continuous function on Q* with Fourier transform F. The
theorem follows upon applying Theorem 2 (Corollary 1 (i) to
~(@Q, 2" F).

COROLLARY 3. If a ={a,},ep € LN(Z') and a, = 0 for all neZ’,
then

N Hollop = Il

Proof. By Theorem 4,

| Hy oy = max | 3 (r, F ) |2 < (S 1 F0) ) = [Jall

er re@” re@X
since

a, = 0, |F(r)| = Z Unllm, and 3, [ F(r) | = [la]lt .

mnez reQ*

But upon setting x = 0 we obtain
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1 1 1
S 0 0Fm = | 35 Fo |[P= (S Fo) = 1lal,
reQX freQx reQx
and thus the proof is complete.
BIBLIOGRAPHY

1. W. R. Emerson, Asymptotic results for certain sequences of inmtegral operators
defined over groups, J. Math. Mech. 17 (1968), 737-758.

2. ———, Ratio properties in locally compact groups, Trans. Amer. Math. Soc.
133 (1968), 179-204.

3. H. A. Krieger, Toeplitz operators on locally compact abelian groups, J. Math.
Mech. 14 (1965), 439-478.

Received April 14, 1967, and in revised form November 22, 1968.

NEW YORK UNIVERSITY
NEW YorK, NEW YORK





