TRANSLATION KERNELS ON DISCRETE ABELIAN GROUPS

WILLIAM R. EMERSON

Let G be a compact Abelian group with discrete countable dual group $\Gamma = \hat{G}$ and let $f \in L^1(G)$ with Fourier transform $F = \hat{f}$. If V is a finite subset of Γ we consider the operator F_V on $L^2(V)$:

$$(F_{r}\varphi)(\gamma) = \sum_{\tau \in V} F(\gamma - \tau)\varphi(\tau) \quad \varphi \in L^{2}(V), \ \gamma \in V$$

Then if $\{V_n\}$ is any suitably restricted sequence of finite subsets of Γ we show that

$$\lim_{n \to \infty} |F_{\mathcal{V}_n}| = \lim_{n \to \infty} \{\max_{||\varphi||_2 = 1} |(F_{\mathcal{V}_n}\varphi, \varphi)|\} = ||f||_{\infty}$$

where $|F_{V}|$ is the operator norm of F_{V} on $L^{2}(V)$ and $(F_{V}\varphi,\varphi)$ denotes the inner product of $F_{V}\varphi$ and φ (over V).

This result is then translated into a statement concerning a special class of infinite matrices which generalize the classical Toeplitz matrices. We then apply these results in evaluating the norm of a special type of linear operator.

In [1] the author considered the asymptotic distribution of eigenvalues and characteristic numbers of certain sequences of operators $\{F_{v_n}\}$ over a locally compact group Γ associated with sequences $\{V_n\}$ of Borel sets of Γ of finite nonzero measure satisfying

(*)
$$\lim_{n\to\infty} |\gamma V_n \bigtriangleup V_n| / |V_n| = 0 \quad \text{for all } \gamma \in \Gamma ,$$

where | | is left Haar measure on Γ . We write $\{V_n\} \in W_{\Gamma}$, and say $\{V_n\}$ has the weak ratio property in case (*) is satisfied (see [2]). In this paper we are considering countable Abelian Γ and a more general family T_{Γ} of sequences $\{V_n\}$ than those in W_{Γ} (and hence in general the asymptotic distribution of the characteristic numbers of $\{F_{V_n}\}$ does not exist, [2]) but still restricted enough to guarantee an asymptotic formula for the maximal characteristic number of F_{V_n} as $n \to \infty$.

1. The basic theorem. Γ denotes an arbitrary countably infinite discrete Abelian group equipped with the counting measure.

DEFINITION 1. A sequence $\{V_n\}$ of finite nonempty subsets of Γ has the translation property, written $\{V_n\} \in T_{\Gamma}$, if and only if to every finite subset $\Gamma_0 \subseteq \Gamma$ there corresponds an $n_0 = n_0(\Gamma_0)$ such that for $n \geq n_0$ there exists a $\tau_n = \tau_n(\Gamma_0) \in \Gamma$ with the property that $\tau_n + \Gamma_0 \subseteq V_n$.

527

PROPOSITION 1. (i) $\{V_n\} \in T_{\Gamma}$ and $V_n \subseteq V_n^*$ for $n \in N^+$ implies $\{V_n^*\} \in T_{\Gamma}$. (ii) W_{Γ} is properly contained in T_{Γ} .

Proof. (i) is immediate from the definition. To prove (ii), first assume $\{V_n\} \in W_{\Gamma}$ and fix any finite nonempty subset $\Gamma_0 \subseteq \Gamma$. Set $C = \Gamma_0 \cup \{0\}$. We then readily conclude (see [2] where many properties of W_{Γ} are established)

(1)
$$\lim_{n\to\infty}\frac{|C+V_n|}{|V_n|}=1.$$

But $C + V_n = \bigcup_{\tau \in V_n} (\tau + \Gamma_0) \cup V_n$. Hence if $\tau + \Gamma_0 \nsubseteq V_n$ for all $\tau \in V_n$, we have $|(\tau + \Gamma_0) \sim V_n| \ge 1$ for all $\tau \in V_n$ and consequently

(2)
$$|C + V_n| \ge |V_n| + \frac{|V_n|}{|\Gamma_0|}$$

since we may choose $|V_n|$ elements $\tau + \gamma_{\tau} \in (\tau + \Gamma_0) \sim V_n$, where $\tau \in V_n$ and $\gamma_{\tau} \in \Gamma_0$, and no element is duplicated more than $|\Gamma_0|$ times. But for sufficiently large n (2) violates (1) and therefore there is a $\tau_n \in V_n$ for which $\tau_n + \Gamma_0 \subseteq V_n$. Hence $W_{\Gamma} \subseteq T_{\Gamma}$.

We now show inclusion is proper. For let $\{V_n\} \in W_{\Gamma} (\neq \emptyset)$, by [2]); we shall construct a sequence $V_n^* \supseteq V_n$ such that $\{V_n^*\} \notin W_{\Gamma}$, which completes the proof of (ii) upon appealing to (i). Fix any $\gamma \in \Gamma \sim \{0\}$. We inductively construct a sequence $\nu_1^{(n)}, \dots, \nu_{|V_n|}^{(n)}$ as follows: $\nu_1^{(n)} \notin V_n + \{0, \pm \gamma\}$, and

(I)
$$\mathcal{V}_{k}^{(n)} \notin (V_{n} \cup \{\mathcal{V}_{1}^{(n)}, \cdots, \mathcal{V}_{k-1}^{(n)}\}) + \{0, \pm\gamma\} \quad (2 \leq k \leq |V_{n}|).$$

We set $V_n^* = V_n \cup \{ \mathcal{V}_1^{(n)}, \dots, \mathcal{V}_{|V|}^{(n)} \}$ and verify that

$$rac{|\,(\gamma \,+\, V_n^*)\,\cap\, V_n^*\,|}{|\,V_n^*\,|} \leq rac{1}{2} \qquad \qquad (n \in N^+)$$

implying $\{V_n^*\} \notin W_{\Gamma}$. For

$$\begin{aligned} &(\gamma + V_n^*) \cap V_n^* \\ &= ((\gamma + V_n) \cap V_n^*) \cup (\{\gamma + \nu_1^{(n)}, \cdots, \gamma + \nu_{|V_n|}^{(n)}\} \cap (V_n \cup \{\nu_1^{(n)}, \cdots, \nu_{|V_n|}^{(n)}\})) \\ &= ((\gamma + V_n) \cap V_n^*) \end{aligned}$$

since the second term in the union is empty by (I). Hence $|(\gamma + V_n^*) \cap V_n^*| \leq |\gamma + V_n| = |V_n|$, and therefore for $n \in N^+$

$$rac{|\,(\gamma + V_n^*) \cap V_n^*\,|}{|\,V_n^*\,|} = rac{|\,(\gamma + V_n^*) \cap V_n^*\,|}{2\,|\,V_n\,|} \leq rac{|\,V_n\,|}{2\,|\,V_n\,|} = rac{1}{2} \;.$$

We now prove a result, of independent interest, which is critical in the proof of Theorem 1. **PROPOSITION 2.** Let G be a compact Abelian group (with measure normalized to one), let $f \in L^1(G)$, and let ρ be any positive number. Then

$$||f||_{\infty} = \sup_{\omega} \Big| \int_{g} |\omega(x)|^{
ho} f(x) dx \Big|$$

where ω ranges over all trigonometric polynomials on G satisfying $||\omega||_{\rho} \leq 1$.

Proof. Recall that a trigonometric polynomial is a finite linear combination of characters on G. Clearly

$$\Big| \int_G | \omega(x) |^
ho f(x) dx \Big| \leq ||f||_\infty \int_G |\omega(x) |^
ho dx = ||f||_\infty ||\omega||_
ho \leq ||f||_\infty$$

We divide the proof of the converse inequality into two cases:

To prove the converse inequality, we first consider the case $||f||_{\infty} < +\infty$. Fix any $\delta > 0$ (until the conclusion of the argument). Let $S = S(\delta)$ be a measurable subset of the complex plane of diameter less than δ and such that

$$E=f^{-1}(S),\;||\,\chi_{\scriptscriptstyle E}f\,||_{\scriptscriptstyle \infty}=||\,f\,||_{\scriptscriptstyle \infty}$$
 ,

where χ_E denotes the characteristic function of E. Hence for $s \in S$ and $x \in E$ we have

$$||s| - |(\chi_E f)(x)|| \le |s - (\chi_E f)(x)| < \delta$$
,

and consequently also

$$||s| - ||f||_{\infty}| = ||s| - ||\chi_E f||_{\infty}| \leq \delta$$
.

Therefore, if $g = \chi_E / |E|$ then

$$0 \leq ||f||_{\infty} - \left| \int_{a} fg dx \right| \leq |||f||_{\infty} - |s|| + \left| |s| - \left| \int_{a} fg dx \right| \right|$$

$$(3) \quad \leq |||f||_{\infty} - |s|| + \left| s - \int_{a} fg dx \right|$$

$$= |||f||_{\infty} - |s|| + \left| \frac{1}{|E|} \int_{E} (s - \chi_{E} f) dx \right| \leq 2\delta.$$

We next wish to approximate g by a *continuous* function h, and at this point the estimate is rather delicate because this is also needed later in the case $||f||_{\infty} = +\infty$ and consequently we must avoid $||f||_{\infty}$ as a factor in the error of estimation. Now since $f \in L^1(G)$, to every $\varepsilon > 0$ there corresponds an $\eta = \eta(\varepsilon)$ such that for all measurable subsets T of G of measure at most η

$$\int_{T} |f| \, dx < arepsilon$$
 .

We now choose $\gamma = \gamma(\delta)$ satisfying

$$(4) \quad ({\rm i}) \quad \gamma < \delta \, | \, E \, | \, , \quad ({\rm ii}) \quad \int_{T} | \, f \, | \, dx < \delta \, | \, E \, | \ \, {\rm if} \ \, | \ T \, | < \gamma \; .$$

Furthermore, since Haar measure is regular, we may find an open set E^+ and a closed set E^- such that

$$(4') E^- \subseteq E \subseteq E^+ , |E^+ \sim E^-| < \gamma .$$

Finally (by Urysohn's Lemma, since G is a normal topological space) there exists a continuous $h_0: G \to [0, 1]$ such that $h_0 | E^- \equiv 1$ and $h_0 | G \sim E^+ \equiv 0$. Our candidate for h is then defined to be the nonnegative function $h = h_0 / |E|$. Let us now estimate $\int_a fg dx - \int_a fh dx$:

$$\left| \int_{a} fg dx - \int_{a} fh dx \right| \leq \int_{a} |f| |g - h| dx$$

$$(5) = \left(\int_{E^{-}} + \int_{E^{+} \sim E^{-}} + \int_{G \sim E^{+}} \right) |f| |g - h| dx = \int_{E^{+} \sim E^{-}} |f| |g - h| dx$$

$$\leq \max |g - h| \int_{E^{+} \sim E^{-}} |f| dx \leq \frac{1}{|E|} \cdot \delta |E| = \delta$$

by (4), (4') and the definitions of g and h. Also, we have

$$\int_{E^-} h dx \leq \int_{G} h dx = \int_{E^+} h dx \leq || \, h \, ||_\infty \, | \, E^+ \, | \, \, ,$$

implying the estimate

(6)
$$\frac{|E^-|}{|E|} \le ||h||_1 \le \frac{|E^+|}{|E|} \le 1 + \delta$$
 by virtue of (4) and (4').

Lastly, to any $\alpha > 0$ we may correspond a trigonometric polynomial ω_{α} satisfying $||h^{1/\rho} - \omega_{\alpha}||_{\infty} < \alpha$, and consequently $||h^{1/\rho} - |\omega_{\alpha}|||_{\infty} < \alpha$ since $h^{1/\rho} \ge 0$. Thus by choosing $\alpha_0 = \alpha_0(\delta)$ sufficiently small we may conclude

(7)
$$||h - |\omega_{\alpha_0}|^{\rho}||_1 \leq ||h - |\omega_{\alpha_0}|^{\rho}||_{\infty} < \delta$$
.

Also,

$$||\, \omega_{lpha_0}^{
ho}||_{\scriptscriptstyle 1} \leq ||\, h - |\, \omega_{lpha_0}|^{
ho}||_{\scriptscriptstyle 1} + ||\, h\,||_{\scriptscriptstyle 1} \leq \delta + (1+\delta) = 1 + 2\delta$$
 .

We now let

$$\omega = \omega_{lpha_0}/(1+2\delta)^{1/
ho}, ext{ implying } ||\,\omega\,||_{
ho} \leq 1$$
 .

Finally,

$$\begin{split} \left| \int_{G} |\omega|^{\rho} f dx \right| &= \frac{1}{1+2\delta} \left| \int_{G} |\omega_{\alpha_{0}}|^{\rho} f dx \right| \\ (8) & \geq \frac{1}{1+2\delta} \Big(\left| \int_{G} f g dx \right| - \left| \int_{G} f g dx - \int_{G} f h dx \right| - \left| \int_{G} h f dx - \int_{G} |\omega_{\alpha_{0}}|^{\rho} f dx \right| \Big) \\ & \geq \frac{1}{1+2\delta} ((||f||_{\infty}-2\delta) - \delta - \delta ||f||_{1}) . \end{split}$$

By (3), (5), and (7). Our assertion follows upon letting $\delta \rightarrow 0$.

In case $||f||_{\infty} = +\infty$, we let S_n be a measurable subset of the complex plane of diameter less than δ and such that $E_n = f^{-1}(S_n)$, $||\chi_{E_n}f||_{\infty} > n$. Equations (3) – (8) still hold with $||f||_{\infty}$ replaced by $||\chi_{E_n}f||_{\infty} > n$ wherever it occurs, and we readily construct trigonometric polynomials ω_n with $||\omega_n||_{\rho} \leq 1$ and such that $\int_{\mathcal{G}} |\omega_n|^{\rho} f dx$ is unbounded as $n \to +\infty$.

We now are ready to prove the basic theorem.

THEOREM 1. Let G be a compact group (with measure normalized to one), let $f \in L^1(G)$, and let $F = \hat{f} \in L^{\infty}(\Gamma)$, the Fourier Transform of f. Furthermore, let $\{V_n\} \in T_{\Gamma}$ and let F_{V_n} be the Hilbert-Schmidt operator on $L^2(V_n)$:

$$(F_{V_n}\psi)(\gamma) = \int_{V_n} F(\gamma - \tau)\psi(\tau)d\tau = \sum_{\tau \in V_n} F(\gamma - \tau)\psi(\tau)$$
$$(\psi \in L^2(V_n), \ \gamma \in V_n) \ .$$

Let $(F_{v_n}\psi,\psi)_{v_n}$ denote the inner product of $F_{v_n}\psi$ and ψ over V_n , and let $|F_{v_n}|$ denote the maximal characteristic number of F_{v_n} as an operator on the Hilbert space $L^2(V_n)$. Then

(i)
$$\lim_{n \to \infty} \max_{||\psi||_{2}=1} |(F_{V_{n}}\psi, \psi)_{V_{n}}| = ||f||_{\infty}.$$

(ii)
$$\lim_{n \to \infty} |F_{v_n}| = ||f||_{\infty}$$
.

Proof. (i) By definition,

$$(F_{V_n}\psi,\psi)_{V_n} = \sum_{\tau,\tau\in V_n} F(\gamma-\tau)\psi(\tau)\psi(\overline{\gamma})$$
$$= \sum_{\tau,\tau\in V_n} \left[\int_{\mathcal{G}} \overline{(\gamma-\tau,x)}f(x)dx \right] \psi(\tau)\overline{\psi(\gamma)}$$
$$= \int_{\mathcal{G}} \left[\sum_{\tau,\tau\in V_n} (\tau,x)\psi(\tau)\overline{(\gamma,x)}\psi(\gamma) \right] f(x)dx$$
$$= \int_{\mathcal{G}} \left| \sum_{\tau\in V_n} (\tau,x)\psi(\tau) \right|^2 f(x)dx .$$

Note that

$$\omega_{\psi}(x) = \sum_{\tau \in V_n} (\tau, x) \psi(\tau)$$

is a trigonometric polynomial on G, and $\psi \to \omega_{\psi}$ is an isometry of $L^2(V_n)$ into $L^2(G)$ since $||\omega_{\psi}||_2^2 = \sum_{\tau \in V_n} |\psi(\tau)|^2 = ||\psi||_2^2$. Therefore

(†)
$$\max_{\||\psi\||_{2^{-1}}} |(F_{v_n}\psi,\psi)_{v_n}| = \max_{\|\omega\||_{2^{-1}}} \left| \int_{G} |\omega(x)|^2 f(x) dx \right|^{2^{-1}}$$

where ω ranges over linear combinations of characters on G generated by elements in V_n . Hence by Proposition 2 ($\rho = 2$),

$$\lim_{n \to \infty} \max_{||\psi||_{2}=1} |(F_{v_n}\psi,\psi)_{v_n}| \leq ||f||_{\scriptscriptstyle \infty} \ .$$

On the other hand, let ω be any trigonometric polynomial on G, say

$$\omega(x) = \sum_{1 \leq i \leq k} (\gamma_i, x) c_i$$
 $(c_i \in \mathcal{C}, \gamma_i \in \Gamma)$.

Let $\Gamma_0 = \{\gamma_1, \dots, \gamma_k\}$, a finite subset of Γ . Now since $\{V_n\} \in T_{\Gamma}$ there exists an n_0 such that for $n \ge n_0$ there exists $\tau_n \in \Gamma$ such that $\tau_n + \Gamma_0 \subseteq V_n$. Hence for $n \ge n_0$,

$$\omega_n(x) = (\tau_n, x)\omega(x) = \sum_{1 \le i \le k} (\tau_n + \gamma_i, x)c_i$$

is a linear combination of characters on G generated by elements of V_n . Since $|\omega(x)| = |\omega_n(x)|$ for all $x \in G$, the proof of (i) is completed by again applying Proposition 2 with $\rho = 2$.

(ii) Recall that $|F_{V_n}|$ is the norm of F_{V_n} considered as an operator on $L^2(V_n)$, i.e.,

$$|F_{v_n}| = \max_{||\psi||_2=1} ||F_{v_n}\psi||_2$$
 .

but by the Cauchy-Schwarz Inequality, for $||\psi||_2 = 1$

$$|(F_{v_n}\psi,\psi)_{v_n}| \leq ||F_{v_n}\psi||_2 ||\psi||_2 = ||F_{v_n}\psi||_2 \leq |F_{v_n}|$$

and therefore by (i),

$$\lim_{\overline{\mathfrak{n}}\to\infty} \mid F_{{\scriptscriptstyle V}_n}\mid \geqq \lim_{\overline{\mathfrak{n}}\to\infty} \max_{\mid\mid \psi\mid\mid_2=1}\mid (F_{{\scriptscriptstyle V}_n}\psi,\psi)_{{\scriptscriptstyle V}_n}\mid = \mid\mid f\mid\mid_{\infty}\,.$$

Thus, if $||f||_{\infty} = +\infty$ nothing remains to be proved. If $||f||_{\infty} < +\infty$ we have $f \in L^1(G) \cap L^{\infty}(G)$, and therefore by [3], p. 445, $|F_{v_n}| \leq ||f||_{\infty}$ for all $n \in N^+$. Hence $\overline{\lim}_{n \to \infty} |F_{v_n}| \leq ||f||_{\infty}$, and consequently $\lim_{n \to \infty} |F_{v_n}| = ||f||_{\infty}$ in this case as well. We now conversely prove that the hypothesis $\{V_n\} \in T_r$ is in fact necessary for the conclusion of Theorem 1. More precisely,

THEOREM 1'. Using the notation of Theorem 1, if $\{V_n\}$ is any sequence of finite subsets of Γ for which conclusion (i) holds for all trigonometric polynomials f on G, then $\{V_n\} \in T_{\Gamma}$.

Proof. Assume $\{V_n\} \notin T_{\Gamma}$, i.e., there exists a finite subset Γ_0 of Γ such that no translate of Γ_0 lies in V_m for an appropriate subsequence $m \to \infty$. We then assert that

$$f(x) = \frac{1}{|\Gamma_0|} \sum_{\tau \in \Gamma_0} (\tau, x) \qquad (||f||_{\infty} = f(0) = 1)$$

is a trigonometric polynomial for which (i) fails. More precisely we show for all these m:

$$\max_{\||\psi^{|}|_{2}=1}|(F_{_{V_{m}}}\psi,\psi)_{_{V_{m}}}|\leq \left(1-rac{1}{2|arGam{\Gamma}_{_{0}}|}
ight)\!\|f\|_{^{\infty}}.$$

Recalling relation (†) of the proof of Theorem 1. We have:

(†)
$$\max_{||\psi||_{2}=1} |(F_{v_{m}}\psi,\psi)_{v_{m}}| = \max_{||\omega||_{2}=1} \left| \int_{G} |\omega(x)|^{2} f(x) dx \right|$$

where ω ranges over all linear combinations of characters on G generated by elements in V_m .

However, any such ω is of the form

$$\omega(x) = \sum_{\tau \in Vm} (\tau, x) a_{\tau}$$

where

$$\sum_{\tau \in V_m} |a_{\tau}|^2 = ||\omega||_2^2 \leq 1$$
 ,

implying

$$|\omega(x)|^2 = \sum_{\tau_1, \tau_2 \in V_m} (\tau_1 - \tau_2, x) a_{\tau_1} \bar{a}_{\tau_2},$$

and finally

$$\int_{\mathcal{G}} |\omega(x)|^2 f(x) dx = \frac{1}{|\Gamma_0|} \sum_{\substack{\tau_1, \tau_2 \in V_m \\ \tau_2 = \tau_1 \in \Gamma_0}} a_{\tau_1} \overline{a}_{\tau_2} .$$

Consequently,

$$\begin{split} \left| \int_{G} |\omega(x)|^{2} f(x) dx \right| &\leq \frac{1}{|\Gamma_{0}|} \sum_{\substack{\tau_{1}, \tau_{2} \in Y_{m} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \end{array} | \left(\sum_{\tau_{1} \in Y_{m}} |a_{\tau_{1}}|^{2} \left(\sum_{\substack{\tau_{2} \in Y_{m} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \end{array} \right) + \sum_{\tau_{2} \in Y_{m}} |a_{\tau_{2}}|^{2} \left(\sum_{\substack{\tau_{1} \in Y_{m} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \tau_{2} - \tau_{1} \in \Gamma_{0} \\ \end{array} \right) + \sum_{\tau_{2} \in Y_{m}} |a_{\tau_{2}}|^{2} \left((\Gamma_{m} - \tau_{1}) \cap \Gamma_{0} \right) \\ &+ \sum_{\tau_{2} \in Y_{m}} |a_{\tau_{2}}|^{2} |(\tau_{2} - V_{m}) \cap \Gamma_{0}| \\ &+ \sum_{\tau_{2} \in Y_{m}} |a_{\tau_{2}}|^{2} |(\tau_{0} - 1) \sum_{\tau_{1} \in Y_{m}} |a_{\tau_{1}}|^{2} + |\Gamma_{0}| \sum_{\tau_{2} \in Y_{m}} |a_{\tau_{2}}|^{2} \right) \\ &= \left(1 - \frac{1}{2|\Gamma_{0}|} \right) \sum_{\tau \in Y_{m}} |a_{\tau}|^{2} \leq \left(1 - \frac{1}{2|\Gamma_{0}|} \right) \\ &= \left(1 - \frac{1}{2|\Gamma_{0}|} \right) ||f||_{\infty} \end{split}$$

since no translate $V_m - \tau_1$ contains Γ_0 by hypothesis. Our assertion now readily follows.

2. A class of doubly-infinite matrices. We now translate the theorem of the preceding section into a statement concerning a class of doubly-infinite complex matrices $M = (\alpha_{i,j})_{i,j=1}^{\infty}$ whose entries $\alpha_{i,j}$ are determined by a "group law".

DEFINITION 2. Let $M = (\alpha_{i,j})_{i,j=1}^{\infty}$ be a matrix with complex entries. We then write

$$M \sim (\Gamma, \Lambda, F)$$

if and only if

(i) Γ is a countable Abelian group.

(ii) Λ is a subset of Γ .

(iii) $F: \Gamma \to \mathcal{C}$.

(iv) There exists an ordering of $\Lambda = \{\lambda_1, \dots, \lambda_n, \dots\}$ such that for all $i, j \in N^+$,

$$\alpha_{i,j} = F(\lambda_i - \lambda_j)$$
.

REMARK. For any $M = (\alpha_{i,j})_{i,j=1}^{\infty}$ with complex entries we may take Γ to be Q^{\times} , the multiplicative group of rational numbers, and Λ to be $P = \{p_n : n \in N^+\}$, the set of all positive integral primes, upon defining F by

$$F(r) = egin{cases} lpha_{i,j} & ext{ if } r = p_i/p_j \ 0 & ext{ otherwise .} \end{cases}$$

534

We then have $M \sim (Q^{\times}, P, F)$.

Under suitable restrictions on (Γ, Λ, F) we shall be able to compute the norm and quadratic norm of the matrix M, which are defined as follows:

DEFINITION 3. The norm of M, |M|, and the quadratic norm of M, $|M|_{I}$, are defined by

$$|M| = \sup_{||X||_2 \leq 1} ||MX||_2 \;, \qquad |M|_I = \sup_{||X||_2 \leq 1} |(MX, X)| \;,$$

where $X = (\{x_i\})$ ranges over elements of the complex Hilbert space l^2 with only finitely many $x_i \neq 0$, and $MX = (\{\sum_j \alpha_{i,j} x_j\})$.

LEMMA 1. If M induces a bounded operator on l^2 , then

$$|M| = \sup_{||X||_2 \leq 1} ||MX||$$
 , (ii) $|M|_{I} = \sup_{||X||_2 \leq 1} |(MX, X)|$,

where $X = (\{x_i\})$ ranges over all elements of l^2 (with $||X||_2 \leq 1$). Hence in this case |M| is the standard norm of M considered as a bounded linear operator on l^2 .

Proof. For $x \in l^2$, let X_n be the projection of X on its first n components (0 elsewhere). Since M is bounded and consequently closed, $\lim_{n\to\infty} MX_n = MX$ and (i) follows since X_n has at most n nonzero components. Also

$$(MX, X) = (MX_n, X_n) + (M(X - X_n), X_n) + (MX, X - X_n)$$

and therefore

$$egin{aligned} &|(MX,\,X)\,-\,(MX_n,\,X_n)\,| \ &\leq ||M(X-X_n)\,||_2\,||\,X_n\,||_2\,+\,||\,MX\,||_2\,||\,X-X_n\,||_2\,{
ightarrow}\,0 \end{aligned}$$

as $n \to \infty$, and (ii) clearly follows.

THEOREM 2. Let $M \sim (\Gamma, \Lambda, F)$ where (i) $F \in A(\Gamma)$, i.e., $F = \hat{f}$ for some $f \in L^1(G)$. (ii) To each finite subset $\Gamma_0 \subseteq \Gamma$ there corresponds a $\gamma = \gamma(\Gamma_0)$ such that $\gamma + \Gamma_0 \subseteq \Lambda$. Then $|M| = |M|_I = ||f||_{\infty}$.

Proof. Assume $\Lambda = \{\lambda_1, \dots, \lambda_n, \dots\}$ as in Definition 2, and set $V_n = \{\lambda_1, \dots, \lambda_n\}$. Then hypothesis (ii) clearly implies $\{V_n\} \in T_{\Gamma}$. The theorem will follow from the two inequalities

- (i) $|M| \leq ||f||_{\infty}$
- (ii) $||f||_{\infty} \leq |M|_{I}$

since $|M|_{I} \leq |M|$ by the Cauchy-Schwarz inequality.

(i): If $||f||_{\infty} = +\infty$ there is nothing to prove. Otherwise $f \in L^1(G) \cap L^{\infty}(G)$, and therefore the operator $M': L^2(\Gamma) \to L^2(\Gamma)$ defined by

$$(M'\varphi)(\gamma) = \sum_{\tau \in \Gamma} F(\gamma - \tau)\varphi(\tau) \qquad (\varphi \in L^2(\Gamma) \text{ , } \gamma \in \Gamma)$$

has norm $|M'| = ||f||_{\infty}$ by [3], § 3.2., p. 441. Hence if we only consider φ with support in Λ and restrict γ to Λ , M' restricts to an operator $M'': L^2(\Lambda) \to L^2(\Lambda)$ with $|M''| \leq |M'|$. Now consider the isometry of l^2 onto $L^2(\Lambda)$ given by $X = (\{x_n\}) \to \varphi_X$ where $\varphi(\lambda_n) = x_n$ for $n \in N^+$. Then for this $\varphi = \varphi_X$ and $\lambda_i \in \Lambda$,

$$(M''\varphi)(\lambda_i) = \sum_{\lambda \in A} F(\lambda_i - \lambda)\varphi(\lambda) = \sum_j F(\lambda_i - \lambda_j)\varphi(\lambda_j) = \sum_j \alpha_{i,j} x_j$$

which is the i^{th} component of MX, and therefore $|M| = |M''| \leq |M'| = ||f||_{\infty}$ (and thus M induces a bounded linear operator if $||f||_{\infty} < +\infty$).

(ii): For $n \in N^+$, consider the isometry of $L^2(V_n)$ (which is none other than *n*-dimensional Euclidean space) into l^2 given by $\varphi \to X_{\varphi}$ where $X_{\varphi} = (\{x_j^{\varphi}\})$ and $x_j^{\varphi} = \varphi(\lambda_j)$ for $1 \leq j \leq n$ and 0 otherwise. Hence X_{φ} has only finitely many nonzero components, and each $X \in l^2$ with only finitely many nonzero components is in the image of $L^2(V_n)$ under the above isometry for n = n(X) sufficiently large. Now consider F_{V_n} on $L^2(V_n)$:

$$egin{aligned} &(F_{{}_{V_n}}arphi,arphi)_{{}_{V_n}} = \sum\limits_{1\leq i\leq n}\sum\limits_{1\leq j\leq n}F(\lambda_i-\lambda_j)arphi(\lambda_j)arphi\overline{(\lambda_i)}\ &=\sum\limits_{1\leq i,j\leq n}lpha_{i,j}x_j\overline{x}_i = (MX_arphi,X_arphi) \ & (ext{in } l^2) \ . \end{aligned}$$

But by Theorem 1 (i) $\lim_{n\to\infty} \max_{||\varphi||_2=1} |(F_{v_n}\varphi,\varphi)_{v_n}| = ||f||_{\infty}$ and therefore $|M|_I = ||f||_{\infty}$ since

$$|M|_{I} = \sup_{||x||_{2} \leq 1 \atop x_{i} \neq 0 \text{ finitely}} |(MX, X)| = \lim_{n \to \infty} \max_{||\varphi||_{2} \leq 1} |(F_{v_{n}}\varphi, \varphi)_{v_{n}}| = ||f||_{\infty} \text{ .}$$

COROLLARY 1. (1) Hypothesis (i) of Theorem 2 is satisfied if (i)' $\sum_{\gamma \in \Gamma} |F(\gamma)|^2 < +\infty$.

(2) Hypothesis (ii) of Theorem 2 is satisfied if

(ii)'
$$\Lambda + \Lambda \subseteq \Lambda$$
 and (ii)" Λ generates Γ .

Proof. (1), (i)' implies $f(x) = \sum_{\gamma \in \Gamma} (\gamma, x) F(\gamma) \in L^2(G)$ and therefore also $f \in L^1(G)$ since G is compact and hence of finite measure. Clearly $F = \hat{f} \in A(\Gamma)$.

(2) First note that any element of Γ is the difference of two elements in Λ , i.e., $\Gamma = \Lambda - \Lambda$. For by (ii)", if $\gamma \in \Gamma$ we have $\gamma = \lambda_{i_1} + \cdots + \lambda_{i_k} - \cdots - \lambda_{i_n}$ for some suitable finite sequence of integers i_1, \dots, i_n (if no terms with a plus sign occur we may take k = 0, if none with a minus sign occur take k = n). But by (ii)', $\gamma^+ = \lambda_{i_1} + \cdots + \lambda_{i_k} \in \Lambda$ if k > 0, $\gamma^- = \lambda_{i_{k+1}} + \cdots + \lambda_{i_n} \in \Lambda$ if k < n. If k = 0 we may write $\gamma = \lambda_1 - (\lambda_1 + \cdots + \lambda_n + \lambda_1)$ and similarly $\gamma = (\lambda_1 + \cdots + \lambda_n + \lambda_1) - \lambda_1$ if k = n.

Now let $\Gamma_0 = \{\gamma_1, \dots, \lambda_k\}$ be a nonempty finite subset of Γ . Then for appropriate $a_i, b_i \in N^+$ we have

$$\gamma_i = \lambda_{a_i} - \lambda_{b_i}$$
 $(1 \leq i \leq k)$.

Consequently, for $1 \leq i \leq k$,

$$\gamma_i = \lambda_{a_i} + \lambda_{b_1} + \cdots + \widehat{\lambda}_{b_i} + \cdots + \lambda_{b_k} - (\lambda_{b_1} + \cdots + \lambda_{b_k})$$

where (^) denotes deletion of a term. Hence if we set $\gamma = \lambda_{b_1} + \cdots + \lambda_{b_k}$ we have $\gamma + \Gamma_0 \subseteq \Lambda$ since

$$\lambda_{a_i} + \lambda_{b_1} + \cdots + \widehat{\lambda}_{b_i} + \cdots + \lambda_{b_k} \in \Lambda$$

by (ii)'.

We now apply Theorem 2 to completely solve the norm evaluation in the case $M \sim (\Gamma, \Lambda, F)$ where $F \ge 0$ and Λ satisfies (ii). We make use of the following simple lemma:

LEMMA 2. If
$$M = (\alpha_{i,j})_{i,j=1}^{\infty}$$
 and $M' = (\alpha'_{i,j})_{i,j=1}^{\infty}$ where
 $\alpha_{i,j} \ge \alpha'_{i,j} \ge 0$ for all $i, j \in N^+$

then

(i)
$$|M| = \sup_{||x||_2 \le 1} ||MX||$$
, $|M|_I = \sup_{||x||_2 \le 1} (MX, X)$

where $X = (\{x_i\})$ has only finitely many nonzero coordinates, all positive.

(ii)
$$|M'| \leq |M|$$
, $|M'|_I \leq |M|_I$.

Proof. For $X = (\{x_i\}) \in l^2$ we define $X^+ = (\{|x_i|\})$. Note $||X||_2 = ||X^+||_2$ and X^+ and X have the same cardinality of nonzero coordinates. Also, $\alpha_{i,j} \ge 0$ clearly implies $||MX||_2 \le ||MX^+||_2$ and $|(MX, X)| \le (MX^+, X^+)$ and (i) readily follows. But $\alpha_{i,j} \ge \alpha'_{i,j} \ge 0$ also implies each component of $M'X^+$ is dominated by the corresponding component of MX^+ and hence (ii) follows from (i).

THEOREM 3. Let $M \sim (\Gamma, \Lambda, F)$ where

(i) $F(\gamma) \geq 0$ for all $\gamma \in \Gamma$.

(ii) If Γ_0 is any finite subset of Γ there exists a $\gamma = \gamma(\Gamma_0)$ such that $\gamma + \Gamma_0 \subseteq \Lambda$. Then

$$|M| = |M|_{I} = \sum_{\gamma \in I} F(\gamma)$$
 (possibly $+\infty$).

Proof. Since $|M|_{I} \leq |M|$ it suffices to show that

(1)
$$|M| \leq \sum_{\gamma \in \Gamma} F(\gamma)$$
, (2) $|M|_{I} = \sum_{\gamma \in \Gamma} F(\gamma)$.

If $\sum_{\gamma \in r} F(\gamma) < +\infty$ there is nothing to prove since in this case the result is included in Theorem 2 because $f(x) = \sum_{\gamma \in r} (\gamma, x) F(\gamma)$ is a continuous function on G, $F = \hat{f}$, and $||f||_{\infty} = f(0) = \sum_{\gamma \in r} F(\gamma)$.

On the other hand, if $\sum_{\tau \in \Gamma} F(\gamma) = +\infty$ then F may not be in $A(\Gamma)$ and hence we cannot apply Theorem 2 directly. Clearly (1) is true in this case and we need only verify (2). Let $\Gamma' = \{\gamma_1, \dots, \gamma_n\}$ be any finite subset of Γ and define

$$M_{\scriptscriptstyle \Gamma'} = (lpha_{i,j}^{\scriptscriptstyle \Gamma'})_{i,j=1}^{\infty}$$

where

$$lpha_{i,j}^{\Gamma'} = egin{cases} F(\gamma_
u) & ext{if } \lambda_i - \lambda_j = \gamma_
u \in \Gamma' \ 0 & ext{otherwise }, \end{cases}$$

i.e., $M_{\Gamma'} \sim (\Gamma, \Lambda, F_{\Gamma'})$ where $F_{\Gamma'}(\gamma) = F(\gamma)I_{\Gamma'}(\gamma)$. Since $F \ge 0$, $\alpha_{i,j} \ge \alpha_{i,j}^{\Gamma'} \ge 0$ for $i, j \in N^+$, and Lemma 2 implies $|M|_I \ge |M_{\Gamma'}|_I$. But by Theorem 2

$$\|M_{{\scriptscriptstyle\Gamma}'}\|_{{\scriptscriptstyle I}} = \mathop{\mathrm{ess\,sup}}\limits_{x\,\in\,G} \, \Big|\sum\limits_{\gamma\,\in\,\Gamma}\,(\gamma,\,x)F_{{\scriptscriptstyle\Gamma}'}(\gamma)\,\Big| = \sum\limits_{\gamma\,\in\,\Gamma'}F(\gamma)$$

since $\sum_{\gamma \in \Gamma} (\gamma, x) F_{\Gamma'}(\gamma)$ is continuous and $F_{\Gamma'} \ge 0$. This in turn implies

$$|M|_{I} \geq \sup_{|\Gamma'| < +\infty} \sum_{\gamma \in I'} F(\gamma) = +\infty$$

COROLLARY 2. Under the hypothesis of Theorem 3.

$$|M| = |M|_{I} = \sup_{i \in N^+} \left(\sum_{j \in N^+} \alpha_{i,j}\right) = \sup_{j \in N^+} \left(\sum_{i \in N^+} \alpha_{i,j}\right).$$

Proof. We prove only $|M| = |M|_{I} = \sup_{i \in N^{+}} (\sum_{j \in N^{+}} \alpha_{i,j})$ the proof i of the other equality being similar. By Theorem 3. we need only verify $\sup_{i \in N^{+}} (\sum_{j \in N^{+}} \alpha_{i,j}) = \sum_{\gamma \in \Gamma} F(\gamma)$. First

$$\sum_{j \in N^+} \alpha_{i,j} = \sum_{j \in N^+} F(\lambda_i - \lambda_j) = \sum_{\gamma \in \lambda_i - A} F(\gamma) \leq \sum_{\gamma \in \Gamma} F(\gamma) .$$

538

Let $\Gamma' = \{\gamma_1, \dots, \gamma_n\}$ be any finite subset of Γ and let $\Gamma_0 = \{0, -\gamma_1, \dots, -\gamma_n\}$. Condition (ii) insures the existence of an $\alpha \in \Gamma$ such that $\alpha + \Gamma_0 \subseteq \Lambda$. In particular $\alpha \in \Lambda$, say $\alpha = \lambda_{k(\alpha)}$. But

$$\Gamma' \subseteq -\Gamma_{\scriptscriptstyle 0} = lpha - (lpha + \Gamma_{\scriptscriptstyle 0}) \subseteq \lambda_{k(lpha)} - \Lambda \; ,$$

and thus for $i = k(\alpha)$ we have

$$\sum_{j \in N^+} \alpha_{i,j} = \sum_{\gamma \in \lambda_{k(\alpha)} - \Lambda} F(\gamma) \ge \sum_{\gamma \in \Gamma'} F(\gamma)$$

since $F \geq 0$, and our assertion follows.

3. An application. In this section we apply the results of $\S 2$ to evaluate the norm of a special type of linear operator.

DEFINITION 4. Let T be the circle group, considered as the real numbers $R^+ \mod 2\pi$, and let $L^2 = L^2(T, dt)$ be the associated Hilbert function space with respect to normalized Lebesgue measure. Let $\mathscr{M} \subseteq L^2$ be the submanifold

$$\mathscr{M} = \left\{ f \in L^2 : \int_T f(t) dt = 0 \right\}$$
 .

Furthermore, let $Z' = Z \sim \{0\}$ and for $a = \{a_n\}_{n \in Z'} \in L^1(Z')$ define $H_a: \mathcal{M} \to \mathcal{M}$ by

$$(H_a f)(t) = \sum_{n \in \mathbb{Z}'} a_n f(nt)$$

(where equality of functions is to be taken in the L^2 sense).

We now show that the mapping $a \rightarrow H_a$ is a one-to-one bounded linear transformation from $L^1(\mathbb{Z}')$ into \mathscr{M}^* , the dual space of \mathscr{M} . For

$$\begin{split} &|| H_a f ||_2^2 = \left\| \sum_{n \in Z'} a_n f(nt) \sum_{m \in Z'} \overline{a_m f(mt)} \right\|_1 \\ &= \left\| \sum_{m, n \in Z'} a_n \overline{a_m} f(nt) f(\overline{mt}) \right\|_1 \leq \sum_{m, n \in Z'} |a_n| |a_m| || f(nt) f(mt) ||_1 \\ &\leq \left\| \sum_{m, n \in Z'} |a_n| |a_m| || f(nt) ||_2 || f(mt) ||_2 = \left(\sum_{n \in Z'} |a_n| \right)^2 || f ||_2^2 = || a ||_1^2 || f ||_2^2 \end{split}$$

since $||f(nt)||_2 = ||f(t)||_2$ for all $n \in \mathbb{Z}'$. Therefore $||H_a||_{op} \leq ||a||_1$. Also, $f \in \mathscr{M}$ implies $H_a f \in \mathscr{M}$ since

$$\int_{T} (H_a f)(t) dt = \sum_{n \in \mathbb{Z}'} a_n \int_{T} f(nt) dt = 0.$$

Therefore, since H_a is clearly linear, $H_a \in \mathscr{M}^*$ and the mapping

 $a \rightarrow H_a$ is bounded and linear from $L^1(Z')$ to \mathscr{M}^* . Finally, the mapping is one-to-one since

$$H_a(e^{it}) = \sum_{n \in \mathbf{Z}'} a_n e^{int} = \mathbf{0} \Leftrightarrow a = \mathbf{0}$$
 .

We now apply Corollary 1 to evaluate the norm of H_a .

THEOREM 4. Let
$$a = \{a_n\}_{n \in \mathbb{Z}'} \in L^1(\mathbb{Z}')$$
, and for $r \in Q^{\times}$ let

$$F(r) = \sum_{m/n=r \ m, n \in \mathbf{Z}'} a_m \overline{a}_n$$
 .

Then

$$||H_a||_{op} = \max_{x \in \widehat{Q}^{\times}} \Big| \sum_{r \in Q^{\times}} (r, x) F(r) \Big|^{\frac{1}{2}}$$

where \hat{Q}^{\times} is the compact dual of the discrete group Q^{\times} .

Proof. Let $f \in \mathcal{M}$, and let the Fourier expansion of f be

$$f(t) = \sum_{m \in \mathbf{Z}'} b_m e^{imt}$$
.

Then

$$(H_a f)(t) = \sum_{\substack{n \in \mathbf{Z}'}} a_n f(nt) = \sum_{\substack{n \in \mathbf{Z}'}} a_n \left[\sum_{\substack{m \in \mathbf{Z}'}} b_m e^{imnt} \right]$$
$$= \sum_{\substack{m, n \in \mathbf{Z}'}} a_n b_m e^{imnt} = \sum_{\substack{p \in \mathbf{Z}'}} c_p e^{ipt} ,$$

where $c_p = \sum_{mn=p \ m,n \in Z'} a_n b_n$, and L^2 convergence is the justification for the rearrangement of summation. Therefore

$$|| H_a f ||_2^2 = \sum_{p \in \mathbf{Z}'} |c_p|^2 = \sum_{p \in \mathbf{Z}'} \left(\sum_{\substack{m,n=p\\m,n \in \mathbf{Z}'}} \overline{a_n b_m} \sum_{\substack{m',n' \in p\\m',n \in \mathbf{Z}'}} a_{n'} b_{m'} \right)$$
$$= \sum_{\substack{m,n,m',n' \in \mathbf{Z}'\\mn = m'n'}} \overline{a}_n \overline{b}_m a_{n'} b_{m'} = \sum_{\substack{m,m' \in \mathbf{Z}'\\n'/n = m/m'}} \left\{ \left(\sum_{\substack{n,n' \in \mathbf{Z}'\\n'/n = m/m'}} a_{n'} \overline{a_n} \right) b_{m'} \overline{b_{m'}} \right\}$$

where the manipulation of the quadruple sum is justified by absolute convergence:

,

、

$$\begin{split} &\sum_{\substack{m,n,m',n'\in \mathbf{Z}'\\mn=m'n'}} |\bar{a}_n \bar{b}_m a_{n'} b_{m'}| = \sum_{n,n'\in \mathbf{Z}'} |a_n| |a_{n'}| \Big(\sum_{\substack{m,m'\in \mathbf{Z}'\\n'/n=m/m'}} |b_m| (b_{m'}) \Big) \\ &\leq \sum_{n,n'\in \mathbf{Z}'} |a_n| |a_{n'}| \Big(\sum_{m\in \mathbf{Z}'} |b_m|^2 \Big) = ||a||_1^2 ||f||_2^2 < +\infty \end{split}$$

by Cauchy-Schwarz. Upon setting

$$lpha_{i,j} = \sum_{m/n=i/j} a_m ar{a}_n = Figg(rac{i}{j}igg) \qquad \qquad ext{for } i,j\in Z'$$

and

$$M = (lpha_{ij}) \quad (ext{order } Z' = (1, -1, 2, -2, \cdots)) \; ,$$

we obtain

$$M \sim (Q^{\times}, Z', F)$$
.

Also, upon identifying \mathscr{M} with \mathscr{L}^2 by $f \leftrightarrow X_f = (b_1, b_{-1}, b_2, b_{-2}, \cdots)$ we have

$$||\, H_a f||_2^2 = (M X_f,\, X_f)$$
 .

But

$$\begin{split} \sum_{\substack{r \in Q^{\times} \\ r \in Q}} |F(r)| &= \sum_{\substack{i,j \in \mathbf{Z}' \\ (i,j)=1 \\ i > 0}} \left|F\left(\frac{i}{j}\right)\right| \leq \sum_{\substack{i,j \in \mathbf{Z}' \\ (i,j)=1 \\ i > 0}} \sum_{\substack{m/n=i/j \\ n/n=i/j}} |a_n| |a_m| \\ &= \left(\sum_{n \in \mathbf{Z}'} |a_n|\right)^2 = ||a||_1^2 < +\infty \end{split}$$

and hence

$$f(x) = \sum_{r \in Q^{\times}} (r, x) F(r)$$

is a continuous function on \hat{Q}^{\times} with Fourier transform F. The theorem follows upon applying Theorem 2 (Corollary 1 (i)) to $M\sim(Q,Z',F)$.

COROLLARY 3. If $a = \{a_n\}_{n \in \mathbb{Z}'} \in L^1(\mathbb{Z}')$ and $a_n \ge 0$ for all $n \in \mathbb{Z}'$, then

$$|| H_a ||_{op} = || a ||_1$$
 .

Proof. By Theorem 4,

$$|| H_{ap} ||_{op} = \max_{x \in \hat{Q}^{\times}} \Big| \sum_{r \in Q^{\times}} (r, x) F(r) \Big|^{\frac{1}{2}} \leq \left(\sum_{r \in Q^{\times}} |F(r)| \right)^{\frac{1}{2}} = || a ||_{1}$$

since

$$a_n \ge 0, |F(r)| = \sum_{m/n = r \ m, n \in Z'} a_n a_m, \text{ and } \sum_{r \in Q^{ imes}} |F(r)| = ||a||_1^2.$$

But upon setting x = 0 we obtain

$$\left|\sum_{r \in Q^{\times}} (r, 0)F(r)\right|^{\frac{1}{2}} = \left|\sum_{r \in Q^{\times}} F(r)\right|^{\frac{1}{2}} = \left(\sum_{r \in Q^{\times}} |F(r)|\right)^{\frac{1}{2}} = ||a||_{1},$$

and thus the proof is complete.

BIBLIOGRAPHY

1. W. R. Emerson, Asymptotic results for certain sequences of integral operators defined over groups, J. Math. Mech. 17 (1968), 737-758.

2. ——, Ratio properties in locally compact groups, Trans. Amer. Math. Soc. 133 (1968), 179-204.

3. H. A. Krieger, Toeplitz operators on locally compact abelian groups, J. Math. Mech. 14 (1965), 439-478.

Received April 14, 1967, and in revised form November 22, 1968.

NEW YORK UNIVERSITY NEW YORK, NEW YORK