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ON AN EMBEDDING PROPERTY OF GENERALIZED
CARTER SUBGROUPS

EpwARD CLINE

If & and & are saturated formations, Z is strongly con-
tained in & (written & « &) if:
(1.1) For any solvable group G with & -subgroup E, and & -

subgroup F, some conjugate of E is contained in F',

This paper is concerned with the problem :
(1.2) Given &, what saturated formations & satisfy & < F#?

The object of this paper is to prove two theorems. The
first, Theorem 5.3, shows that if .7 is a nonempty forma-
tion, and & ={G|G/F(G)e 7 }. (F(G) is the Fitting sub-
group of ), then any formation & which strongly contains
Z has essentially the same structure as & in that there is
a nonempty formation Z¥ such that & = (G| G/F(G)e#}.
The second, Theorem 5.8, exhibits a large class of formations
which are maximal in the partial ordering <. In particular,
if _7"* denotes the formation of groups which have nilpotent
length at most ¢, then .77 is maximal in «, Since for
A" = _4"1, the _/ -subgroups of a solvable group G are the
Carter subgroups, question (1.2) is settled for the Carter
subgroups.

Since the theory of formations is of relatively recent origin, we
give a few highlights. The theory begins with a paper [4] by
Gaschiitz which provides the setting in which the results of Carter
[1] on the existence of nilpotent self-normalizing subgroups of solvable
groups take their most natural form. He showed that given a
saturated formation %, and any finite solvable group G, one can find
a conjugacy class of subgroups of G (called & -subgroups of G) which
is connected in a natural way with the formation & . Recently,
Carter and Hawkes [2] have made a major contribution to the theory
by generalizing the work of Philip Hall on system normalizers in
solvable groups to .# -normalizers, and investigating the relationships
between the . -subgroups of a solvable group G and the .&#-
normalizers of G. As is clear from (1.1), this paper proceeds in a
different direction by considering the relative embedding of the .&-
subgroups for two distinet saturated formations &, 5. We consider
only finite solvable groups in this paper.

The machinery used in the proof of our main theorem, Theorem
5.8, is developed in § 4. We begin by obtaining a characterization of
strong containment which depends only on the two formations & and
% . This characterization depends on the knowledge that if & is
a saturated formation, then & is a locally defined formation (see

491



492 EDWARD CLINE

§2), a result proved by Lubeseder in [7]. In certain cases, we are
able to strengthen our characterization of strong containment so that
it gives a complete description of the minimal local definition of &~
as a necessary condition for strong containment.

In §6, we present an example which shows that Hypothesis II
of our main theorem is not redundant. The formation which gives
the example is &Z = {G| G/F(G) is an r’-group}, where r is a prime.
It is apparent from Theorem 6.2 that < is not maximal in the
partial ordering <. In fact, there are an infinite number of forma-
tions which strongly contain 2.

Preliminary results are presented in § 3. In particular, we give
a cover-avoidance characterization of the & -subgroups of a group,
a result which may have some interest by itself. We remark, how-
ever, that one half of this characterization has appeared in [2].

2. Notation and quoted results. We use the following
notation:
G — a finite solvable group;
D(G) — the Frattini subgroup of G, the intersection of
all maximal subgroups of G;
F(G) — the Fitting subgroup of G, the maximal normal
nilpotent subgroup of G;

Z, — the field of integers mod p, p a prime;
T — a set of primes;
ol — the complementary set of primes;

0.(G) — the maximal normal 7-subgroup of G;

0...(G)— the inverse image in G of 0.(G/0.(G)) .

If KJHZG, then H/K is a section of G, and if F<G
normalizes both H and K, it is an F-invariant section of G. If
H/K is an F-invariant section of G, then C,(H/K) is the kernel of
the representation of F as a subgroup of the automorphism group of
H/K. Cyx(F) is the set of elements of H/K fixed by every element
of F. The following results will be used frequently:

LEmMMA 2.1. (Covering Lemma [6], Theorem 1) If A is a group of
automorphisms of the group G whose order is prime to the order of G,
and if H/K s an A-invariant section of G, then Cgz(A) covers Cy x(A).

LEMMA 2.2, (Frobenius reciprocity for modules, [8], p. 144)

1 The result on page 144 of [8] does not look quite like the Frobenius reciprocity
theorem quoted above, but if we define the map
x: Homge)(&(G), N)— N by the rule
x: ¢—e@) p€Homge)(R(G), N),
then it is not difficult to show that y is a &(H)-isomorphism from Hom g (8(G),N)
onto N |x.
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Let G be a group, H< G, and & a field. If M is a K(H)-module,
and N a R(G)-module, them Homg (M |% N), and Homg (M, N |y)
are isomorphic as wvector spaces over & Here M|® is the R(G)-
module induced from M to G, and N |, ts the restriction of N to H.

The final part of this section consists of a short summary of the
theory of formations as presented in the papers of Gaschiitz and
Lubeseder [4], [5], and [7].

DEFINITION 2.3. For each prime p, let # (p) be a formation.
Let & denote the collection of groups G which satisfy the following
two conditions:

(a) if & (p) is nonvoid, and K is a p-chief factor of G, then
G/Cx«(K) lies in F (p);

(b) if & (p) is empty, then G is a p’-group.

Then & is a formation called the formation locally defined by the
Samily {< (p)}. In general, a formation .# is locally defined if
there is a family {& (p)} of formations such that .# is locally defined
by {& (p)}.

Since the intersection, over all p-chief factors K of G, of the
groups Cq4(K) is the group O,,(G), it is easy to see that condition
(a) above is equivalent to
2.1) if & (p) is nonempty, then G/O, (G) lies in F (p).

The family # (p) of formations which define .&# 1is not unique.
If, however, {Z (p)} and { & '(p)} are two families of formations
which locally define the same formation &, then the family
{&F(p) | 272 (p) = F (p) N Z '(p)} also defines .#. Thus there is a
unique minimal local definition for any locally defined formation &
For example, the minimal local definition of the formation of all
nilpotent groups is obtained by setting ._#"(p) = {1} for all primes p.

THEOREM 2.4. ([4], p. 302; ]5], p. 198; [7]) A formation &F
18 saturated if, and only if, it is locally defined.

In view of this theorem, we shall use the terms saturated and
locally defined interchangeably from now on.

DEFINITION. 2.5. Let &% be a formation. A subgroup F of G
is an #-subgroup of G provided:

(a) Fe s ;

(b) if F<UZG, and N is a normal subgroup of U such that
U/N lies in &, then FN = U, i.e., F covers U/N.

The following two lemmas appear in [4], and describe the basic
properties of & -subgroups.
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LEMMA 2.6. ([4], p. 301) If the formation F s saturated, then
every solvable group G has an & -subgroup. All F-subgroups of G
are conjugate.

LEmMmA 2.7. ([4], p. 301) Let &# be a formation, and G a
group. Let F be an element of & such that FF < G. Then:

(@) if F is an F-subgroup of G, and F < U < G, F is also an
F -subgroup of U;

(b) if NG, and F is an F-subgroup of G, then FN/N is an
F -subgroup of G/N;

(¢) if NG, F'/N is an F-subgroup of G/N, and F 1is an
F -subgroup of F', then F 1is an & -subgroup of G.

3. Preliminary results. The first three lemmas of this section
are elementary, but they are used frequently enough to justify their
inclusion. The last two theorems give a cover-avoidance characteri-
zation of the & -subgroups of a group.

LEMMA 3.1. Let H be a normal p'-subgroup of G, K a field of
characteristic p, and M an indecomposable K(G)-module. Then M |,
18 a completely reducible K(H)-module whose mnowisomorphic irre-
ducible components form a single orbit € of conjugate K(H)-modules
under action by the elements of G. Let L,J be two &(G)-modules of
M such that L < J. Then the distinct &(H)-irreducible components
of (JIL) |y are precisely the elements of €.

Proof. Complete reducibility of M|, is clear since H is a p'-
group. Since the decomposition of M|, into its homogeneous com-
ponents is unique, these components are permuted by the action of
G on M. Indecomposability implies only one orbit © can occur, hence
the same statement holds for the nonisomorphic irreducible components
of M|,. The transitivity of G on the orbit € and the fact that at
least one element of € appears as a constituent of (J/L)|, yields
the last statement of the lemma.

LeMMA 3.2. Let G be a group, and M o R(G)-module. M 1is
faithful of, and only if, M |pe 18 faithful.

Proof. The lemma follows a fortiori from the statement that
if 1< NG, then 1 < Nn F(G).

We now begin a discussion of the properties of & -subgroups of
solvable groups. If G is a group, and & a formation, we use G.-
to denote the intersection of all normal subgroups N of G such that
the factor group G/N lies in & . It is useful to know the behavior
of G- under homomorphisms, so we prove
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LEMMA 3.3. Let & be a formation, G a group, and H<]G. Then.
(G/H), = G-H/H .

Proof. Let F be the inverse image in G of (G/H),. Then G/F
is isomophic to (G/H)/(G/H)., hence G/F lies in .#. Therefore,
G-H<F. .

Since G/G.-H lies in &, it follows that G.-H/H is a normal
subgroup of G/H whose corresponding factor group lies in &
Therefore F/H is contained in G.H/H; this completes the proof.

The next theorem generalizes a remark made by Carter in [1],
and provides the first half of a cover-avoidance characterization of
& -subgroups.

THEOREM 3.4. Let &# be a formation locally defined by the
family {& (p)}, G be a group, F a subgroup of G which lies in &,
and K an F-composition factor of G. Then

(a) F' either covers, or avoids K;

(b) if F covers K, and p|| K|, then F/Cx(K)e & (p);

(¢) if F s an F -subgroup of G, and p|| K|, then

3.1) F/Co(K)e & (p) = F covers K .

Proof. Let K= L/M be the F-composition factor in question.
Statement (a) follows from the fact that F' acts irreducibly on K,
and (L N F)M/M is an F-invariant subgroup of K.

If F' covers K, then looking at F' as a set of operators on K, it
follows that K is operator isomorphic to L N F/M N F, a p-chief factor
of F. Therefore the kernel of the representation of ¥ on LN F/M N F
is Cp(K). Since F' liesin . &, F/Cy(K) lies in .# (p). This proves (b).

Now suppose F' is an F-subgroup of G, and K is a p-section of
G such that F/C,(K) lies in & (p). To show F' covers K, it suffices
to show that F' covers the larger section FL/M. But by Lemma
2.7, F is an .#-subgroup of FL, hence it is sufficient to show F =
FL/M is an element of &# since F, by definition, covers any such
factor of FL.

If ¢ is a prime distinct from p, then K, as a normal ¢’-subgroup
of F, is contained in O,(F). Therefore O, ,F)L/M is contained in
0,F), so F/O,,(F) is isomorphic to a quotient group of FL/O, ,(F)L.
But FL/O,(F)L is isomorphic to a quotient group of F/O, . (F'). Since
Fe .7, (2.1) implies F/O,(F) lies in . (q), hence F/O, (F) is also
in .7 (9).

Let U = F .. Since F'e %, F/O, ,(F)liesin # (p). Therefore
U is contained in O, ,(F'). Since we have assumed F/C.(K)ec & (p),
it follows that K is contained in the center of UL/M. Therefore
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UL/M has a normal p-complement. As a normal subgroup of F, it
follows that UL/M is contained in O, ,(F), the maximal normal sub-
group of F which has a normal p-complement. Therefore F/O, ,(F)
is isomorphic to a quotient of F/U and must lie in &# (p). This
shows that F satisfies (2.1) for all primes p, so F lies in 7.

Our next theorem will show that (3.1) characterizes the .7#-
subgroups of a solvable group G. In order to obtain as weak an
hypothesis as possible, we prove two lemmas. (3.1) actually applies
only to specific F-composition factors of G, so when we say that
(3.1) holds for an F-composition series, G =G, > G, > +-- > G, =1,
of G, we mean F' satisfies that property for all factors G;/G;., of the
series for which the hypothesis of (3.1) holds.

LEMMA 3.5. Suppose F is a formation locally defined by
{(F (p)}, F lies in F, and F < G. Let A/B be an F-invariant
section of G such that A > C > B defines a fized F-composition series
of A/B. If (3.1) holds for this series, then (3.1) holds for every
F-composition series of A/B.

Proof. We may assume that a second F'-composition series of
A/B exists and is defined by A > D > B where D # C. Then we
must have 4 = CD and B = CnN D. Therefore

(3.2) A/B=C/B x D/B, A/C = D/B, A/D = C/B,

where the decomposition is an operator decomposition, and the iso-
morphisms are operator isomorphisms.

Suppose the decomposition (3.2) is unique. If F/C,(A/D) lies in
F (p), it follows from (3.2) that F/C,(C/B) lies in & (p). Since
(3.1) holds for the series A > C > B, F covers C/B. Therefore
(FNAD=FNCD=CD=A, so F covers A/D. If F/C.(D/B)
lies in . (¢), then (3.1) implies F' covers A/C. Because of the
uniqueness of the decomposition, and the fact that F'nN A4 is not
contained in C, either A = (FFN A)B,or D = (F'N A)B. In the former
case, F covers all of A/B, and in the latter case, FNA=FND
since FN A < D. Therefore, in either case, F' covers D/B.

The decomposition (3.2) is unique if the orders of the factors
are relatively prime, so we may assume A/B is an elementary abelian
p-group for some prime p. This means that we can look at A/B as
a Z,(F)-module. If the factors are distinct Z,(F')-modules, then the
decomposition is again unique. If they are isomorphic, it follows
from (3.1) for the series A > C > B that F' either covers, or avoids
A/B. Therefore Lemma 3.5 holds in all cases.

LEMMA 3.6. Assume F lies in 7, HZG, and F < Ng(H). If
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(8.1) holds for a fized F-composition series of H, them it holds for
every F-composition series of H.

Proof. Let H=H,> H, > --- > H, =1 be the fixed F-compo-
sition series of H for which (3.1) holds. Use induction on n. If
H=K,>K, >--+->K,=1is a second F-composition series for H,
and K, = H,, (3.1) holds for the second series by induction.

If K, and H, are distinct, we let ¢ be the smallest integer such
that K, N H, = H,. Because H; < K, H;,—,, we have H, = K, N H,_,,
so that we have the following lattice diagram :

H

1

Now H, is F-invariant, and because of the isomorphisms indicated in
the diagram, H, > KN H, > --- >K,NH,_,=H,> --->H,=11is
an F-composition series for H, which has length n — 1. By induec-
tion, (3.1) holds for this series. Therefore, (3.1) holds for the F-
composition series of H/H, N K, defined by the series H > H, > H, N K.
By Lemma 3.5, (3.1) holds for the F-composition series

H>K1>H10K1>“'>K1mHi—1:Hi>'°'>Hn:1

of H. In particular, (3.1) holds, by induction, for any F-composition
series of K,. Therefore (3.1) holds for the series K, > K, > --- > K, =1.

THEOREM 3.7. Let . bea formation locally defined by {F (p)}.
Let G be a group, and F a subgroup of G which lies in . If
(3.1) holds for a fixed F-composition series G=G, >G> --->G,=1
of G, then F 1is an F-subgroup of G.
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Proof. We use induction on |G|. By Lemma 3.6, we may assume
that the series G =G, > G, > --- > G, =1 is a refinement of the
chief seriesG=H,>H, > +--- >H,_, >H, =1. Then H,_, = G, for
some k. H,_, is a minimal normal subgroup of G, so we set G, =
GG, for 1 =0,1,.--, k, F = FG,/G., and G = G,. Our first step is
to show that F' is an .#-subgroup of G.

If m =1, the result is trivial. If m is larger than 1, then
H,_, is a proper subgroup of G, and by induction, to show that F
is an .#-subgroup of G, it is sufficient to verify (3.1) for the F-
composition series G, > G, > -+ G, = 1.

For each i, set K; = Gi/Gis,, and K, = G;/G,,,. Since G, < Gi.,
for ©+ <k, G, centralizes the section K; for 4 < k. Therefore,
C# K;) = Cx(K,))G,/G,, for all ¢ < k. Thus,

FICxK)) = FG,/C/K)G, = FIC(K)F NGy .
But FFn G, £ Cx(K;), so we have
(3.3) FIC+(K) = FIC.(K;) for i < k.

Suppose K; is a p-section of G such that F/C#(K;) lies in & (p).
By (3.3), F/Cp(K;) lies in Z (p), so F covers K,. Therefore,
(FG, N G)Givy, = (F N GGGy = (F N GGy = G By taking homo-
morphic images, and noting that FG,NG/G.,= FnG;, we get
(FNG)G;,, =G;. Thus F covers K;. Therefore (3.1) holds for the
F-composition series G =G, >G, > -+ > G, =1 of G.

Now that we know F is an .#-subgroup of G, it follows from
Lemma 2.7 that we can complete our proof by showing that F is an
Z-subgroup of FG,.

Suppose F'G, < G. We consider the series

FG,=DyzD,=z---=zD,=1,

where D, = FG,NG; for each 7. Suppose D; > D,,, for some 1.
Then

DD, = (FG, N G)Gitr/Giiy > 1.
This is an operator isomorphism, hence because F' is irreducible on
K,, we have
(3.4) D;/D;., = Gi/G;y, .
Therefore the distinct terms of the series Dy=D, = --- =D, =1,
form an F-composition series for F'G, which passes through G,.

Since F' covers F'G,/G,, and since D; = G, for 7 = k, (3.1) holds for
this composition series. By induction, F' is an .#-subgroup of FG,.
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If G = FG,, then G, is a minimal normal subgroup of G, and F
acts irreducibly on G,. Therefore F' either covers, or avoids G,. If
F covers G,, then F =G, so F is an F-subgroup of G. Suppose
F avoids G, and G, is a p-group. Then FG./Crs (Gi) = F/Cw(Gy)
cannot lie in # (p) since (3.1) holds for G,. Therefore (FG,)-~ = G,.
Since FG,/G, lies in &, (FG,)- = G,.

If F<UZFG,, then U= F, or U= FG,. The above remarks
show that F covers U/U. in both cases. Therefore F' is an .#-
subgroup of F'G,, and the proof is complete.

As one application of Theorem 3.7, we prove

COROLLARY 3.8. Let & be a formation locally defined by
{F (p)}, He 7, and let I be a finitely generated Z,(H)-module.
Let G = HI be the semi-direct product of I by H where the action
of H on I by conjugation is the usual one. Then,

(a) F = HC(O,(H:») 1s an F-subgroup of G,

(b) As a Z,(H)-module, I = C,(0,(H-.)) + G-.

Proof. Let W=C,(0,(H-,)). Our first task is to show HW
lies in .&#. Suppose ¢ is a prime distinct from p, then W is a ¢’-group
normal in HW, so O, (F) = O, (H)W. Therefore,

FlO,(F) = H/O,,(H) .

Since H lies in .7, F/O,,(F)e Z (q).

Let U= H.,. Then O,(U) centralizes W. Since H/O, ,(H)
lies in # (p), U £ O, ,(H). Therefore UW has a normal p-comple-
ment, and as a normal subgroup of F, must be contained in O, ,(F).
Therefore F/O, ,(F') is isomorphic to a quotient group of H/U. Since
H/Ue & (p), so is F/O, ,(F). Therefore, (2.1) holds for all primes
r, so F lies in 7.

Now let G=G,>G, > +-- > G, =1 be an F-composition series
for G such that G, = I for some [. In order to check (3.1) for this
series, we need only consider K; = G,/G;,, for i =1, since F covers
G/I. W centralizes every K;, so we have

(3.5) F/CH(K;) = H/Cy(K)) .

If =1, and F/C(K;) e & (p), then (3.5) implies C,(K;) = U.
In particular, O,(U) centralizes K;. Therefore F covers K,;, and
(3.1) holds for the series in question. By Theorem 3.7, F' is an & -
subgroup of G.

By complete reducibility, I = W + (I, 0,(U)), and since O,.(U)
is normal in H, both W and V = (I,0,(U)) are normal in HI.
Clearly HI/V is the largest factor of HI covered by F. Therefore
V=0_G..
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REMARK. This result cannot be extended to the case where I is
a p-group of class 2 because of the following example. Let I be the
quaternion group. I has an automorphism % of order 3 such that &
acts fixed point free on I/D(I), and centralizes D(I). Let H be the
cyclic group of order 3 generated by %, and let G = HI. A Carter
subgroup of G is H x D(I), but D(I) has no complement in I, so no
splitting is possible.

The author is indebted to the referee for the following

REMARK. If & is a saturated formation, He &, and {Z, ()},
{F:(p)} are two local definitions for 7, then O,.(H ;) = O,.(H,y)-

Proof. Clearly H/H. , e % NF(p), s0 Hs ., =H.y Fi(p)e
Since .# N .Z;(p) is contained in F;(p), Hopy = H,ns, and in the
terminology of [2], we may assume the local definitions {F;(p)} are
integrated.

By Theorem 2.2 of [2], we have &7 Z (p) = &P F,(p), where

P Zi(p) = {G|G/0,(G) € Zi(p)} .
Since H.-,, = 0,.,(H) for each 1, it follows that for each 1,
O, (Heyip) = Hoswyip) »
Since & F(p) = & .F;(p), the remark follows.

4. Strong containment. In this section, we shall characterize
strong containment. In certain cases, we can make our characteriza-
tion more precise by giving generating sets for certain of the for-
mations & (p) in the minimal local definition of .&#. The results of
this section form the basis for our results in §5.

LEMMA 4.1. Let & and & be two monempty saturated forma-
tions; let & be locally defined by {&(p)}. Let G be a group of
minimal order satisfying:

(4.1) An & -subgroup of G is mot contained in any Z-subgroup of G.

If F is an F-subgroup of G, and E is an & -subgroup of F, then

@) G-=M is a minimal normal subgroup of G; G 1is the
semidirect product of M by F; F acts faithfully and irreducibly
on M.

(o) If M is a p-group, then E* = ECy(0,(Es.,)) is an & -sub-
group of G, and 1 < Cy(0,(Eys)) = M.

Proof. If G is an element of %, then G = F contains every
% -subgroup of G, hence G does not satisfy (4.1). Therefore G¢ . #;
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in particular, G is not the identity. Let M =+ 1 be a minimal normal
subgroup of G. By Lemma 2.7, FM/M is an .Z#-subgroup of G/M.
Because of the minimality of |G| with respect to the property (4.1),
some £ -subgroup of G/M is contained in F'M/M. Since all &-
subgroups of G/M are conjugate, we can find an & -subgroup E of
G such that EM < FM. E, as an &-subgroup of G, is also an
#-subgroup of FM. Because G satisfies (4.1), no conjugate of E
under F'M can be contained in F. The minimality of G implies
G = FM.

G/M is in &, but G is not, so G~ = M. Since FNM is a
normal subgroup of G, properly contained in M, FN M =1, so G is
semidirect product of M by F. Since M was arbitrary to begin with,
and we showed M = G., M is the unique minimal normal subgroup
of G. Therefore F' acts faithfully and irreducibly on M. This
proves (a).

G/M is isomorphic to F, so EM/M is an & -subgroup of G/M.
By Lemma 2.7, an & -subgroup of EM is also an & -subgroup of G.
Corollary 3.8 shows that E* = EC,(0,(E+,)) is an &-subgroup of
EM. Since E* is not contained in F, statement (b) holds.

Before stating the characterization, we introduce some notation.

DEFINITION 4.2, If & and & are two saturated formations,
and & is locally defined by {&(p)}, set

(@) (&) ={p|L(p) is nonempty}. 7w(Z) is called the charac-
teristic of &.

(b) If pen(¥), we denote by @(p) the collection of all He &
such that if E is an & -subgroup of H, then H has a faithful irre-
ducible Z,(H)-module M which satisfies

(4.2) 1 < Cu(0,(Bei) = M.

() If pen(), let 6(p) be the collection of all H in @(p) such
that H has at least one faithful irreducible Z,(H)-module satisfying

(4.3) 1 < Cu(0,(Byry)) < M.

THEOREM 4.3. Suppose & and F are two saturated formations
locally defined by {Z(p)} and {F (p)} respectively. Then & & F
if, and only if, for each prime p in the characteristic of %, @(p)
is contained in Z (p).

Proof. Suppose @(p) is contained in & (p) for each p in the
characteristic of &, and & is not strongly contained in .&#. Then
the class of groups satisfying (4.1) with respect to the formations &
and .# is nonempty, so we choose G to be an element of minimal
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order in this class. By Lemma 4.1, if G. is a p-group, then p
divides the order of an & -subgroup of @, and must be an element
of the characteristic of 2. By Lemma 4.1, if F is an .#-subgroup
of G, then F lies in @(p). Therefore F' is an element of & (p), and
O,(F) = 1.

Since G .- is the unique minimal normal subgroup of G, G.- =
0,,(G). Therefore F = G/G.- = G/O,.,(G) lies in F (p). If ¢ is a
prime distinet from p, then G- < 0,.(G), and it follows that O,,(G) =
G.-0,,F). Therefore,

G/0y(G) = F|Oyo(F) .

Since F' lies in .7, we see that G/0,,(G) lies in .# (g). By (2.1), G
lies in &, a contradiction to the fact that G. > 1. Therefore
& L 7.

Suppose & & &, pen(¥), and Fed(p). Let M be the faithful
irreducible Z,(F')-module mentioned in the definition of @(p). Set
G = FM, where the action of F on M by conjugation is the
module action. By Corollary 3.8, an .Z-subgroup of G is F* =
FC(0,(F~,)), hence G = F*M. Let E be an &-subgroup of F.
Since EM/M is an & -subgroup of G/M, it follows, from Lemma 2.7
and Corollary 3.8, that F* = EC,(0,(E-.)) is an & -subgroup of G.
E* does not avoid M, and because & < .&#, E* is contained in some
F-subgroup of G, hence F'* does not avoid M. Since F* is irre-
ducible on M, it follows that F'* contains M, hence F'* = G.

Since G lies in &, and F acts faithfully on the p-chief factor
M of G, we have F isomorphic to G/G4M), an element of 7 (p).
Therefore @(p) is contained in & (p).

Because of this characterization, if % < &, and p is a prime
in the characteristic of ¢, then @(p) & . (p) for any & (p) which
lies in some local definition of .&#. This leads naturally to the
question:

Suppose {.# (p)} is the unique minimal local definition for 7.
(4.4) If p is a prime in the characteristic of £, is & (p) the smallest

formation generated by the set @(p)?
The answer to this question is yes, provided the set #(p) is nonempty
for at least two primes. We have not been able to relax the
hypothesis on the #(p)’s. In order to prove this partial result, we
shall, for the next few lemmas, investigate properties of the @(p)’s
and 4(p)’s.

LEMMA 4.4. Let & and F be nonempty saturated formations
with local definitions {&(p)} and {F (p)} respectively. Suppose
% L F, and G 1s an element of F with &-subgroup E.
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(a) Suppose Ge @d(q) for some prime q in the characteristic of
&. @G lies in 0(q) iof, and only if, O, (Fs,) > 1.

(b) If O/(G) =1, and the permutation representation on the
cosets of O, (Eyy) ts faithful, then G lies in {@(q)>, the smallest

formation generated by the set D(q).
(¢) Let V be a faithful irreducible Z,(K)-module, where K 1is

a group. If G = KV, and the permutation representation on the
cosets of Oy (Hyy) 18 faithful for some prime q in n(¥) — {p}, then
G lies in 9(q).

(d) For each r,s in w(&), 0(r) < LD(s)).

Proof. Let H=0,(E.,). If Gis in @&(q), then G has a faith-
ful irreducible Z,(G)-module I such that 1 < C,(H) < I. Equality
holds if and only if H =1, so (a) is true;

Now suppose G satisfies the hypothesis of (b). Let 7 be the
Z,(G)-module which affords the representation of G on the cosets of
H. Since H is a ¢'-group, the principal Z (H)-module is a direct
summand of the regular Z,(H)-module, hence

{4.5) T is a direct sum of principal indecomposable Z,(G)-modules.

We write T= T, + --- 4+ T,, where each T; is indecomposable, and
let U; be the unique maximal proper Z,(G)-submodule of T;. Finally,
we let M; be the factor module T,/U,.

Since O,G) is trivial, F(G) is a g¢'-subgroup of G, hence by
Lemma 8.1, the distinet irreducible components of M; |, are exactly
the same as the distinct irreducible components of T;|z. Since T
is faithful, it follows that if we let M be the direct sum of all the
modules M;, then M |, is faithful. By Lemma 3.2, M is a faithful
Z.(G)-module.

We now apply the Frobenius reciprocity theorem for modules,
i.e., Lemma 2.2, For each 1 =1,2, ---,s

0)c Homzqm)(T: M) = Homzq(m(ly M;|y) ,
-where 1 denotes the principal Z,(H)-module. Therefore, for each 1,
1<Cy(H) = M;.

Set G; = G/Cy(M;). Then E; = EC(M,)/Cs(M;) is an & -subgroup
of G;. By Lemma 3.3, (E)., = E. ,Ce(M)/Ce(M;). It follows from
(2.1) and the definition of E., that E., has a normal g-complement.
Therefore 0, ((Ey)sp) = Oy (Ei)Co(M)/Co(M;). This implies

1 < Cy(0p(Exp) = Cy(Op(Ei)eg) = M; .
Since G lies in &, gen(¥), and M, is a faithful irreducible
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Z,(G;)-module, G; lies in @(q) for each ¢. Therefore G = G/N.Cs(M,)
lies in <{@(q)>, the smallest formation generated by the set @(q).
This proves (b).

The proof of (c) is essentially the same as the proof of (b).
Let G = KV be the group mentioned in the hypothesis of (¢). Let
T be the Z,(G)-module which affords the permutation representation
on H. Once again, T has a decomposition into a direct sum 7T =
T,+ ++++ T, of principal indecomposable Z,(G)-modules. Since G
is faithful on T, V is nontrivial on some T;, say T.. If U, is the
unique maximal proper Z,(G)-submodule of T,, then Lemma 3.1 implies
V is nontrivial on M = T,/U,. By Frobenius reciprocity, we again
have 1 < C,(H) £ M.

Since K acts faithfully and irreducibly on V, it follows from
Lemma 1.2 of [3] that O,(K) =1, hence V = F(G). Since V is
minimal normal in G, and nontrivial on M, it is faithful on M.
Lemma 3.2 implies G is faithful on M. Since qen(¥), G is, by
definition, an element of @(g). This proves (c).

Part (d) is the only statement in Lemma 4.4 which requires the
assumption & <« &#. Suppose Hel(r), E is an &-subgroup of
H, and M is a faithful irreducible Z,(H)-module such that
1< Cy(O0,.E-)< M. Set G=HM. By Corollary 3.8, F =
HC,(0,(FE~.)) is an F-subgroup of G, and since F = EM/M is an
& -subgroup of G/M, E* = EC,(0,(E%,)) is an & -subgroup of G. Since
% & & , F cannot avoid M, hence F'= (G is an element of .

Let N be the intersection of all the conjugates of O,.(E*.) in
G. Then N<{ G, and NNMZE*NM= Cy(N,(Es,)) < M. There-
fore NN M = 1. This shows that the representation of G on the
cosets of O, (E*.,) is faithful on M. Because M = F(G), it follows
from Lemma 3.2 that this representation is faithful on G. By part
(¢), G is an element of @(s) for any s in 7n(¥) — {r}. Therefore
H = G/M is an element of {@(s)), for s in m(&) — {r}. Since 6(r) is
contained in @(r), it follows that 6(r) S <{@(s)> for each s in the
characteristic of &. This proves (d).

The next lemma has an elegant proof. This proof was shown to
me by Professor E. C. Dade, and it shortens this part of the discus-
sion considerably.

LEMMA 4.5. Let A, B be two groups and assume the center of
A is the identity. If M is a faithful Z,(A)-module, and T is a
Sfaithful Z,(B)-module, then M QQ T is a faithful Z,(A x B)-module.

Proof. If V is a vector space over Z,, we let GL(V) denote
the general linear group on V. Then A x B < GL(M) x GI(T) = C,
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so we examine the kernel K of the representation of C on M® T.
Let m,, «++, m, be a Z,-basis for M, and ¢, ---,t, a Z,-basis for T.
Then {m;Q¢t; |1 <i<r, 1 <j<s}isa Z,-basis for M& T. Suppose
f X g is an element of K, and

mf = D@y, for each 7 ,
tig = dua;t, for each j .

Then m; Q@ t; = m; Q@ t;(f x 9) = Spumi) @ (Xaut,). By collecting
terms, and equating coefficients we see that

o OE () # ()
PTG 09 = )

Therefore m,f = @m; for each ¢, and ¢;,0 = p~'t; for each j. There-
fore f lies in the center of GL(M), and g lies in the center of GL(T).

If axbe(4dxB)NK, it follows, from the assumption that
Z(A) = 1, that we must have ¢ = 1. This means that the constant
@ is the identity in Z,, so b = 1. Therefore A x B acts faithfully
on MR T.

LEMMA 4.6. Suppose Ac ®@(p) — 0(p), Beld(p), and either Z(A)
or Z(B) is the identity. Then A X Belf(p)), the smallest forma-
tion generated by the set 6(p).

Proof. Let E be an & -subgroup of A, and E* an & -subgroup
of B. Since Aec®(p) — 0(p), it follows from Lemma 4.4 (a) that
0,(E+») =1. By (2.1), and the definition of K. ,,, we see that F.,
has a normal p-complement. Therefore E,., is a p-group. Since
Beb(p), O,(E*+) > 1.

Now E x E* is an % -subgroup of 4 x B. We wish to examine
0, (E x E*):). Since (E x EY)/(E., x E*.,) lies in &(p),
(E x E*)., is a normal subgroup of E X E* contained in K., x E*. .
We define a subgroup W of E*,,, by:

W = {GGE*z(p) | Hte(E X E*)é'(p)at = d X e, and deEg(p)} .

In other words, W is just the collection of all elements of EZ,
which appear as components of elements of (E x E*).,,. W is clearly
a normal subgroup of E* which is contained in E%,. By construc-
tion, (F x E%),, is a subgroup of E x W, hence it follows that
E*/W lies in & (p). Therefore W = Ef,,.

Now if ¢ is any element of O, (W), then there is an element d
in E,, such that t=d x ¢ lies in (& x E*).,. Since E,., is a
p-group, by taking an appropriate power of ¢, we see that e lies in
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(E X E*).(,. Therefore,
(4'6) Op'(E:‘(p)) gop'((E X E*)’(p)) é Op'(E"lp) X E;i(p)) = Op’(Ef(p)) .

By assumption, A has a faithful irreducible Z,(A4)-module
M, and B has a faithful irreducible Z,(B)-module 7 such that
1< CHO,(E*,)) < T. By Lemma 4.5, M@ T is a faithful Z,(4 x B)-
module.

Since the restriction of M @ T to B is isomorphic to a multiple
of T, if we let U be any Z,(A x B)-composition factor of MR T,
then the restriction of U to B is also a multiple of 7. Because of
(4. 6), we have

(4.7) 1L <CHOME" ) = COp (B X E¥).u)) < U,

for each U.

Let G = (A X B)/C.xs(U), then E = (E x E*)C,.,(U)/C,.,(U) is
an & -subgroup of G. It follows from Lemma 3.3, and (4.7) that
0,(E.,) >1. By (4.7) and the fact that G is an element of .7 it
follows from Lemma 4.4 (a) that G lies in 6(p).

Let V be the direct sum of all Z,(A x B)-composition factors
occurring in a composition series of M@ 7. By Lemma 1.2 of [3],
F(A x B) = F(A) x F(B) is a p’-group, so the fact that M® T is
faithful implies the restriction of V to F(A x B) is also faithful.
By Lemma 3.2, V is a faithful completely reducible Z,/(A x B)-
module. Therefore A x B = (A X B)/N.C..,(U) lies in {d(p)>, and
this completes the proof.

COROLLARY 4.7. If = <« &7, and there is an element B in 0(p)
such that Z(B) = 1, then {@(p)y S {D(q)) for each q in w(&).

Proof. By Lemma 4.7, if Ae®(p) — 6(p), then A x B lies in
{O(p)>. Therefore A is an element of {4(p)), so {@(p)y> = {O(p)y. By
Lemma 4.4 (d), if ¢ is a prime in the characteristic of &, then

0(p) S {D(q), hence {(D(p)y = <{D(q)).

THEOREM 4.8. Suppose & <L 7, and 6(p), 6(r) are nonempty
for two primes p, v in the characteristic of &. Let {F (q)} be the
unique minimal local definition of F. Then

Z (q) = <D(g)y for each q in w(£) .

Proof. We define a new formation 7 * by setting

D(q)y = 7 Q) for ge (s
7 (@) = 7 %) for qge (.~

y

°

)
)l
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Since & « &, F *(q) is contained in & (q) for each ¢, by Theorem
4.3. Therefore &# * = #.

Let @*(q) be the set specified in Definition 4.2 for the formation
Z *. Since F *S F, ¢*(s) S 0(s) & F *(s) for each s in ().
Therefore Theorem 4.3 implies & is strongly contained in & *.

Suppose & *c.&#. If G is an element of minimal order in
F — FZ *, then G is a semi-direct product, G = F*M, where F'* is
an & *-subgroup of G. F'* acts faithfully and irreducibly on the
elementary abelian ¢-group M. Since G lies in & — & *, F*=
G/Co(M) lies in & (t) — F *(). For t in w(¥), this contradicts
the definition of & *(t), hence ¢t is a prime in the characteristic of .

Since & « & *, F'*, as an & *-subgroup of @G, must contain
some Z -subgroup E of G. Thus for any prime ¢, the permutation
representation on the cosets of O, () is faithful. By Lemma 4.4
(¢), G lies in @(q) for each ¢ in #(&) — {t}.

By Lemma 4.4 (d), 6(q) & . *(s) for each ¢, s in n(&), hence if
G lies in 6(q) for some ¢ in w(&) — {t}, then G lies in & *(¢).
Suppose, therefore, that Ge ®@(q) — 0(q) for each ¢ in =(&) — {t}.
One of the primes p, r is unequal to ¢, say p. Then G is an element
of @(p) — 6(p) such that Z(G) = 1. Since 6(p) is nonempty, there is
a group H in 6(p), so by Lemma 4.6, G x H is an element of & *(t),
hence in each case F'*, as a factor group of G, must lie in & *(¥),
a contradiction.

Therefore .7 * = &#. Since {F *(q)} forms a local definition for
Z *, we have @0(q) S F (¢) S & *(q) for each ¢ in the characteristic
of &, so the proof of Theorem 4.8 is complete.

Because we could not relax the hypothesis on the 6(p)’s, we
thought it appropriate to include

THEOREM 4.9. Suppose & £ .Z, and pen(¥). 0(p) is empty
if, and only if, for each element F of &, an & -subgroup E of F
either covers or avoids each p-chief factor of F.

Proof. Suppose an #-subgroup of F either covers or avoids
each p-chief factor of F' for every F in #. Let Fe®(p), and let
E be an #-subgroup of F. Let M be a faithful irreducible Z,(F)-
module such that C,(0,(E.,)) > 1. By Corollary 3.8, and the fact
that & « &, F* = FCy(0,(F~,)) is an #-subgroup of F'M, acts
irreducibly on M, and does not avoid M. Therefore F'* = FM; M is
a p-chief factor of G = FM which is not avoided by the & -subgroup
E* = ECy(0,(E.,)) of G. Therefore O,(E.,) centralizes M, so
O(p) is empty.

Suppose 6(p) is empty, F lies in &, and E is an & -subgroup of
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F which does not avoid the p-chief factor K = L/N of F. Let
F = F/Cx(K). Our first assertion is that the semi-direct product
FK lies in & (the action of ' on K is the action induced by the
action of F' on K). By Corollary 3.8, F* = FCx(0,(F.)) is an
F-subgroup of FK. Therefore F* acts irreducibly on K, and
F*/C7(K) is isomorphic to F. Since F' is in &%, F is in & (p).
By Theorem 3.4, F'* covers K, hence FK is an element of 7.

E = EC.(K)/C,(K) is an &-subgroup of F. By Lemma 3.3,
E., = E.,CyK)/Cx(K). Because E..,, has a normal p-complement,
it follows that O,.(E.,) = 0, (E.,)Cr(K)/C:(K). Therefore

CK(Op’(Eg(:u))) = CK(Op’(Ez(p))) .

0,(E.,) centralizes every p-section of FE, hence it centralizes
(L N E)N/N, a nonidentity subgroup of K. Therefore,

1 < Cx(0,(Exp) < K.

Thus F lies in @(p). 6(p) is empty, so it follows from Lemma 4.4
that K., is a p-group. If U is any E-composition factor K, then
E., centralizes U since it is contained in O,(E). Upon taking
inverse images in E, we see that Cy(U) contains FE.,, so that
E/C(U) lies in & (p). By Theorem 3.4, E covers U, hence E also
covers all of K.

5. Structure theorems. Throughout this section we shall make
the following assumptions:

Hypothesis 1. & and & are saturated formations such that
(@) 4 E&LKF;

(b) there is a nonempty formation .~ such that & =
(Ge &7 | G/F(G)e T }.

Our first theorem says that the structure of & is essentially
the same as the structure of & in that there exists a formation Z
such that & = {Ge & |G/F(G)e%}.

First we prove two lemmas.

LEMMA 5.1. Let .9 be a monempty formation. Let & be the
formation locally defined by setting < (p) = .7 for each p. Let
¥ ={Ge & |GIF(G) e T}. Then ¥ = &.

Proof. Suppose G e & . Because O,,,(G) contains F(G), G/F(G) e .9~
implies that, for each p,G/0,,(G) lies in . By (2.1), G is an
element of Z.
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If G is in &, then G/O,,(G) is in .7~ for each prime p. Since
7 is a formation, and F(G) = N,0,,(G), G/F(G) lies in .7. From
this it follows that & = & .

LEMMA 5.2. If G is a group with & -subgroup E, and E lies
wn 7, then E = G. If {&Z (Q)} is any local definition for &, and
G 1s an element of 7 such that O(G) =1, then G lies in Z (q).

Proof. We prove our first statement by induction on the nil-
potent length of G. If G is nilpotent, then G is already in &, so
there is nothing to prove. Since K lies in &, EF(G) lies in & .
Since E is an ¥ -subgroup of G, E covers U/U, for any subgroup U
of G which contains E. Therefore E contains F(G). Set G = G/F(Q),
then E = E/F(G) is an % -subgroup of G. By induction, E = G,
hence E = G.

Let {# (¢)} be any local definition for # Suppose Ge .7, and
0,(G) =1. Let M be the regular Z,G)-module, and form the semi-
direct product G, = GM. Since G lies in 7, G, lies in &. It is a
simple consequence of strong containment that & S.#, hence G, € . Z.
Since 0,(G) =1, and G acts faithfully on M, M = O,,(G,). There-
fore G,/M is an element of .# (p). Since G is isomorphic to G,/M,
G lies in & (p). This completes the proof of the lemma.

THEOREM 5.3. Suppose & and F satisfy Hypothesis 1. Then
there is a formation ZZ containing .7, such that

Z ={Ge &L |GIFGez}.

Proof. If & = &, the formation & satisfies the requirements
of the theorem. Assume & C % By Lemma 5.1, the family
(£ (p)| £(p) = 7 for each p} is a local definition for &, We shall
use this family for the local definition of & throughout the remainder
of the proof. Let {< (¢)} be the unique minimal local definition of
Z. A second application of Lemma 5.1 says that we need only show
F (r) = F (s) for each pair of primes », s. In view of Theorem
4.8 and Corollary 4.7, we begin by examining the set 6(s) for various
primes s. Since 4" & &, w(&) contains all primes, so 6(s) and @(s)
are defined for each s.

Let G be an element of minimal order in .&% — %. By mini-
mality, if N is any normal nonidentity subgroup of G, then G/N
lies in &. Therefore G. is the unique minimal normal subgroup of G.
If F is an & -subgroup of G, then G, = G, and E N G, = 1. Further-
more, K acts faithfully and irreducibly on G.. We set M = G, and
note that M is an elementary abelian p-group for some prime p.
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Since @G is not in %, Lemma 5.2 implies E is not an element of
7. Therefore F(E)= FE_ > 1. But it follows from Lemma 1.2 of
[3] that F(E) is a p’-group, so for some prime 7 distinct from p,
E - has a nonidentity normal Sylow #-subgroup R. If s is a prime
distinet from », then

Os’(Eis’(s)) = Os’(E/') g R > 1 .

Because M is the unique minimal normal subgroup of G, and EN M=
1, the permutation representation on the cosets of O, (K. ) is faithful
for each s. By Lemma 4.4, G lies in 6(s) for each prime s distinct
r and p. Since F is faithful and irreducible on M, the center of G
is trivial.

Now fix a prime s = », p. Then G is in 4(s), so there exists a
faithful irreducible Z,(G)-module J such that 1 < C,O0,(E..)) < J.
We let G* be the semi-direct product GJ. Since E is isomorphic to
an & -subgroup of G*/J, it follows from Lemma 2.7 and Corollary
3.8 that E* = EC,0,(E..)) is an &-subgroup of G*. An .F-sub-
group of G* covers G*/J since G lies in & it cannot avoid J because
# & #. Therefore G* lies in .#. Because E is a quotient group
of £*, and K is not in &, E* is not in .7, hence

1< (B> = (B) e = E-Cy(Ou(Ex ) -

(E*)- is a p'group because E - is a subgroup of the p’-group F(E),
and s is not equal to p. The permutation representation on the
cosets of (K*), is faithful since J is the unique minimal normal
subgroup of G*, and (E*)-NJ < C,(0,(E.,)) < J. It follows from
parts (a) and (¢) of Lemma 4.4 that G* lies in #(p). By construc-
tion, the center of G* is trivial, hence we have established:

(5.1) If s = », then there is a group X in 4(s) such that, Z(X) = 1.

We can now apply the results of §4. The characteristic of &
contains all primes, so by Theorem 4.8, and (5.1), .7 (s) = {®@(s)> for
each prime s. By Corollary 4.7, we have

F(s) = Z (q) for s, ¢ in 7,

(5.2) F(s) S 7 (v) for each s .

For s = r, we set % = .# (). The final step in the proof will be
to show @(r) & % .

By part (d) of Lemma 4.4, 8(r) & & (s) for each s, so 0(r) & Z .
Suppose He @(r) — 0(r), and E is an & -subgroup of H. Then it
follows from Lemma 4.4 that F_- is an r-group.

If E, =1, then E is in .. By Lemma 5.2, E = H, and if s is
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any prime not dividing »|H|, O,(H) = 1, so H lies in F (s) = %.

Suppose E_ > 1. Since H has a faithful irreducible Z,(H)-
module, O,.(H) = 1, so the permutation representation on the cosets
of K - is faithful. Since H is in @(r), H lies in #. Thus if s is a
prime which does not divide the order of H, it follows from part (b)
of Lemma 4.4 that H lies in {@(s)>. Therefore

Or) S Z S F (r) =LKD(r)).
Since Z = # (s) for each s, Lemma 5.1 says that
F ={Ge ¥ |GIFG e} .

The fact that Z contains .9~ is a consequence of part (b) of Lemma
4.4,

We are interested in finding formations which are maximal in
the partial ordering <. Since & « & implies & = . &, we shall assume
& c . ¢, as well as Hypothesis I. Since & = {Ge.&7|G/F(G)e 7},
we fix our local definition for & by setting & (p) = 7 for each p.
We assume that {<& (p)} is the minimal local definition for # By
the proof of Theorem 5.3, there is a formation %/, containing ., such
that & (p) = % for each p. Since & — &, we must have 7 Cc % .

Before stating our main theorem, we prove several lemmas. The
proof of Lemma 5.5 contains the essential construction used in the
proof of the main theorem.

LeEMMA 5.4, Let G be a group, and 1 < H< G. Assume that
the permutation representation of G on the cosets of H is faithful.
If M is the Z,G)-module which affords this representation, set
U=N,.cCu(H)g. Then U is a Z,(G)-submodule of M, and M/U 1is
a faithful Z,(G)-module.

Proof. We can let the cosets of H in G be a Z,-basis for M,
ie., let M=Z%,-H+ Z,-Hg,+ -+ + Z, Hg,, where s =[G : H], and
the operation of G on M is by right multiplication.

For each g in G,Cy(H)9 = Cy(H?*), hence U = Cy(U,ccH?). In
other words, if N is the normal closure of H in G, then U = C,(N).
Since N is normal in G, U is a Z,(G)-submodule of M.

Let O, .-+, 0, be the orbits of the cosets Hyg, under action by
N. Since N<|G, G permutes these orbits transitively, thus all
orbits have the same number of elements [N:H]. Since H is not
normal in G, it follows that [N: H] = 3.

For each 4, let O, ={Hy,, ---, Hg;,,} where r =[N:H]. Set
u; = >, Hg;;. It is a standard result that the elements w; of M
form a Z,-basis for C,(N). Hence a Z,-basis for M/U consists of

the cosets:
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({U+Hg;|1l<ism, 1L<j<r—1}.

Suppose x lies in the kernel of the representation of G on M/U.
Then for 1 <t <m, and 1 <j <+ — 1 we have

Hgi]’x - Hg” - glakuk y

where the «, are suitably chosen elements of Z,. Since Hyg;x is a
coset, and each u, is a sum of at least three distinct cosets, we
must have a, = 0 for each k. Since x permutes the orbits of N, it
follows from the fact that x fixes Hyg,, that x fixes each orbit ..
This, together with our above remarks show that x lies in the kernel
of M. Since M is faithful, so is M/U.

LEMMA 5.5. Let & and F# satisfy Hypothesis 1, & < &, and
suppose there ts an element H in Z2 N & — 7 such that O,(H) = 1.
Then

Zw 2{GeF | F(G) is a p-group} .

Proof. Let G be an element of # such that F(G) is a p-group.
Let E be an & -subgroup of G, and assume O, (E.) > 1. Since F(G)
is a p-group, O,(G) =1, so the permutation representation on the
cosets of O,(E,) is faithful. Let M be the Z,(G)-module which
gives this representation, and let U = C,(N), where N is the normal
closure in G of O,(E,-). By Lemma 5.4, the Z,(G)-module M* =
M/U is faithful. Let X = GM*. Then F(X) = F(G)M*, so X/F(X)
is isomorphic to G/F(G). Since G is in #, so is X. Now E* =
EC,.(0,(E.)) is an #-subgroup of X. Since U centralizes O, (%),
we have C,.(0,(E.)) = C,(0,(E ,))/U. Let T be the intersection of
all conjugates of E* in X. Since E* N M* = C,.(0,(E ), it follows
that

TNM*=Cyu(N)=1.

But if K is a normal subgroup of X, whose intersection with M* is
trivial, then K centralizes M*. C.(M*)= C,(M*)M*, so the fact that G
is faithful on M* says that M* is self-centralizing in X, consequently
K =1. From this we have T =1, so the representation of X on
the conjugates of E* is faithful. Certainly it also follows that the
representation of X on KE* is faithful, so if ¢ is any prime which
does not divide the order of X, then Xe<®@(t)> = %/, by Lemma 4.4.
Therefore GG, as a factor group of X, also lies in Z/.

We may now assume O,.(E ) =1, so E is a p-group. It is time
to use H. If R=1+ --- + I, is a decomposition of the regular
Z,(H)-module into its principal indecomposable constituents, we let
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K; = I,/U; for each j. Here U, is the unique maximal submodule of
I;,. Since R is faithful, and F(H) is a p’-group, it follows from
Lemmas 3.1 and 3.2 that R* = K, 4 --- 4+ K, is faithful. Since H
is not an element of 7, it follows that for some j, B = H/C,(K;)
does not liein .77 Let K = K, then Bis an elementof Z N & — 7
which has K as a faithful irreducible Z,(B)-module.

Let S be the regular Z,(G)-module, and set W = (B x G)(KR S),
where the action of B x G on K® S by conjugation is the canonical
action of B x G on the module K&® S. To show G lies in Z, it is
sufficient to show W is in %7, since G is a factor group of W.

Since B has a faithful irreducible Z,(B)-module, F(B) is a
p’-group. Therefore if N is the kernel of the representation of
F(Bx @G on KQS, then N= NN F(B) Xx NN F(G). Since B and
G act faithfully on KQ S, F(B x G) is faithful on K® S. By
Lemma 3.2, K®Q S is faithful. Therefore O, (W) =1, so we have
F(W) = F(G(K®S). Since W/F(W) is isomorphic to B x (G/F(G®)),
an element of %, it follows that W lies in &

An & -subgroup of B x G is B x E, so

E* = (B X E)Cyes(0,((B x E).))

is an &-subgroup of W. Since BezZ N¥ — 7, 1< B, < F(B),
so B is a p’-group. By assumption E. is a p-group. Let V be
the collection of elements of B which appear as components of
elements of (B X E).-. Then V is a normal subgroup of B, and
(Bx E), £V x E. Since B/V is isomorphic to (B x E)/(V x E),
B/V lies in 7, hence V=B.,. If veV, then for some u in
E, ., vxuliesin (B x F),-. Since B._ is a p'-group, and E. is a
p-group, v is equal to a power of v X . Therefore

(5.3) B, = Op'((B X E)-) .

Now the restriction of K® S to B_- is a multiple of the restriction
of K to B, so it follows from Lemma 3.1 that Cygs(B-) = 1. By
(5.3), B x E is an &-subgroup of W,

Let t be a prime which does not divide | W|. The fact that the
representation of W on the cosets of B x E is faithful implies that
the same is true of the representation of W on the cosets of
(B X E)-. By part (b) of Lemma 4.4, W is an element of {&(t)> =
7. Therefore G lies in Z7 in every case, so the proof of Lemma
5.5 is complete.

Because of the preceeding lemma, we give

DEFINITION 5.6. Let n={p|Z N& — 7 contains a group H
with O,(H) = 1}. We call a prime p special if p is an element of 7'.
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LEMMA 5.7. If & and & satisfy Hypothesis 1, and & < &,
then there is at most one special prime.

Proof. Let G be an element of minimal order in &% — &,
Then G is the semi-direct product EM where E is an & -subgroup of
G, and M is the unique minimal normal subgroup of G.

Since E acts faithfully and irreducibly on M, M = F(G). By
Lemma 5.2, E is not an element of .7, and since G e &, G/F(G) lies
inz,so Eez Ng — 7.

Since O.(E)NO,F) =1 for two distinct primes 7, s, E/O(F)
lies in .7 for at most one prime ¢. If s = ¢, then E/O,(EYe % N& — .7,
so 7' & {t}.

REMARK. In, general, we cannot control the choice of G enough
to be certain that there are no special primes. This is the basis for
the example in § 6, and the reason behind

Hypothests 1I. Let G = EM be a fixed element of minimal order
in & —&. If ris any prime such that E/O.(E) lies in 7, we
assume that .&°(r’), the formation of all 7’-groups, is not contained
in 7. (Such a prime does not necessarily exist.)

THEOREM 5.8. Suppose & and F# satisfy Hypotheses 1 and II.
If & C &, then F = . the collection of all solvable groups.

Proof. Our first step is to show that % contains the collection,
S(y), of all solvable 7-groups. By Lemma 5.5, the fact that
NS & = . F shows that % contains the collection of all nilpotent
n-groups. Proceeding by induction, we assume that Z/ contains the
collection, _#7%(n), of all solvable 7n-groups of nilpotent length at
most 4. Since

A () = (Ge F |GIFG) e 7))},

& contains all solvable 7n-groups of nilpotent length at most ¢ + 1.

Let Ge _+"""'(y), and F(G) = P, X --- X P,, where P; is the Sylow
pisubgroup of F(G). Set N, = [[..P:, and let R; be the regular
Z,,(G/N;)-module for each ¢=1,---,s. We allow G to act on the
direct product R =R, X --- X R, by conjugation according to the
rule

(B4 (r, X1y X eee X 1) =1(NG) X 1(Nyg) X «o+ X 1(N,g) .

Then we form the semi-direct product X = GR. By construction,
N, centralizes the p;~group R;, hence the group F(G)R is nilpotent.
Since F(X)/R is a normal nilpotent subgroup of X/R, and X/R is
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isomorphic to G, F(X) < F(G)R. Therefore F(G)R is the Fitting
subgroup of X, and X/F(X) is isomorphic to G/F(G). Since G/F(G)
lies in Z7, it follows that X lies in #.

For each i, set X, = X/N,(Il:.:R:.), B; = N;R/N(Il..R.), and
G= G(IT4x:R4)/Ni(I11ziB). By modularity

G(HkaéiRk) N NiR = Ni(HkaéiRk) .
Thus X, is the semi-direct product of R; by G:, hence
CEi(Ri) = Cai(Ri)Ri .

Because G; acts faithfully on R;, it follows that R, is a self-
centralizing normal p-subgroup of X;. Therefore 0,(X;) =1, so
F(X,) is a ps-group. But p; lies in 7, so by Lemma 5.5, X, is an
element of % for each 4. Since the intersection of the groups
N;(Il.»:R:) over all ¢ is the identity, X is an element of Z/. There-
fore G lies in Z7, and by induction it follows that () & Z.

By Lemma 5.7, if EM is the minimal element of & — &
mentioned in Hypothesis II, then there is at most one prime r* such
that E/O,.(F) lies in .7, thus 7 contains (»*)’. Therefore,

Lirespez s 7.

Suppose & does not contain .&7((r*)'), and let G* = E*M* be
an element of minimal order in .&°((r*)) — &. By Lemma 5.2, E*
is an element of Z N & — .7, and since E* € & ((r*)), O,(E*) = 1.
Therefore 7 contains all primes.

Now suppose & contains .&“((r*)’). By assumption .7~ does not
contain S7((r*)’), so we can choose H in F((r*))=S %, H is an
element of 7 N & — 9 with O,(H) = 1. Therefore 7 contains all
primes in every case, so we have

S=Hhsws s &,

which completes the proof of Theorem 5.8.

COROLLARY 5.9. Let "¢ be the collection of groups of nilpotent
length at most . Then _47* is maximal with respect to the partial
ordering <.

Proof. 1f we set _4° = {1}, then for ¢ =1,
N ={Ge & |GIF(G)e "} .

For each prime p, S(p') is not contained in _s ', hence the
hypothesis of Theorem 5.8 is satisfied. The result follows from
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Theorem 5.8.

6. An example. Let r be a prime. Throughout this section,
we let <#Z be the formation of all group G such that G/F(G) is an
7’-group. For each prime p, we set Z(p) = .&°('); {F(p)} forms a
local definition for &2 because of Lemma 5.1. In this section, we
shall characterize the formations which strongly contain .<#Z. The
formation .&# provides an example which shows that Hypothesis II
is not redundant.

LEMMA 6.1. Let G be a group with Sylow r-subgroup R. Then
N (R) is an R-subgroup of G.

Proof. Clearly Ny (R) lies in .&#. Suppose N (R) < U< G. We
need to show N (R) covers U/R... Clearly U_ is the smallest normal
subgroup of U whose factor group has a normal Sylow »-subgroup.
If V is the smallest normal subgroup of U whose factor group U/V
is an 7'-group, then R <V, so V is transitive on the Sylow -
subgroups of U. Consequently Ny (R)V = U. Since R covers every
r-section of U, it follows that N R) covers U/U.. By definition,
N (R) is an .Z#-subgroup of G.

Suppose & > #, and &F D.H. If {F (¢)} is the minimal
local definition of &, it follows from Theorem 5.3 that .7 (¢) = & (s)
for each ¢, s. We set 2@ = . (¢). If H lies in 2 N .4, then H
has a normal Sylow r-subgroup, so H/O.(H) lies in .&“('). Therefore,
Hypothesis II is violated for the prime ». It follows from Lemma
5.7 that » is the unique special prime associated with & and .#.
The next theorem gives a class of formations which strongly
contain 2.

THEOREM 6.2. Let .9 be a nonempty formation. Let
7z ={Ge.&G/0.(G)e T},
then ZZ is a formation. If
7 ={Ge & |GIFG) ez},

then & strongly contains A#.

Proof. Suppose Ge %, and N<G. Then O.(G)N/N < 0,.(G/N).
Since G/O,.(G)e .7, the same is true of (G/N)/O,(G/N). Therefore
G/N is an element of Z/.

Now let N,, N, be two normal subgroups of G such that G/N;
lies in % for each 7. For each 1, let M;/N, = O,.(G/N;), then G/M;
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lies in .7~ for each 7. Since .7 is a formation, G/M, N M, is in 7~
For each ¢, (M,N M,)N,;/N; is an 7'-group, so it follows that the
factor group of G/N,N N, by O,(G/N,N N,) lies in .. Therefore
Z is a formation.

To show # « &, it is sufficient to show that @(p) & % for
each prime p. Suppose Ge @(r), then G has a faithful irreducible
Z,(G)-module. This means that O,(G) = 1. Since G lies in .F, G/F(G)
lies in Zr. But F(G) is an 7’-group, so it follows that G/O,.(G) lies
in 7. Therefore G lies in Z .

Suppose G e @(p) for p distinet from ». An .ZZ-subgroup of G
is NgyR) where R is a Sylow r-subgroup of G. Since p # 7,
0, (Ng(R)s(,n) = R. Therefore G has a faithful irreducible Z,(G)-
module J such that 1 < C,(R) < J. By Lemma 3.1, either C,(0,(G)) =
J, or it is the identity. The latter possibility cannot occur because
1< CHR) < C;0,(G)). Therefore the fact that J is faithful says
that O0,.(G) = 1, so F(G) is an »'-group. G lies in &, so the same
argument that was used in the preceeding paragraph shows that
G/0,..(G@) is in .. Therefore Ge Z’. By Theorem 4.3, <Z is strongly
contained in A

Since our choice of .7 is arbitrary, it follows that we can
choose an infinite number of distinct formations which strongly con-
tain .#. Our last theorem shows that we have actually found all
formations which strongly contain 2.

THEOREM 6.3. Suppose &# > #, and {F (Q)} is the minimal
local definition for #. Then there is a monempty formation I
such that

F() ={Ge & [G/0.(G)e T} .

Proof. Suppose &% D .#. By Theorem 5.3, there is a formation
27 such that Z (q) = % for each q. Our first step is to show that %
is the smallest formation generated by the set {He . ¥ |0, (H) = 1}.
Let Z* be the smallest formation generated by this set.

Suppose He.#, and O, (H)=1. Let K=1 4+ --- + I, be the
decomposition of the regular Z,.H)-module K into principal inde-
composable submodules. By Lemmas 3.1, and 3.2, and the fact that
F(H) is an 7'-group, it follows that H acts faithfully on J =
J,+ +++ 4+ J,, where for each k, J, is the quotient of I, by its
unique maximal submodule. For each k, set H, = H/Cy(J,). Then
J, is a faithful irreducible Z,(H,)-module. If R, is a Sylow r-subgroup
of H,, then Ny (R,) is an .ZZ-subgroup of H,, and by definition, it
follows that H, lies in @(r) for each k. Since 2 <« &, we have
H,e & (r) = % . Since H is faithful on J, H lies in Zr. We have



518 EDWARD CLINE

just shown that all generators of Z* lie in %, therefore Z * is
contained in 2. We know that % is the smallest formation generated
by @(r), from the proof of Theorem 5.3. Thus if we show @(r) & Z*,
we have shown % & % *. If G lies in @(r), then G has a faithful
irreducible Z,(G)-module, and G lies in # Then O.(G) =1, so by
definition G lies in Z*. This shows Z = Z'*.

Let & be the smallest formation generated by the set
{HIO,(H)|He %}. Set %' ={Ge.&”|G/O,.(G)e. 7 }. We want to
show % = %Z’. By construction Z¥ & Z.

Since the generators of .9~ are elements of %/, we must have
7 < %. Therefore, if Ge %', then G/O,(G) lies in Z7. To show
G lies in %, we use induction on the nilpotent length of O,.(G). If
0..(G) is nilpotent, then it follows that G/F(G) lies in %. Thus
G e # By our first paragraph, G/O.(G) lies in %/, so G also lies in
7z since 0.(G) N 0,.(G) = 1.

We note that O,.(G/F(0,.(®))) = 0,.(G)/F(0,.(G)), hence by induc-
tion, if G is in %', then G/F(0,(G)) is in Zr. Therefore G lies in
Z. By our first paragraph G/O.(G) is in %, so once again it follows
that G lies in Z. Therefore Z© = Z/’. This completes the proof in
the case when & c A

If &# = & we let & be the formation consisting only of the
identity. We must then show that {<Z(q)} is the minimal local
definition for 2.

Let {<#*(¢)} be the minimal local definition for .&. Suppose p
is an arbitrary prime, Ge &9 (1) = .Z(p), and ¢ is a prime which
does not divide rp|G|. Let K be the regular Z,(G)-module. Set
G* = GK. Let K, be the regular Z,(G*)-module. Let G = G*K..
Since G acts faithfully on K, and G* acts faithfully on K,, O, (&) =
K,. Depending on the choice of p, G’ is either an +’-group, or has
K, as a normal Sylow r-subgroup. Therefore G’ ¢ .22, hence
G@/0,.,(G) = G/K, lies in <#Z*(p). Therefore & (r') S Z*(p). This
completes the proof.
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