A CONTINUOUS PARTIAL ORDER FOR PEANO CONTINUA

VIRGINIA KNIGHT

A theorem of R. J. Koch states that a compact continuously partially ordered space with some natural conditions on the partial order is arcwise connected. L. E. Ward, Jr., has conjectured that Koch's arc theorem implies the well-known theorem of R. L. Moore that a Peano continuum is arcwise connected. In this paper Ward's conjecture is proved.

1. Preliminaries. If Γ is a partial order on a set X we will write $x \leq_{\Gamma} y$ or $x \leq y$ for $(x, y) \in \Gamma$. We will let $L(a) = \{x: (x, a) \in \Gamma\}$. If X is a topological space, then Γ is a *continuous* partial order on X provided the graph of Γ is closed in $X \times X$. If Γ is a continuous partial order on the space X, then L(x) is a closed set for every $x \in X$. A zero of a continuously partially ordered space X is an element 0 such that $0 \in L(x)$ for all $x \in X$. An arc is a locally connected continuum with exactly two noncutpoints. A *real arc* is a separable arc. A *Peano continuum* is a locally connected metric continuum.

We will use the following statement of Koch's arc theorem.

THEOREM 1. If X is a compact continuously partially ordered space with zero such that L(x) is connected for each $x \in X$, then X is arcwise connected.

We will show that Peano continua admit such partial orders by proving the following:

THEOREM 2. If X is a compact connected locally connected metric space, then X admits a continuous partial order with a zero such that L(x) is connected for all $x \in X$.

The proof of this theorem will use some definitions and results due to R. H. Bing [1]. An ε -partition $\mathscr{P}_{\varepsilon}$ of a subspace K of a metric space M is a finite set of closed subsets of M, each with diameter less than ε , the union of which is K, and such that the interiors in M of all the elements of $\mathscr{P}_{\varepsilon}$ are nonempty, connected, dense in the closed subset, and are pairwise disjoint. The subspace K is partitionable if for each positive number ε , there exists an ε -partition of K.

LEMMA 1. Let M be a compact connected locally connected metric space. For each positive number ε there exists an ε -partition $\mathscr{P}_{\varepsilon}$ of M such that each element of $\mathscr{P}_{\varepsilon}$ is partitionable.

Bing proves this lemma in [1].

The proof of the Theorem 2 will follow in two parts. In the first part a relation \varDelta will be constructed on the Peano continuum X. The second part will be concerned with proving that \varDelta is the desired partial order on X. We will let d denote the metric on X.

2. The construction of the relation Δ . We will define inductively a sequence $\{\mathscr{F}(i)\}_{i=1}^{\infty}$ of finite partitions of X. With each partition we will associate a relation δ_i . The set $\{\delta_i\}_{i=1}^{\infty}$ will be a nest of closed subsets of $X \times X$ and $\Delta = \bigcap \delta_i$ will be the desired partial order on X.

First choose an arbitrary element of X. Call this element 0. This will be the 0 of the partial order to be constructed on X.

We will now construct the relation δ_1 as the first step of the induction.

Let $\mathscr{F}(1)$ be a finite partition on X such that for $F \in \mathscr{F}(1)$, diam (F) < 1/2, and such that F is partitionable. We will classify the elements of $\mathscr{F}(1)$ according to how "far away" they are from 0. Let $\mathscr{F}(1,0)$ be the set $\{F \in \mathscr{F}(1): 0 \in F\}$. If $\mathscr{F}(1,i)$ has been defined for $i = 1, 2, \dots, t-1$, let

$$(1) \quad \mathscr{F}(1,t) = \{F \in \mathscr{F}(1) - \bigcup_{i=0}^{t-1} \mathscr{F}(1,i) \colon F \cap (\cup \mathscr{F}(1,t-1)) \neq \emptyset\} \text{.}$$

If F is an element of $\mathscr{F}(1, t)$ we will say F has order t. Because $\mathscr{F}(1)$ is a cover of the connected set X with connected sets, there is a chain of elements of $\mathscr{F}(1)$ between any two points of X. That is, if F is an element of $\mathscr{F}(1)$ then there exists some integer t and a set $\{F_i\}_{i=0}^t \subset \mathscr{F}(1)$ such that $0 \in F_0, F = F_t$ and for $i, j \in \{0, 1, \dots, t\}$ $F_i \cap F_j \neq \emptyset$ if and only if $|i - j| \leq 1$. This is the condition necessary for F to have order t. Thus order is defined for all elements of $\mathscr{F}(1)$.

We now define sets J(F), for $F \in \mathscr{F}(1)$, which will be in a sense "predecessors" of the elements of F. For $F \in \mathscr{F}(1, 0)$ let J(F) = F. If J(F) has been defined for $F \in \mathscr{F}(1, t-1)$ and if $F_t \in \mathscr{F}(1, t)$ let

$$(2.1) J(F_t) = F_t \cup \cup \{J(F): F \cap F_t \neq \emptyset, F \in \mathscr{F}(1, t-1)\}.$$

We now define the relation δ_1 on X by defining for all $x \in X$ the set $L_1(x) = \{y : (y, x) \in \delta_1\}$. Set

$$L_{\scriptscriptstyle 1}(x) = \cup \{J(F) \colon x \in F \in \mathscr{F}(1)\}$$
 .

The relation δ_1 is reflexive but not anti-symmetric or transitive.

142

In order to define the relations $\delta_2, \dots, \delta_n$, it will be useful to introduce some additional notation. Let F be an arbitrary fixed element of $\mathscr{F}(1, t)$ for some nonnegative integer t. Let ∂F denote the boundary of F. For t = 0, let $\mathscr{C}_*(F) = \{0\}$, and for t > 0, let

$$(3.1) \qquad \qquad \mathscr{C}_*(F) = \{E \in \mathscr{F}(1, t-1) \colon E \cap F \neq \emptyset\}.$$

Notice that $\mathscr{C}_*(F)$ is not empty by (1) since $F \in \mathscr{F}(1, t)$. Let

(4.1)
$$\partial_* F = F \cap [\cup \mathscr{C}_*(F)]$$
.

Except for the case when t = 0 and $\partial_* F = \{0\}$, $\partial_* F$ is that part of the boundary of F which is also part of the boundary of sets of order t-1. Let

$$\mathscr{C}(F) = \{E \in \mathscr{F}(1) \colon E \neq F \text{ and } E \cap F - \partial_*F \neq \emptyset\}$$
.

That is, $\mathscr{C}(F)$ is the set of elements of $\mathscr{F}(1)$, other than F itself and the sets of order t-1, whose intersection with $F - \partial_* F$ is not empty. Note that the elements of $\mathscr{C}(F)$ either have order t or order t+1. Let $\mathscr{C}^*(F)$ be the set $\{E \in \mathscr{C}(F): F \in \mathscr{C}_*(E)\}$ and let

$$\partial^*F = \cup \{F \cap E \colon E \in \mathscr{C}^*(F)\}$$
 .

Then $\mathscr{C}^*(F)$ is the set of sets in $\mathscr{F}(1)$ which have order t+1 and have a nonempty intersection with F. The sets $\mathscr{C}(F)$ and $\mathscr{C}^*(F)$ may be empty. For $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$ let $\partial_E(F) = E \cap F$.

If $\mathscr{C}^*(F)$ is not empty, let $\rho(F)$ be $d(\partial_*F, \partial^*F)$. Thus $\rho(F)$ is the infimum of the distances between the points of F which are also in the sets of order t-1 and those points of F which are also in sets of order t+1. This distance is positive since, by (1), for each $E \in \mathscr{C}^*(F)$, $\partial_E F$ and $\partial_* F$ are disjoint closed sets. If $\mathscr{C}^*(F)$ is empty, let $\rho(F)$ be diam (F).

The remainder of the construction of δ_2 generalizes directly to the construction of δ_n . Thus we will assume that $\mathscr{F}(n)$, a partition of X, and the sets $\mathscr{F}(n,t)$ have been defined for $t = 0, 1, \dots$, and that for $F \in \mathscr{F}(n), \partial_*F, \mathscr{C}_*(F), \mathscr{C}(F), \mathscr{C}^*(F), \partial^*F$ and $\rho(F)$ have been defined and that for each $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F), \partial_E F$ has been defined. We will now define some special subsets of each $F \in \mathscr{F}(n)$ which we will use to define the relation δ_n .

In order for the final relation Δ to be transitive it will be necessary that the elements of $\partial F - (\partial_*F \cup \partial^*F)$ have no successors in the relation Δ . To this end we want to find for each $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$ a partitionable subset of F which contains ∂_*F and $\partial_E F$ but contains no points of ∂F which are not "close" to ∂_*F or $\partial_E F$. We use the following lemma. LEMMA 2. Let $\varepsilon > 0$ and let F be a partitionable compact subset of a metric space X such that the interior of F is connected and locally connected. Let B_0 be either a nonempty closed subset of ∂F or a point in the interior of F. Let $\{B_i\}_{i=0}^m$ be a finite set of nonempty closed subsets of ∂F , such that $\bigcup_{i=0}^m B_i \supset \partial F$. Then there exists a set $\{C_i\}_{i=0}^m$ of partitionable subsets of F such that for $i=0, 1, \dots, m$ C_i is closed, $(\operatorname{int} C_i) \cup B_i \cup B_0$ is connected, $B_i \subset C_i$ and if $x \in \partial F \cap C_i$ then either $d(x, B_i) < \varepsilon$ or $d(x, B_0) < \varepsilon$. Further $C_0 \subset C_i, i=0, 1, \dots, m$ and $F = \bigcup_{i=0}^m C_i$.

Proof. By Lemma 1, F is partitionable so let $\mathscr{P}(F)$ be a partition of F such that for $P \in \mathscr{P}(F)$, diam $(P) < \varepsilon/2$ and P is partitionable.

For $x \in \text{int } F$ let U_x be a connected open set containing x whose closure misses ∂F . Let $\mathscr{U} = \{U_x : x \in \text{int } F\}$. For each $P \in \mathscr{P}(F)$ choose $x(P) \in \text{int } P \cap \text{int } F$ and let

$$Q = \{x(P): P \in \mathscr{P}(F)\} \cup \cup \{P \in \mathscr{P}(F): P \cap \partial F = \varnothing\}.$$

Let \mathscr{U}_1 be a finite cover of the closed set Q by elements of \mathscr{U} . We can write $\mathscr{U}_1 = \{U_i\}_{i=1}^k$. Now fix some element $P_0 \in \mathscr{P}(F)$ such that $P_0 \cap B_0 \neq \emptyset$. The interior of F is connected by the connected open sets of \mathscr{U} , so that for each $U_i \in \mathscr{U}_1$ there exists $\{U_{ij}\}_{j=0}^{k(i)} \subset \mathscr{U}$ such that $x(P_0) \in U_{i0}, U_{ik(i)} = U_i$ and $U_{ij} \cap U_{il} \neq \emptyset$ if and only if $|j-l| \leq 1$. That is, there is a finite chain of sets of \mathscr{U} connecting each element of \mathscr{U}_1 with $x(P_0)$. Let

$$\mathscr{U}' = \{U_{ij} \colon i = 0, \, \cdots, \, k \ ; \ j = 0, \, \cdots, \, k(i) \} \ \cup \{P \in \mathscr{P}(F) \colon P \cap B_0 \neq \varnothing\} \; .$$

Note that $\bigcup \mathscr{U}'$ is a connected subset of F and that if $x \in Cl(\bigcup \mathscr{U}')$ and $d(x, B_0) > \varepsilon/2$, then $x \notin \partial F$. This is because the boundary of each element of \mathscr{U} misses the boundary of F, so that if x were in ∂F , xwould be an element of P for some $P \in \mathscr{P}(F)$ such that $P \cap B_0 \neq \emptyset$ and we have that diam $(P) < \varepsilon/2$. Also note that

$$F \subset (\cup \mathscr{U}') \cup \cup \{P \in \mathscr{P}(F) \colon P \cap \partial F \neq \emptyset\}$$

since $\mathscr{U}_1 \subset \mathscr{U}'$ and \mathscr{U}_1 is a cover of $\cup \{P \in \mathscr{P}(F) \colon P \cap \partial F = \emptyset\}$. Now consider $\mathscr{U}_2 = \{U \in \mathscr{U}' \colon \overline{U} \cap \partial F = \emptyset\}$. Let

$$u(F) = \min \left\{ \varepsilon/2, \min \left\{ d(\overline{U}, \partial F) \colon U \in \mathscr{U}_2 \right\} \right\}.$$

For each $P \in \mathscr{P}(F)$ let $\mathscr{G}(F, P)$ be a partition of P such that if

$$F' \in \mathscr{G}(F,P)$$
, then diam $(F') < rac{
u(F)}{4}$

and F' is partitionable. Let

(5)
$$\mathscr{G}(F) = \bigcup \{ \mathscr{G}(F, P) \colon P \in \mathscr{P}(F) \} .$$

We are ready now to define the sets C_i , $i = 0, 1, \dots, m$. The set C_0 will meet ∂F only "close" to B_0 and C_i , $i = 1, \dots, m$ will meet ∂F only "close" to B_i or B_0 . Let $D = [(\cup \mathscr{U}') - \partial F] \cup B_0$. The set D is a connected subset of (int $F) \cup B_0$. Let

$$C_{\circ} = \bigcup \{ F' \in \mathscr{G}(F) \colon F' \cap D \neq \emptyset \}$$
 .

Because D is connected and covered by $\mathscr{G}(F)$, C_0 is a closed and connected subset of F. Also, if $x \in C_0 \cap \partial F$, then $d(x, B_0) < \varepsilon$, for if $x \in C_0 - B_0$ then $x \in F' \in \mathscr{G}(F)$ such that $F' \cap D \neq \emptyset$. Consequently there exists a $U \in \mathscr{U}'$ such that $F' \cap U \neq \emptyset$. It then follows that if x were in $F' \cap \partial F$ then, by definition of $\nu(F)$, U = P for some $P \in \mathscr{P}(F)$ such that $P \cap B_0 \neq \emptyset$, and

$$d(x, B_{\scriptscriptstyle 0}) \leq ext{diam}\left(F'
ight) + ext{diam}\left(P
ight) < rac{
u(F)}{4} + arepsilon/2 \leq arepsilon/8 + arepsilon/2 < arepsilon$$

If we let $C'_0 = [(\operatorname{int} F) \cap C_0] \cup B_0$, then C'_0 is connected because C'_0 contains D and

$$C_{\scriptscriptstyle 0}' = \ \cup \left\{ \left[F' \cap (\operatorname{int} F)
ight] \cup \left[F' \cap B_{\scriptscriptstyle 0}
ight]
ight: F' \subset C_{\scriptscriptstyle 0}
ight\} \, ,$$

which is a union of connected sets which cover D and each of which has nonempty intersection with D.

Now let

$$C_i = C_0 \cup \bigcup \{ \cup \mathscr{G}(F, P) \colon P \in \mathscr{P}(F), P \cap B_i \neq \emptyset \}$$
.

We see that C_i is a closed subset of F and it is connected because C_0 and each $P \in \mathscr{P}(F)$ is connected and $x(P) \in P \cap C_0$. Let $C'_i = [(\operatorname{int} F) \cap C_i] \cup B_i \cup B_0$. Then C'_i is a connected subset of F, for

 $C_i'=C_0'\cup\cup \{[P\cap \operatorname{int} F]\cup [B_i\cap P]\colon P\in \mathscr{P}(F),\,P\cap B_i
eq \varnothing\}\,,$

and C'_{\circ} and $[P \cap \operatorname{int} F] \cup [P \cap B_i]$ are connected and $x(P) \in C'_{\circ} \cap P \cap \operatorname{int} F$ for each $P \in \mathscr{P}(F)$.

Further note that if $x \in C_i \cap \partial F$, then either $d(x, B_i) < \varepsilon$ or $d(x, B_0) < \varepsilon$. Also F is a subset of $\bigcup_{i=0}^m C_i$.

This completes the proof of Lemma 2.

To apply this lemma to the theorem we let $\varepsilon = \rho(F)/3$, $B_0 = \partial_* F$ and $\{B_i\}_{i=1}^{m(F)} = \{\partial_E F: E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)\}$. Thus for $F \in \mathscr{F}(n)$ we get sets $C_i, i = 0, 1, \dots, m(F)$ satisfying the conditions of the lemma. For clarity we will sometimes write C(F) for $C_0(F)$ and use C(F, E) for $C_i(F)$ when $B_i = \partial_E F$ for $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$. We will also use C'(F)for C'_0 and C'(F, E) for C'_i .

We will now define the relation δ_n on X. First we inductively

define sets J(F) and J(F, E) for each $F \in \mathscr{F}(n)$, $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$. The elements of J(F) and J(F, E) will, in a sense, be "predecessors" of the elements of C(F) and C(F, E) respectively.

For $F \in \mathscr{F}(n, 0)$, let J(F) = C(F) and for $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$ let $J(F, E) = C(F, E) \cup J(F)$. Then suppose J(F) and J(F, E) have been defined for all $F \in \mathscr{F}(n, t-1)$, $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$. Let F be an element of $\mathscr{F}(n, t)$. Define

(2.2)
$$J(F) = C(F) \cup \{J(F_*, F): F_* \in \mathscr{C}_*(F)\} \text{ and let} \\ J(F, E) = C(F, E) \cup J(F) \text{ for } E \in \mathscr{C}(F) \cup \mathscr{C}^*(F) \text{.}$$

Thus we can define J(F) and J(F, E) for all

$$F \in \mathscr{F}(n), \, E \in \mathscr{C}(F) \, \cup \, \mathscr{C}^{\, *}(F)$$
 .

The sets J(F) and J(F, E) are each closed since they are a finite union of closed sets. Also J(F, E) is connected if J(F) is connected since for each $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$, C(F, E) contains C(F). But J(F) is connected since if $F_* \in \mathscr{C}_*(F)$ then for each $P \in \mathscr{P}(F_*)$ such that

$$P \cap F \neq \varnothing, P \cap \partial_*F \cap C(F_*,F) \neq \varnothing$$

Thus C(F) is not separated from $C(F_*, F)$ for any $F_* \in \mathcal{C}_*(F)$.

We will let $L_n(x) = \{y: (y, x) \in \delta_n\}$ and define δ_n by defining the sets $L_n(x)$ for all $x \in X$. Let $x \in X$ and $F \in \mathscr{F}(n)$. If $x \notin F$, let $K_F(x) = \emptyset$. If $x \in F$ and $x \in C(F)$, let $K_F(x) = J(F)$. If $x \in F$ and

$$x \in \bigcup \{C(F, E) \colon E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)\} - C(F)$$

there exists some $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$ such that $x \in C(F, E)$, so let

$$K_{\scriptscriptstyle F}(x) = \cup \{J(F, E) \colon x \in C(F, E), E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)\}$$
.

Then let

$$(6) L_n(x) = \bigcup \{K_F(x) \colon F \in \mathscr{F}(n)\}.$$

Then $L_n(x)$ is closed and connected for each x, for it is a nonempty finite union of closed sets, and the nonempty sets comprising that union are each connected and contain x.

The relation δ_n is closed because

which is a finite union of products of closed sets.

To complete the induction we will assume δ_n has been defined and we will define the sets, $\mathscr{F}(n+1)$, $\mathscr{F}(n+1, t)$, $t = 0, 1, \dots$, and for each $F \in \mathscr{F}(n+1)$ we must define $\partial_* F$, $\mathscr{C}_*(F)$, $\mathscr{C}(F)$, $\mathscr{C}^*(F)$, $\partial^* F$, $\rho(F)$ and for each $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$, $\partial_E F$.

First let $\mathscr{F}(n+1) = \bigcup \{ \mathscr{G}(F) \colon F \in \mathscr{F}(n) \}$ where $\mathscr{G}(F)$ is as defined in (5).

As in the initial induction step, we will assign to each $F \in \mathscr{F}(n+1)$ an order which will, in a sense, classify the sets of $\mathscr{F}(n+1)$ according to how "far away" they are from 0. But since we want to assure that $\delta_{n+1} \subset \delta_n$, or, what is the same thing, $L_{n+1}(x) \subset L_n(x)$ for all $x \in X$, we must take more care in defining the order of an element Fof $\mathscr{F}(n+1)$. Because each $F \in \mathscr{F}(n+1)$ is contained in an unique element of $\mathscr{F}(n)$, the "predecessors" of the elements of F must be contained in the set of "predecessors" of that unique element of $\mathscr{F}(n)$ which contains it.

We will partition $\mathscr{F}(n+1)$ into the sets $\mathscr{F}(n+1, t), t=0, 1, \cdots$, and if $F \in \mathscr{F}(n+1, t)$ we will say F has order t. First we let

$$\mathscr{F}(n+1,0) = \{F \in \mathscr{F}(n+1): 0 \in F\}.$$

Let F_n be an element of $\mathscr{F}(n, s-1)$ and suppose that order has been defined for the elements of some subset of $\mathscr{G}(F_n)$ which contains at least $\{F \in \mathscr{G}(F_n): F \cap \partial_* F_n \neq \emptyset\}$. Let F be an element of $\mathscr{G}(F_n)$ such that $F \cap C'(F_n) \neq \emptyset$ and such that order has not yet been defined for F. We will let F be an element of $\mathscr{F}(n+1,t)$ and say F has order t if t is the smallest positive integer such that there exists $F_* \in \mathscr{G}(F_n)$ such that $F_* \subset C(F_n), F_*$ has order t-1, and $F_* \cap F \cap$ int $F_n \neq \emptyset$. Let

(3.2)
$$\mathscr{C}_*(F) = \{F_* \in \mathscr{C}(F_n) \colon F_* \in \mathscr{F}(n+1, t-1), F_* \subset C(F_n) \\ \text{and} \ F_* \cap F \cap \text{int} \ F_* \neq \emptyset \}.$$

Notice that this is enough to define order for all $F \in \mathscr{G}(F_n)$ such that $F \cap C'(F_n) \neq \emptyset$, since $C'(F_n)$ is connected and covered by the connected sets $[F \cap \operatorname{int} F_n] \cup [F \cap \partial_*F_n]$. Now suppose $F \in \mathscr{G}(F_n)$ but $F \cap C'(F_n) = \emptyset$. Then $F \subset P$ for some unique $P \in \mathscr{P}(F_n)$, where $\mathscr{P}(F_n)$ is as defined in the proof of Lemma 2. Let F be an element of $\mathscr{F}(n+1,t)$ and say F has order t if t is the smallest positive integer such that there exists some $F_* \in \mathscr{F}(n+1,t-1)$ such that $F_* \subset P$ and $F \cap F_* \cap \operatorname{int} P \neq \emptyset$. Let

(3.3)
$$\mathscr{C}_*(F) = \{F_* \in \mathscr{G}(F_n) \colon F_* \in \mathscr{F}(n+1, t-1), F_* \subset P \text{ and } F_* \cap F \cap \text{ int } P \neq \emptyset\}.$$

This is enough to define order for all $F \in \mathscr{G}(F_n)$ since for each $P \in \mathscr{P}(F)$, int P is connected and covered by the connected sets $F \cap$ int P for $F \in \mathscr{G}(F_n, P)$ and $P \cap C'(F_n) \neq \emptyset$.

VIRGINIA KNIGHT

Suppose order has been defined for all $F \in \mathcal{G}(F_n)$ where $F_n \in \mathcal{F}(n, s-1)$. Let $F_{n,s}$ be an element of $\mathcal{F}(n, s)$ and let F be an element of $\mathcal{G}(F_{n,s})$ such that $F \cap \partial_* F_{n,s} \neq \emptyset$. We will let F be an element of $\mathcal{F}(n+1,t)$ and say F has order t if t is the smallest positive integer such that there exists $F_* \in \mathcal{F}(n+1,t-1)$ such that

$$F_* \subset F_{**} \in \mathscr{F}(n, s-1), F_{**} \in \mathscr{E}_*(F_{n,s})$$

and $F \cap F_* \cap \partial_* F_{n,s} \neq \emptyset$. Let

(3.4)
$$\begin{aligned} \mathscr{C}_*(F) &= \{F_* \in \mathscr{F}(n+1,t-1) \colon F_* \subset F_{**} \in \mathscr{F}(n,s-1) , \\ F_{**} \in \mathscr{C}_*(F_{n,s}), \text{ and } F \cap F_* \cap \partial_* F_{n,s} \neq \emptyset \} . \end{aligned}$$

With this we have defined a unique order for each $F \in \mathscr{F}(n+1)$ and we have $\mathscr{F}(n+1) = \bigcup_{t} \mathscr{F}(n+1, t)$.

Now let F be an element of $\mathscr{F}(n+1)$ and suppose $F \subset F_n \in \mathscr{F}(n)$. As mentioned earlier, in order to make the relation Δ a transitive order, it will be necessary that the elements of $\partial F_n - (\partial_* F_n \cup \partial^* F_n)$ have no successors. To ensure that this happens since $\partial_* F$ will have successors in the relation δ_{n+1} , we must define $\delta_* F$ for $F \in \mathscr{G}(F_n)$ so that

$${\partial}_{*}F\cap \left[{\partial}F_{n}-({\partial}_{*}F_{n}\cup{\partial}^{*}F_{n})
ight]= arnothing$$
 ,

when $F \cap \partial_* F_n = \emptyset$. Also, if $F \cap C(F_n) = \emptyset$ and $F \subset P \in \mathscr{P}(F_n)$, we want $\partial_* F \cap \partial P = \emptyset$.

We do this as follows. If $F \in \mathscr{G}(F_n)$ and $F \cap \partial_* F_n \neq \emptyset$, set

$$\partial_*F = F \cap \partial_*F_n \ .$$

If $F \cap \partial_* F_n = \emptyset$, but $F \cap C'(F_n) \neq \emptyset$, for each $E \in \mathscr{C}_*(F)$ choose $p(F, E) \in F \cap E \cap \text{ int } F_n$. Let

$$T(F_n) = \{ p(F, E) \colon F \in \mathscr{G}(F_n), F \cap \partial_* F_n = \varnothing, \ F \cap C'(F_n) \neq \varnothing \quad ext{and} \quad E \in \mathscr{C}_*(F) \} .$$

Since $T(F_n)$ is a finite set it is a closed subset of int F_n . Because F_n is normal, we can find $S(F_n)$, an open subset of F_n such that

(8)
$$Cl(S(F_n)) \cap T(F_n) = \emptyset$$
 and $\partial F_n \subset S(F_n)$.

Then for $F \in \mathscr{G}(F_n)$ such that $F \cap \partial_* F_n = \emptyset$ and $F \cap C'(F_n) \neq \emptyset$, set

(4.3)
$$\partial_* F = [F \cap (\cup \mathscr{C}_*(F))] - S(F_n) .$$

Since $\mathscr{C}_*(F) \neq \emptyset$ and for $E \in \mathscr{C}_*(F)$, $p(F, E) \notin S(F_n)$, it follows that ∂_*F is a nonempty closed subset of ∂F and $\partial_*F \cap [\partial F_n - \partial_*F_n] = \emptyset$. Similarly for $F \in \mathscr{C}(F_n)$ such that $F \cap C'(F_n) = \emptyset$, we know that $F \subset P$ for some unique $P \in \mathscr{P}(F_n)$. Now for each $F \subset P$ such that $F \cap C'(F_n) = \emptyset$ and each $E \in \mathscr{C}_*(F)$, we can choose p(F, E) to be an element of $F \cap E \cap$ int P. Let

$$T(F_n, p) = \{p(F, E) \colon F \in \mathscr{G}(F_n, P), F \cap C'(F_n) = \emptyset, \text{ and } E \in \mathscr{C}_*(F)\}$$
.

Since $T(F_n, P)$ is a finite set it is a closed subset of int P. Therefore we can find an open set $S(F_n, P)$ such that $\partial P \subset S(F_n, P)$ and

$$Cl(S(F_n, P)) \cap T(F_n, P) = \emptyset$$
.

Now for each $F \subset P$ such that $F \cap C'(F_n) = \emptyset$, set

(4.4)
$$\partial_* F = [F \cap (\cup \mathscr{C}_*(F))] - S(F_n, P) .$$

It follows that $\partial_*F \cap \partial P = \emptyset$ and ∂_*F is not empty. For all $F \in \mathscr{F}(n+1)$, let

$$\mathscr{C}^*(F) = \{E \in \mathscr{F}(n+1): F \in \mathscr{C}_*(E)\}$$

and let

$$\partial^*F = \ \cup \left\{ \partial_*E \cap F {:} \ E \in \mathscr{C}^*(F)
ight\}$$
 .

If $E \in \mathscr{C}^*(F)$ let

 $\partial_{\scriptscriptstyle E} F = \partial_* E \cap F$.

Let

$$\mathscr{E}(F) = \{E \in \mathscr{F}(n+1): E \neq F, (E \cap F) - (\partial_*F \cup \partial^*F) \neq \emptyset\}$$

and for $E \in \mathscr{C}(F)$ let

$$\partial_{_E} F = Cl[(E \cap F) - (\partial_*F \cup \partial^*F)]$$
 .

If $\mathscr{C}^*(F) \neq \emptyset$, let $\rho_1(F) = d(\partial_*F, \partial^*F)$ and if $\mathscr{C}^*(F) = \emptyset$, let $\rho_1(F) = d(\partial_*F, \partial_*F_n) = \emptyset$ but $F \cap C'(F_n) \neq \emptyset$, let $\rho_2(F) = d(\partial_*F, \partial_F)$. If $F \cap C'(F_n) = \emptyset$, and $F \subset P \in \mathscr{P}(F_n)$, let $\rho_2(F) = d(\partial_*F, \partial_F)$; otherwise let $\rho_2(F) = d(\partial_*F, \partial_F)$; otherwise let $\rho_2(F) = d(\partial_*F, \partial_F)$.

(9)
$$\rho(F) = \min \{ \rho_1(F), \rho_2(F) \}$$
.

This completes the definitions necessary to define δ_n for all positive integers n.

We now define a relation Δ on X by letting $\Delta = \bigcap_{i=1}^{\infty} \delta_i$. It remains to show that Δ is a partial order satisfying Theorem 2.

3. The relation Δ satisfies the hypotheses of Koch's Arc Theorem. The relation Δ is continuous on X since $\Delta = \bigcap_{n=1}^{\infty} \delta_n$ and we have shown in (7) that each δ_n is closed in $X \times X$. Also 0 is a zero for Δ since $0 \in L(x)$ for all $x \in X$. We must further show that L(x), the set of predecessors of each $x \in X$ under the relation Δ , is a

VIRGINIA KNIGHT

connected set. To do this it is enough to show that $L_{n+1}(x) \subseteq L_n(x)$ for each $x \in X$, since then the set $\{L_n(x)\}_{n=1}^{\infty}$ will be a nest of continua and $L(x) = \bigcap_{n=1}^{\infty} L_n(x)$ will be a continuum and thus be connected.

Because $L_{n+1}(x)$, (6), is a union of sets of the forms J(F) and J(F, E) where $F \in \mathscr{F}(n+1)$, $E \in \mathscr{C}(F) \cup \mathscr{C}^*(F)$ and $x \in C(F)$ or $x \in C(F, E)$ to prove $L_{n+1}(x) \subset L_n(x)$, it is sufficient to show that if $x \in F \in \mathscr{F}(n+1)$ and $F \subset F' \in \mathscr{F}(n)$, then $F \cup J(F)$ is a subset of either J(F') or J(F', E') for some $E' \in \mathscr{C}(F') \cup \mathscr{C}^*(F')$. This proof is omitted but is a straightforward induction on t when

$$x \in F \subset F' \in \mathscr{F}(n, t)$$

using definitions (2.1-2) of J(F) and (3.1-4) of $\mathscr{C}_*(F)$.

It is clear that \varDelta is reflexive. That \varDelta is a partial order on X will be established by the following lemmas.

LEMMA 3. Let F_1 and F_2 be distinct elements of $\mathscr{F}(n)$ and let x be an element of $\partial F_1 - (\partial_* F_1 \cup \partial^* F_1)$. Then x is an element of $\partial F_2 - (\partial_* F_2 \cup \partial^* F_2)$.

Proof. We will proceed by induction on *n*. Suppose n = 1, and that F_1 is an element of $\mathscr{F}(1, t)$. Then the order of F_2 is either t - 1, t, or t + 1, using (1) since $F_1 \cap F_2 \neq \emptyset$. If $F_2 \in \mathscr{F}(1, t - 1)$ then by (4.1) $x \in \partial_* F_1$ and if $F_2 \in \mathscr{F}(1, t + 1)$ by (4.1) $x \in \partial^* F_1$, and both of these situations contradict the hypothesis. Thus $F_2 \in \mathscr{F}(1, t)$. Suppose $x \in \partial_* F_2$. Then there exists a set $F_3 \in \mathscr{F}(1, t - 1)$ such that $x \in F_2 \cap F_3$. But also $x \in F_1$ so $x \in F_1 \cap F_3 \subset \partial_* F_1$ which is a contradiction. Similarly, if $x \in \partial^* F_2$ there exists a set $F_3 \in \mathscr{F}(1, t + 1)$ such that $x \in F_3 \cap F_2$, so $x \in F_1 \cap F_3 \subset \partial^* F_1$ and we get another contradiction.

We now suppose the lemma is true for $n = 1, 2, \dots, k-1$. Let F_1 and F_2 be distinct elements of $\mathscr{F}(k)$ and suppose $F_1 \subset T_1 \in \mathscr{F}(k-1)$ and $F_2 \subset T_2 \in \mathscr{F}(k-1)$. By (4.1-4) we have for i = 1, 2

(10)
$$\partial_* F_i \cup \partial^* F_i \subset (\text{int } T_i) \cup \partial_* T_i \cup \partial^* T_i$$
.

So $x \notin \partial_* F_1 \cup \partial^* F_1$ implies by (4.2) that $x \notin \partial_* T_1 \cup \partial^* T_1$.

Now if $T_1 \neq T_2$, $x \in T_1 \cap T_2$ implies $x \in \partial T_1 \cap \partial T_2$. From the induction hypothesis $x \in \partial T_2 - (\partial_* T_2 \cup \partial^* T_2)$. Therefore by (10) $x \in \partial F_2 - (\partial_* F_2 \cup \partial^* F_2)$.

If, however, both F_1 and F_2 are subsets of T_1 , we will consider first the case when $x \in C(T_1)$. If $x \in S(T_1)$, where $S(T_1)$ is as defined in (8) then by (4.3) $x \notin \partial_* F \cup \partial^* F$ for any $F \in \mathscr{G}(T_1)$ such that $F \cap C(T_1) \neq \emptyset$. In particular $x \notin \partial_* F_2 \cup \partial^* F_2$. If $x \notin S(T_1)$, the argument that $x \notin \partial_* F_2 \cup \partial^* F_2$ is analogous to the situation when n = 1.

The final case when $x \notin C(T_1)$ follows by a similar argument using that either $F_1 \subset P_1$ and $F_2 \subset P_2$ where $P_1 \neq P_2$ and P_1 and P_2 are in

 $\mathscr{P}(T_1)$; or $F_1 \cup F_2 \subset P$ for some $P \in \mathscr{P}(T_1)$ and that

$$\partial_*F_i\cup\partial^*F_i\subset [P-S(T_1,P)]\cup\partial^*T_1$$

for i = 1, 2.

Note. It follows from Lemma 3 that for $x \in (\text{int } F_1) \cup \partial_* F_1 \cup \partial^* F_1$ where $F_1 \in \mathscr{F}(n, t)$ and if $x \in F_2$ for some $F_2 \in \mathscr{F}(n)$, $F_2 \neq F_1$, then $x \in \partial_* F_2 \cup \partial^* F_2$. Further if $x \in \partial_* F_1$ then $F_2 \in \mathscr{F}(n, t-1) \cup \mathscr{F}(n, t)$, and if $x \in \partial^* F_1$, then $F_2 \in \mathscr{F}(n, t) \cup \mathscr{F}(n, t+1)$.

LEMMA 4. Let $F \in \mathscr{F}(n)$ and $x \in \partial F - (\partial_* F \cup \partial^* F)$. Let m be an integer such that there exists $E \in \mathscr{F}(m)$ such that $x \in E \subset F$ and $E \cap (\partial_* F \cup \partial^* F) = \emptyset$. Then $C(E, E^*) \cap \partial F = \emptyset$ for all $E^* \in \mathscr{C}^*(E)$.

Proof. Let $F_m = E$ and $F_n = F$. Then there exists $\{F_i\}_{i=n}^m$ such that $F_i \in \mathscr{F}(i)$ and $F_{i+1} \subset F_i$. Let l be the greatest integer such that $m > l \ge n$ and $\partial_* E - \partial_* F_l \ne \emptyset$ and let k be the greatest integer such that $\partial^* E - \partial^* F_k \ne \emptyset$. Then $m > l \ge n$ and $m > k \ge n$. Without loss of generality suppose $l \ge k$. Since $\partial_* E \subset \partial_* F_{l+1}$,

$$d(\partial_* E, \partial F_l) \geq d(\partial_* F_{l+1}, \partial F_l)$$

From (8) $\partial F_l \subset S(F_l)$ and by (4.3) and (4.4) $\partial_* F_{l+1} \subset F_l \setminus S(F_l)$. Therefore

$$d(\partial_*F_{l+1},\partial F_l) = \rho_2(F_l) \ge \rho(F_l)$$
 by (9).

Thus $d(\partial_* E, \partial F_l) \ge \rho(F_l)$. Similarly

$$d(\partial_* E, \partial F_k) \geq d(\partial^* F_{k+1}, \partial F_k) \geq
ho(F_k)$$
 .

Also

$$d(\partial^* E, \partial F) \ge d(\partial^* E, \partial F_k)$$
 and $d(\partial_* E, \partial F) \ge d(\partial_* E, \partial F_l)$.

Thus

$$egin{aligned} d(\partial^*E\cup\partial^*E,\,\partial F)&\geqq\min\left\{d(\partial^*E,\,\partial F_k),\,d(\partial_*E,\,\partial F_l)
ight\}\ &>\min\left\{
ho(F_k),\,
ho(F_l)
ight\}=
ho(F_l)\geqq
ho(F_{m-1})\,. \end{aligned}$$

From Lemma 2 if $x \in \partial E$ and

$$d(x, \partial_* E \cup \partial^* E) > \frac{\rho(F_{m-1})}{3}$$

then $x \in C(E, E^*)$ for any $E^* \in \mathscr{C}^*(E)$. Thus $\partial F \cap C(E, E^*) = \emptyset$ for any $E^* \in \mathscr{C}^*(E)$.

LEMMA 5. Let $x \in \partial F - (\partial^* F \cup \partial_* F)$ for $F \in \mathscr{F}(n)$. Then x has no successors other than itself in the relation Δ .

Proof. Assume $y \ge_{d} x$ and $y \ne x$. Choose m > n such that $d(x, y) > 2^{-m}$ and such that $d(x, \partial_*F \cup \partial^*F) > 2^{-m}$. Then since for $F' \in \mathscr{F}(m)$ we have diam $F' < 2^{-m}$, x and y are not both elements of any one $F' \in \mathscr{F}(m)$. Also, if

$$x \in F' \in \mathscr{F}(m)$$
, then $F' \cap (\partial_* F \cup \partial^* F) = \emptyset$,

so that *m* satisfies the conditions of Lemma 5. However, since $x \in L_m(y)$ and *x* is in no element of $\mathscr{F}(m)$ containing *y*, by (6) $x \in C(F', F^*)$ for some

$$F' \in \mathscr{F}(m)$$
 and $F^* \in \mathscr{C}^*(F')$.

But by Lemma 4, $C(F', F^*) \cap \partial F = \emptyset$. This is a contradiction and proves that such a y cannot exist.

In the next lemma we will use the following notation. If $x \in int$ F for some $F \in \mathscr{F}(n, t)$, set $q_n(x) = t$. If $x \in \partial_* F$ for some $F \in \mathscr{F}(n, t)$, set $q_n(x) = t - 1$. By the note after Lemma 3, $q_n(x)$ is well-defined and single valued for all $x \in (int F) \cup \partial_* F \cup \partial^* F$ where $F \in \mathscr{F}(n)$.

LEMMA 6. The relation Δ is anti-symmetric.

Proof. Assume there exist x and y in X such that $x \neq y$, $x \leq _{\mathcal{A}} y$ and $y \leq_{\mathcal{A}} x$. Choose n such that $d(x, y) > 2^{-n+1}$. Then, since $x \in L_n(y)$, there exists some $F_1 \in \mathscr{F}(n)$ such that $y \in F_1 \in \mathscr{F}(n, t)$ and $x \in J(F_1)$. By Lemma 5, $y \in (\operatorname{int} F_1) \cup \partial_* F_1 \cup \partial^* F_1$, so $q_n(y)$ is defined and $q_n(y) \geq$ t-1. Now because $d(x, y) > 2^{-n+1}$, $x \in F_2 \in \mathscr{F}(n)$ where $F_2 \in \mathscr{F}(n, s)$ and s < t-1. Also by Lemma 5, $x \in \operatorname{int} F_2 \cup \partial_* F_2 \cup \partial^* F_2$, so $q_n(x)$ is defined and $q_n(x) \leq s < t-1$. It follows that $q_n(y) > q_n(x)$. But by a symmetric argument since $y \in L_n(x)$, it can be shown that $q_n(x) >$ $q_n(y)$. This contradiction proves that \mathcal{A} is anti-symmetric.

LEMMA 7. The relation Δ is transitive.

Proof. Let x, y and z be elements of X such that $x \leq y$ and $y \leq z$. We will show $x \leq z$. We can assume x < y and y < z. Choose n such that $\min \{d(x, y), d(y, z), d(x, z)\} > 2^{-n+1}$. It is enough to show $x \in L_n(z)$ since we have shown $L_{n-1}(z) \supset L_n(z)$. Since $y \in L_n(z), y \in F_y$ for some $F_y \in \mathscr{F}(n, t)$ where $y \in J(F_y, E') \subset L_n(z)$ for some $E' \in \mathscr{E}^*(F_y)$. By Lemma 4, $y \in \operatorname{int} F_y \cup \partial_* F_y \cup \partial^* F_y$. If $y \in \operatorname{int} F_y$ then since

$$x \in L_n(y), x \in J(F_y) \subset J(F_y, E') \subset L_n(z)$$
 .

If $y \in int F_y$ then either $y \in \partial_* F_y$ or $y \in \partial^* F_y$. We will consider the case when $y \in \partial_* F_y$. The argument is similar when $y \in \partial^* F_y$. By the note after Lemma 3 if $y \in F \in \mathscr{F}(n)$, then $F \in \mathscr{F}(n, t) \cup \mathscr{F}(n, t-1)$.

If $y \in F_* \in \mathscr{F}(n, t-1)$ where $x \in J(F_*)$ then $x \in J(F_*, F_y) \subset L_n(z)$. If we assume this is not the case then $x \notin J(F_*, F_y)$ for any $F_* \in \mathscr{C}_*(F_y)$. Let $\mathscr{A} = \{F_* \in \mathscr{F}(n, t-1): x \in J(F_*, F) \text{ for some } F \in \mathscr{F}(n, t) \text{ such that } y \in F\}$. The set \mathscr{A} is not empty since $x \in L_n(y)$. Let

$$r = \min \left\{ d(y, F_*) \colon F_* \in \mathscr{M} \right\}.$$

Since $y \notin F_*$ for any $F_* \in \mathcal{N}, r > 0$. Choose m > n such that $r > 2^{-m}$. Now because $x \in L_m(y) \subset L_n(y)$ there exists a set $T \in \mathcal{F}(m)$ such that $y \in T$ and $x \in J(T)$. Either $T \subset F$ for some $F \in \mathcal{F}(n, t)$ or $T \subset F_*$ for some $F_* \in \mathcal{F}(n, t-1)$. However if

$$T \subset F_* \in \mathscr{F}(n, t-1), x \in J(T) \subset J(F_*, F_y)$$

which contradicts our assumption. Thus there exists $F \in \mathscr{F}(n, t)$ such that $T \subset F$. Now by (2.2) $x \in J(T) \subset T \cup \bigcup \{J(T_*, T) \colon T_* \cap T \neq \emptyset, T_* \in \mathscr{C}_*(T) \text{ and } T_* \subset F_* \text{ for some } F_* \in \mathscr{F}(n, t-1)\}$. By the choice of m and $r, F_* \in \mathscr{S}$. But $x \in J(T) \subset J(F_*, F)$ implies that $F_* \in \mathscr{S}$. This contradiction says that $x \in J(F_*, F_y)$ for some $F_* \in \mathscr{C}_*(F_y)$ and thus $x \in J(F_y) \subset L_n(z)$. This completes the proof that \varDelta is transitive.

References

1. R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110.

2. R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math. 9 (1959), 723-728.

3. R. L. Moore, On the foundations of plane analysis situs, Trans. Amer. Math. Soc. 17 (1966), 131-164.

4. L. E. Ward, Jr., Concerning Koch's theorem on the existence of arcs, Pacific J. Math. 15 (1965), 347-355.

Received December 9, 1968.

UNIVERSITY OF VICTORIA VICTORIA, B. C. WILLAMETTE UNIVERSITY SALEM, OREGON