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A CONTINUOUS PARTIAL ORDER FOR
PEANO CONTINUA

VIRGINIA KNIGHT

A theorem of R. J. Koch states that a compact continu-
ously partially ordered space with some natural conditions on
the partial order is arcwise connected. L. E, Ward, Jr., has
conjectured that Koch’s arc theorem implies the well-known
theorem of R. L. Moore that a Peano continuum is arcwise
connected. In this paper Ward’s conjecture is proved.

1. Preliminaries. If I'" is a partial order on a set X we will
write 2 <,y or x <y for (z,y)el’. We will let L(a) = {x: (z,a) e ['}.
If X is a topological space, then I" is a continuous partial order on
X provided the graph of I" is closed in Xx X. If I'" is a continuous
partial order on the space X, then L(x) is a closed set for every ze X.
A zero of a continuously partially ordered space X is an element 0
such that O0e L(x) for all e X. An arc is a locally connected con-
tinuum with exactly two noncutpoints. A real arc is a separable arc,
A Peano continuum is a locally connected metric continuum.

We will use the following statement of Koch’s arc theorem.

THEOREM 1. If X 1is a compact continuously partially ordered
space with zero such that L(x) is connected for each xc X, then X
18 arcwise connected.

We will show that Peano continua admit such partial orders by
proving the following:

THEOREM 2. If X is a compact connected locally connected metric
space, then X admits a continuous partial order with a zero such
that L(x) is connected for all xe X.

The proof of this theorem will use some definitions and results
due to R. H. Bing [1]. An e-partition <2 of a subspace K of a metric
space M is a finite set of closed subsets of M, each with diameter
less than e, the union of which is K, and such that the interiors in
M of all the elements of &2 are nonempty, connected, dense in the
closed subset, and are pairwise disjoint. The subspace K is parti-
tionable if for each positive number ¢, there exists an e-partition of K.

LeMMA 1. Let M be a compact connected locally connected metric
space. For each positive number ¢ there exists an e-partition 2. of
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M such that each element of <# 1is partitionable.
Bing proves this lemma in [1].

The proof of the Theorem 2 will follow in two parts. In the first
part a relation 4 will be constructed on the Peano continuum X. The
second part will be concerned with proving that 4 is the desired par-
tial order on X. We will let d denote the metric on X.

2. The construction of the relation 4. We will define induc-
tively a sequence {# (1)}, of finite partitions of X. With each par-
tition we will associate a relation 6,. The set {3,}2, will be a nest of
closed subsets of Xx X and 4 = Nd; will be the desired partial order
on X.

First choose an arbitrary element of X. Call this element 0. This
will be the 0 of the partial order to be constructed on X.

We will now construct the relation 9, as the first step of the in-
duction.

Let .# (1) be a finite partition on X such that for Fe & (1),
diam (F') < 1/2, and such that F' is partitionable. We will classify
the elements of .# (1) according to how “far away” they are from 0.
Let .# (1,0) be the set {FFe # (1):0e F}. If % (1,14) has been defin-
ed for t =1,2,.--,t — 1, let

(1) LH)={FesFs ) -UZtFQ1): FNn(UF 1, t—-1)+ o} .

If F' is an element of & (1,t) we will say F has order ¢. Because
Z (1) is a cover of the connected set X with connected sets, there is
a chain of elements of .# (1) between any two points of X. That is,
if F is an element of .&# (1) then there exists some integer ¢ and a
set {F}.,c < (1) such that 0¢ F\,, F = F, and for 4,7¢{0,1, ---, ¢}
F;NF; = @ if and only if |¢ — 7] £ 1. This is the condition neces-
sary for F' to have order ¢. Thus order is defined for all elements of
Z (1).

We now define sets J(F'), for F'e # (1), which will be in a sense
“predecessors” of the elements of F. For Fe.# (1,0) let J(F) = F.
If J(F') has been defined for F'e &# (1,t — 1) and if F,e & (1,t) let

2.1) JF)=F,UU{JF):FNF,+o,Fes (1,t—1)}.

We now define the relation 4, on X by defining for all ¢ X the
set L,(x) = {y: (y,x)€d}. Set

L(x) = U{J(F):ac Fe 7 (1)} .

. The relation 0, is reflexive but not anti-symmetric or transitive.
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In order to define the relations o, - -, d,, it will be useful to in-
troduce some additional notation. Let F' be an arbitrary fixed element
of & (1, t) for some nonnegative integer ¢t. Let 0F denote the boundary
of F. For ¢t =0, let &,(F) = {0}, and for ¢ > 0, let

3.1) () ={Ee s 1,t—1):ENF+ @}.
Notice that &, (F) is not empty by (1) since FFe & (1,%). Let
4.1) 0. F=Fnlu&F)].

Except for the case when ¢t = 0 and 0, F = {0}, 0, F is that part of
the boundary of F' which is also part of the boundary of sets of order
t —1. Let

Z(F)={Ee s (1):E+F and ENF —3,F+ @} .

That is, & (F') is the set of elements of & (1), other than F' itself
and the sets of order ¢ — 1, whose intersection with F'— 0, F is not
empty. Note that the elements of & (F') either have order ¢ or order
t +1. Let £*(F) be the set {Fe & (F): Fe &£,(F)} and let

0O*F = U(FNE:Ec&*(F)} .

Then & *(F') is the set of sets in & (1) which have order ¢ + 1 and
have a nonempty intersection with F. The sets & (F) and & *(F)
may be empty. For Ee & (F)U £*(F) let 0,(F) = EN F.

If @*(F) is not empty, let o(F') be d(0,F,0*F). Thus o(F) is
the infimum of the distances between the points of F which are also
in the sets of order ¢ — 1 and those points of F' which are also in
sets of order ¢ + 1. This distance is positive since, by (1), for each
Eec &*(F), 0,F and 6,F are disjoint closed sets. If & *(F') is empty,
let o(F') be diam (F').

The remainder of the construction of §, generalizes directly to
the construction of 4,. Thus we will assume that & (n), a partition
of X, and the sets .# (n,t) have been defined for ¢ = 0,1, ---, and
that for F'e & (n), 0, F, & (F), &(F), &*(F), 0*F and o(F') have been
defined and that for each Ee & (F)U & *(F'), 0,F has been defined.
We will now define some special subsets of each F'e & (n) which we
will use to define the relation 4,.

In order for the final relation 4 to be transitive it will be neces-
sary that the elements of 0F — (0, F U 0*F') have no successors in the
relation 4. To this end we want to find for each Ee & (F) U & *(F)
a partitionable subset of F' which contains 0,F and 0,F but contains
no points of 0F which are not “close” to 0,F or d,F. We use the
following lemma.
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LEMMA 2. Let €¢>0 and let F be a partitionable compact subset
of a metric space X such that the imterior of F is connected and
locally comnected. Let B, be either a nonempty closed subset of OF
or a point in the interior of F. Let {B;}™, be a finite set of non-
empty closed subsets of OF, such that U, B; D0F. Then there exists
a set {C;}m, of partitionable subsets of F such that for 1=0,1,.-- m
C; s closed, (int C,) U B, UB, is connected, B, C C; and if x€doF N C,;
then either d(x, B,)<<e or d(x, B,)<e. Further C,cC;,2=0,1, -, m
and F = U, C..

Proof. By Lemma 1, F is partitionable so let Z#(F') be a parti-
tion of F such that for P e &2 (F'), diam (P)<¢/2 and P is partitionable.

For xcint F let U, be a connected open set containing & whose
closure misses 0F. Let % = {U,:xcint F'}. For each Pe 7A(F)
choose x(P)ecint PN int F' and let

Q= {xP):PeFFNUU{PeF(F):PNJF = p}.

Let %, be a finite cover of the closed set @ by elements of Z. We
can write Z, = {U;}t.,. Now fix some element P,e Z?(F) such that
P,N B, # @. The interior of F' is connected by the connected open
sets of %/, so that for each U, e %, there exists {U;;}} c Z such
that 2(Py) € Uy, Uiiy=U; and U;NU; # @ if and only if |7—1] < 1.
That is, there is a finite chain of sets of %/ connecting each element
of 7, with «(P,). Let

2 = {Uisii =0, - k55 =0, -, (i)}
U{Pe Z(F):PNB,# 2} .

Note that UZ/’ is a connected subset of F' and that if xe Cl(UZ")
and d(x, B,) > €/2, then z ¢ dF. This is because the boundary of each
element of 7 misses the boundary of F', so that if & were in oF, x
would be an element of P for some Pc &”(F) such that PN B, = &
and we have that diam (P) < ¢/2. Also note that

Fc(UZ')UU{Pe P(F):PNoF + O}

since 7, C Z' and %, is a cover of U{Pe & (F): PNJF = @}.
Now consider Z, = {Ue Z': UNJF = @}. Let

Y(F') = min {¢/2, min {d(U, 6F): Ue Z.}} .
For each Pe &2(F') let < (F, P) be a partition of P such that if

F'e Z(F,P), then diam (F’) <_”£f_)

and F" is partitionable. Let
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(5) TWF) = U{e(F, P): Pe (F)} .

We are ready now to define the sets C;,7 = 0,1, .-., m. The set
C, will meet oF only “close” to B, and C;,i =1, ---, m will meet oF
only “close” to B; or B,, Let D=[(U#%’) —0F]1U B,. Theset D is
a connected subset of (int F') U B,. Let

Co=U{F'e(F):F'0ND+ 0}.

Because D is connected and covered by < (F'), C, is a closed and
connected subset of F. Also, if xe€C,N oF, then d(x, B,) < ¢, for if
xeC,— B, then x¢ F'e€ & (F) such that F’ N D # ¢. Consequently
there exists a Ue %’ such that F' N U %= @. It then follows that
if ©x were in F' N oF then, by definition of v(F'), U = P for some
Pe &2 (F) such that PN B, = ¢, and

d(z, B)) < diam (F’) + diam (P) < i’i?_ te2<eB4+¢2<c.

If we let C;, = [(int F) N C,] U B,, then Cj is connected because
C} contains D and

Co=U{[F'Nn(int F)]U[F'NBJ]: F'<Cy},

which is a union of connected sets which cover D and each of which
has nonempty intersection with D.
Now let

We see that C; is a closed subset of F' and it is connected because
C, and each Pe . 2”(F) is connected and z(P)e PN C, Let C;=
[int F)N C;]JU B; U B,. Then C} is a connected subset of F', for

Ci=CiUuU{[PNnint Fl1U[B;N Pl: Pe &#(F), PN B; + &},

and C; and [PNint F]U[PN B;] are connected and xz(P)e C/NPNint F
for each Pe o7 (F).

Further note that if xeC,NoF, then either d(x,B;) <ée¢ or
d(x, B)) < e. Also F is a subset of U, C,.

This completes the proof of Lemma 2.

To apply this lemma to the theorem we let ¢ = p(¥")/3, B, = 0, F
and {B)rP = {0, F: Ec & (F)U « *(F)}. Thus for Fe & (n) we get
sets C;,1=0,1, --., m(F) satisfying the conditions of the lemma. For
clarity we will sometimes write C(F') for C,(F') and use C(F, E) for
Ci(F') when B, = 0,F for Ee & (F)U & *(F). We will also use C'(F")
for C; and C'(F, E) for Ci.

We will now define the relation 6, on X. First we inductively
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define sets J(F') and J(F, E) for each Fe & (n), Ec & (F)U & *(F).
The elements of J(F') and J(F', E) will, in a sense, be “predecessors”
of the elements of C(F) and C(F, E) respectively.

For Fe & (n,0), let J(F) = C(F') and for Ee & (F) U &*(F) let
J(F,E)=C(F, E) U J(F). Then suppose J(F') and J(F, E) have been
defined for all Fe & (n,t—1), EeLF)U &*(F). Let F be an
element of & (n,t). Define

JF)=CF)U{JF,, F). F,e & (F)} and let
JF,E)=CF,E)UJ(F) for Ec&(F)U&*F).

Thus we can define J(F') and J(F, E) for all
Fe F(n),Ees(F)U &™) .

(2.2)

The sets J(F') and J(F', E) are each closed since they are a finite union
of closed sets. Also J(F, E) is connected if J(F') is connected since
for each Fe & (F)U & *(F), C(F, E) contains C(F'). But J(F') is con-
nected since if F', € & (F') then for each Pe .Z?(F,) such that

PNnF+@,Pno,FNCF,, F)+ O .

Thus C(F') is not separated from C(F,, F') for any F, e & (F).

We will let L,(x)={y: (y, x) €9,} and define 4, by defining the sets
L,(x) for all xe X, Let e X and Fe &% (n). If x¢ F, let K (x)=0.
If xe F and ze C(F), let K () = J(F). If xe F and

ve U{C(F,E): Ec &(F)U &*(F)} — C(F)
there exists some Ee & (F) U & *(F) such that xe C(F, E), so let
K. (x) = U{J(F,E):oscC(F,E), Ec &(F)U &*(F)} .
Then let
(6) L, () = U{Knx): Fe 7 (n)}.

Then L,(z) is closed and connected for each z, for it is a nonempty
finite union of closed sets, and the nonempty sets comprising that
union are each connected and contain zx.

The relation d, is closed because

0, = U{C(F) x C(F): Fe 7 (n)}
(7) UU{CWF'",E'Y X C(F,E). Fe & (n),
EeZ(F)Uz*F),CF',E") CJ(F, B)}
which is a finite union of products of closed sets.

To complete the induction we will assume o, has been defined and
we will define the sets, & (n +1), % n+1,t),t=0,1, ---, and for
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each Fe & (n+ 1) we must define o0,.F, & (F), &(F), &*(F), 0*F,
o(F') and for each Eec & (F) U " *(F), 0,F.

First let &% (n +1) = U{Z(F): Fe 7 (n)} where < (F) is as de-
fined in (5).

As in the initial induction step, we will assign to each F'e &% (n+1)
an order which will, in a sense, classify the sets of & (n-+1) accord-
ing to how “far away” they are from 0. But since we want to as-
sure that 6,., Cé,, or, what is the same thing, L,.(x) C L,(x) for all
x e X, we must take more care in defining the order of an element F'
of .7 (n + 1). Because each F'e & (n + 1) is contained in an unique
element of & (n), the “predecessors” of the elements of F must be
contained in the set of “predecessors” of that unique element of & (n)
which contains it.

We will partition .& (n+1) into the sets &% (n+1,1t),t=0,1, ---,
and if Fe # (n + 1,t) we will say F has order t. First we let

F(m+1,0)={Fe 7 (n+1):0cF}.

Let F', be an element of & (n,s—1) and suppose that order has been
defined for the elements of some subset of < (F',) which contains at
least {F'e & (F,): FN0.F,+@}. Let F be an element of < (F,) such
that F'nN C'(F,) + @ and such that order has not yet been defined
for F. We will let F' be an element of &% (n + 1,t) and say F has
order ¢ if ¢ is the smallest positive integer such that there exists
F,e <(F,) such that F,cC(F,), F, has order t—1, and F, N FNint

F,=# . Let

CF) ={Fye T F,):F.e 7 (n+1,t—1), F, CC(F,)

(3.2) .
and F.NFnintF, = @} .

Notice that this is enough to define order for all F'e & (F,) such that
FnC(F,) + @, since C'(F,) is connected and covered by the con-
nected sets [FFNint F,]U[FNJ.F,]. Now suppose Fe Z(F,) but
FNC'(F,)=¢. Then F c P for some unique P ¢ . (F,), where &°(F)
is as defined in the proof of Lemma 2. Let F be an element of
Z (n+1,t) and say F has order ¢ if ¢ is the smallest positive integer
such that there exists some F, e & (n+1,¢t—1) such that F, c P and
FNF,nint P+ . Let

e (F)=(F,e < (F):F,e. 5 (n+1,t—1),F,cP

3.3
(3-3) and F, N FNint P = O} .

This is enough to define order for all Fe £ (F,) since for each
Pe &°(F), int P is connected and covered by the connected sets FNint
P for Fe ¢ (F,, P) and PN C'(F,) + O.
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Suppose order has been defined for all Fe & (F, where
F,e # (n,s—1). Let F,, be an element of & (n, s) and let F be an
element of < (F,,) such that FNo.F,, =+ @. We will let F be an
element of . # (n + 1,¢t) and say F has order ¢ if ¢t is the smallest
positive integer such that there exists F, € & (n + 1, ¢ — 1) such that

F.cF,,e & (n,s—1,F,. e &,(F,,
and FNF,No.F,,+ @. Let

) ={F,eF (n+1Lt-1:F,CF,,es (ns—-1),

3.4
( ) F** e g)*(Fn,s)’ and Fn F* m a*Fn,s $ @} .

With this we have defined a unique order for each F'e & (n+1) and
we have # (n+1)=U, & (n + 1,¢).

Now let F' be an element of % (r+1) and suppose FFCF, e ¥ (n).
As mentioned earlier, in order to make the relation 4 a transitive
order, it will be necessary that the elements of 0F, — (3, F, U 0*F,) have
no successors. To ensure that this happens since 6, F will have suc-
cessors in the relation 6,,,, we must define ¢, F for F'e & (F,) so that

3, F N[oF, — (0, F, Ud*F)] = @ ,

when FNo,.F,=@. Also, if FNC(F,) = @ and FC Pe &#(F,), we:
want 0, F NP = @.

We do this as follows. If Fle &(F, and FNo,F,+ @, set
(4.2) 0,F=Fno.F,.
If Fno.F,=o, but FNC'(F,) #+ @, for each Ee &,(F) choose
oF,Ehe FNENint F,. Let

T(F,) = {p(F, E). Fe o(F,), FNo.F, =@,
FNC(F, + @ and FEe & (F)}.

Since T(F',) is a finite set it is a closed subset of int F,. Because:
F, is normal, we can find S(F,), an open subset of F', such that
(8) CUSF)NTF,) =@ and oF,CS(F,).
Then for F'e & (F,) such that Fno, F,=2 and FNC(F,) # @, set
(4.3) 0. F = [FN(UZ(F)N — S(F,) .

Since Z,(F')# @ and for Eec & (F), p(F, E)¢ S(F,), it follows that
0.F is a nonempty closed subset of 0F and o0,F N [0F, — 0, F,] = @.
Similarly for Fe & (F,) such that FNnC'(F, = @, we know that
FcP for some unique Pe Z”(F,). Now for each FFC P such that
FnC(F, =@ and each Fe &,(F), we can choose p(F, E) to be an
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element of FFN ENint P. Let
T(Fm p) = {p(Fy E)- Fe -—(§>(Fm P),Fﬂ C'(Fn) =@, and Ee g)*(F)} .

Since T(F,, P) is a finite set it is a closed subset of int P. There-
fore we can find an open set S(F',, P) such that 6P c S(F,, P) and

CUS(F.,,P)NTF,, P)=o.
Now for each Fc P such that Fn C'(F,) = @, set
4.4 0. F =[FN(U&(F)] — SIF,, P) .

It follows that ¢, F NoP = @ and 0, F is not empty.
For all Fe # (n + 1), let

FHF) ={Ee 5 (n + 1): Fe &.(E))

and let

O*F = U0 ,ENF:Eec = *F)} .
If Ec&*(F) let

0,F=0,ENF.
Let
w(F)={EceF(n+1:E+F,(ENF)— (0,FUdF)# O}

and for E'e & (F) let

0. F = CI(ENF) — (3, FU*F)].

If “*(F)= @, let p,(F)=d(0,F,0*F) and if &*(F)=g, let p(F)=
diam F. If Fno F,=2 but FNC(F,) = O, let 0.(F)=d(0.F,oF,).
If FnC'F,) = @, and Fc Pe & (F,), let 0,(F) = d(0,F, 0P); other-
wise let p,(F') = diam F. Finally let

(9) O(F) = min {0,(F), 0.(F)} .

This completes the definitions necessary to define o, for all positive
integers n.

We now define a relation 4 on X by letting 4 = N2, 0,. It re-
mains to show that 4 is a partial order satisfying Theorem 2.

3. The relation 4 satisfies the hypotheses of Koch’s Arc
Theorem. The relation 4 is continuous on X since 4 = 3., d, and
we have shown in (7) that each 6, is closed in X x X. Also 0 is a
zero for A since 0¢ L(x) for all xe X. We must further show that
L(x), the set of predecessors of each € X under the relation 4, is a
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connected set. To do this it is enough to show that L, .(2) & L,(x)
for each x € X, since then the set {L,(x)}7-, will be a nest of continua
and L(z) = N, L,(x) will be a continuum and thus be connected.

Because L,..(%), (6), is a union of sets of the forms J(F) and
J(F,E) where Fe % (n+1), Eecz(F)U&*F) and 2 C(F) or
xeC(F, E) to prove L,  (x)c L,(x), it is sufficient to show that if
xeFe s (n+1) and FCF'e & (n), then FU J(F) is a subset of
either J(F’) or J(F’, E’') for some E’'e & (F’) U & *(F'). This proof
is omitted but is a straightforward induction on ¢ when

xeFCF'e v (n,t)

using definitions (2.1-2) of J(F') and (3.1-4) of & (F).
It is clear that 4 is reflexive. That 4 is a partial order on X
will be established by the following lemmas.

LemMMA 3. Let F, and F, be distinct elements of & (n) and let
x be an element of OF, — (0, F, U 0*F\). Then x is an element of 0F, —
0.F, U 0*F,).

Proof. We will proceed by induction on . Suppose # = 1, and
that F, is an element of & (1,t). Then the order of F, is either
t—1,¢t, or t +1, using (1) since FFNF,* @». If F,e s (1,t— 1)
then by (4.1) z€d,F, and if F,e % (1,t + 1) by (4.1) x€d*F,, and
both of these situations contradict the hypothesis. Thus F,e &% (1,¢t).
Suppose x €0, F,. Then there exists a set F,e . &# (1,t—1) such that
xeF,NF, But also xeF, so xe€ F,N F,C0,F, which is a contradic-
tion. Similarly, if xe€d*F, there exists a set F,e.# (1,t + 1) such
that x e F,NF,, so xe F,NF,Co0*F, and we get another contradiction.

We now suppose the lemma is true for n =1,2, ---,k — 1. Let
F', and F, be distinct elements of & (k) and suppose F.C T, e .7 (k—1)
and F,c T,e # (k — 1). By (4.1-4) we have for 1 = 1,2

(10) 0, F, Ud*F, (int T) U, T Uo*T; .

So x¢ 0, F, Uod*F, implies by (4.2) that 2¢o,T, U o*T,.

Now if T\ # T,, xe T.N T, implies x € 6T, NoT,. From the induction
hypothesisx € 0T, — (0, T, U 0*T,). Therefore by (10)x € 0F,— (3, F,Ud*F}).

If, however, both F, and F, are subsets of T,, we will consider
first the case when xe C(T,). If x< S(T), where S(T,) is as defined
in (8) then by (4.3) x¢d,FU0*F for any Fe 2 (T) such that
FnC(T) # @. In particular z¢0,F, U d*F,. If x¢ S(T,), the argu-
ment that z¢0,.F, U 0*F, is analogous to the situation when n = 1.

The final case when « ¢ C(T)) follows by a similar argument using
that either F,c P, and F,C P, where P, # P, and P, and P, are in
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P(T); or F,U F,c P for some Pe (T, and that
0, F,Uo*F,c[P — S(T,, P)] U o*T,
for ¢+ =1, 2.

Note. It follows from Lemma 3 that for x e (int F\) U0, F,Uo*F,
where F, e % (n,t) and if xe F, for some F,e & (n), F, = F,, then
xed,F,Uo*F, Further if x¢d,F, then F,e & (n,t — 1) U .F (n,t),
and if xeo*F,, then F,e & (n,t) U ~# (n,t + 1).

LEMMA 4. Let Fe & (n) and x€oF —(0,F U 0*F). Let m be an
integer such that there exists Ee & (m) such that xe ECF and
EN@.FUF)=@. Then C(E,E*)NJF = @ for all E*ec & *(K).

Proof. Let F, = E and F, = F. Then there exists {F;}", such
that F,e & (i) and F, ., CF,. Let | be the greatest integer such that
m >1=mn and 0, E — 0, F, + © and let k be the greatest integer such
that 0*E — 0*F, = @. Thenm >1=mnand m >k =n. Without loss
of generality suppose ! = k. Since 0. K Co,.F,.,,

d(0.E, oF) = d(0,F,,,, 0F")
From (8) 0F, < S(F) and by (4.3) and (4.4) 0, F,., € F)\S(F,). Therefore
Ad(0sF'rs1y OF) = 0(F) = p(F) by (9).
Thus d(0,.E, dF)) = o(F,). Similarly
(0. K, 0F}) = d(0*F,, 0F,) = o(F)) .
Also
d(0*E,oF) = d(0*E, 0F,) and d(0.E,0F) = d(6,F,dF)) .

Thus

d(*E U 8*E, 0F) = min {d(3*E, oF}), d(3,E, 6F)))
> min {o(F}), o(F)} = o(F)) = o(F,._.) .

From Lemma 2 if x ¢oF and

d(z,5,.BU5*E) > !ﬂ.;—ﬁ_

then v e C(H, E*) for any E*ec & *(E). Thus 0F NC(E, E*) = @ for
any E* e *(H).

LEMMA 5. Let x€oF — (0*F U 0. F) for Fe & (n). Then x has
no successors other than itself im the relation 4.
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Proof. Assume y =,x and y * 2. Choose m > % such that
d(x,y) > 2™ and such that d(z,0,.F U Jd*F) > 2", Then since for
F'e . % (m) we have diam F’ < 2 ™, x and y are not both elements
of any one F’e.# (m). Also, if

xeF'e & (m), then F'N(©0,FUF)=0Q,

so that m satisfies the conditions of Lemma 5. However, since x ¢ L, (¥)
and « is in no element of .# (m) containing y, by (6) xe C(F’, F'*)
for some

F'e # (m) and F*e &*(F').

But by Lemma 4, C(F', F*) N 6F = . This is a contradiction and
proves that such a y cannot exist.

In the next lemma we will use the following notation. If e int
F for some Fe & (n,t), set q,(x)=t. If xco, F for some Fe . & (n,t),
set ¢,(x) =t — 1. By the note after Lemma 3, ¢,(x) is well-defined
and single valued for all ¢ (int F') U 0, F U 0*F where Fe & (n).

LEMMA 6. The relation 4 is anti-symmetric.

Proof. Assume there exist © and y in X such that z=#y, 2 <, ¥
and y <,x. Choose » such that d(x,y) > 2-"*'. Then, since ¢ L,(y),
there exists some F|e & (n) such that ye F,e & (n,t) and x < J(F)).
By Lemma 5, ye(int F)) UJ,.F, Ud*F,, so q.(y) is defined and ¢,(y)=
t — 1. Now because d(x, y) > 2", xc F,c & (n) where F,c & (n,s)
and s <t — 1, Also by Lemma 5, xcint F, U d,F, U 0*F,, so ¢,(x) is
defined and ¢,(x) < s <t — 1. It follows that ¢,(y) > q.(x). But by
a symmetric argument since y e L,(x), it can be shown that ¢,(x) >
q.(y). This contradiction proves that 4 is anti-symmetric.

LEMMA 7. The relation 4 is transitive.

Proof. Let x,y and z be elements of X such that ¢ <,y and
¥y <,2. We will show z <,2. We can assume = < y and y < z. Choose
7 such that min {d(z, v), d(y, ?), d(z, 2)} > 27"*'. It is enough to show
xve L,(2) since we have shown L, ,(z) D L,(2). Since ye L,(z),y<cF,
for some F, e % (n, t) where y e J(F,, E') C L,(z) for some E' e & *(F,).
By Lemma 4, yeint F,UJ,F, U od*F,. If yeint F, then since

ve L,(y),veJ(F,) CJF, E') C L,(2) .

If yeint F, then either yeo, F, or yeo*F,. We will consider the
case when ycd,F,. The argument is similar when y e d*F,. By the
note after Lemma 3 if ye F'e & (n), then Fe & (n,t)U.F (n,t—1).
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If yeF,e # (n,t — 1) where x¢ J(F,) then xe J(F,, F,) C L,(z). If
we assume this is not the case then z ¢ J(F,, F,) for any F, e & . (F,).
Let &7 ={F,e & (n,t — 1):xeJ(F,, F) for some Fe. & (n,t) such
that y e F'}. The set .o~ is not empty since x € L,(y). Let

r = min{d(y, F,): F,e 7} .

Since y ¢ F, for any F,e.o7, r>0. Choose m >n such that »>2-",
Now because z ¢ L,(y) C L.(y) there exists a set T'e & (m) such that
ye T and z e J(T). Either TC F for some Fe & (n,t) or TCF, for
some F,e & (n,t —1). However if

TcF.,eZ n,t—1),ceJ(T)CJ(F,, F,)

which contradicts our assumption. Thus there exists F'e & (n, t) such
that Tc F. Now by 2.2) xeJ(T)cTUU{JT,, T):T.NT =+ @,
T.€ &«(T) and T, C F, for some F,e.& (n,t —1)}. By the choice
of m and », F,¢.o/. But 2eJ(T)cC J(F,, F) implies that F, ¢ >
This contradiction says that xe J(F,, F,) for some F, e & (F,) and
thus ¢ e J(F,) c L,(z). This completes the proof that 4 is transitive.
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