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A CONTINUOUS PARTIAL ORDER FOR
PEANO CONTINUA

VIRGINIA KNIGHT

A theorem of R. J. Koch states that a compact continu-
ously partially ordered space with some natural conditions on
the partial order is arcwise connected. L. E. Ward, Jr., has
conjectured that Koch's arc theorem implies the well-known
theorem of R. L. Moore that a Peano continuum is arcwise
connected. In this paper Ward's conjecture is proved.

1* Preliminaries* If Γ is a partial order on a set X we will
write x <^Γy or x ^ y for (x, y) e Γ. We will let L(a) = {x: (x, a) e Γ).
If X is a topological space, then Γ is a continuous partial order on
X provided the graph of Γ is closed in XxX. If Γ is a continuous
partial order on the space X, then L(x) is a closed set for every xe X.
A zero of a continuously partially ordered space X is an element 0
such that 0e L(x) for all xe X. An arc is a locally connected con-
tinuum with exactly two noncutpoints. A real arc is a separable arc.
A Peano continuum is a locally connected metric continuum.

We will use the following statement of Koch's arc theorem.

THEOREM 1. If X is a compact continuously partially ordered
space with zero such that L(x) is connected for each xe X, then X
is arcwise connected.

We will show that Peano continua admit such partial orders by
proving the following:

THEOREM 2. If X is a compact connected locally connected metric
space, then X admits a continuous partial order with a zero such
that L(x) is connected for all xe X.

The proof of this theorem will use some definitions and results
due to R. H. Bing [1], An ε-partition ^ ε of a subspace K of a metric
space M is a finite set of closed subsets of M, each with diameter
less than ε, the union of which is K, and such that the interiors in
M of all the elements of ^ε are nonempty, connected, dense in the
closed subset, and are pairwise disjoint. The subspace K is parti-
tionable if for each positive number ε, there exists an ε-partition of K.

LEMMA 1. Let M be a compact connected locally connected metric
space. For each positive number ε there exists an e-partition ^ε of
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M such that each element of ^ is partitionable.

Bing proves this lemma in [1].

The proof of the Theorem 2 will follow in two parts. In the first
part a relation A will be constructed on the Peano continuum X. The
second part will be concerned with proving that A is the desired par-
tial order on X. We will let d denote the metric on X.

2* The construction of the relation A. We will define induc-
tively a sequence {J^(ϊ)}T=ι of finite partitions of X. With each par-
tition we will associate a relation δim The set {SjΓ̂ i will be a nest of
closed subsets of XxX and A — Πδ» will be the desired partial order
on X.

First choose an arbitrary element of X. Call this element 0. This
will be the 0 of the partial order to be constructed on X.

We will now construct the relation δ1 as the first step of the in-
duction.

Let ^~(1) be a finite partition on X such that for Fe^~(l),
diam (F) < 1/2, and such that F is partitionable. We will classify
the elements of ^(1) according to how "far away" they are from 0.
Let _^(l,0) be the set {Fe J ^ ( l ) : 0 e F}. If J H 1 , ΐ) h a s b e e n d e f i n "
ed for i = 1, 2, •••, t - 1, let

, t) = {FejT(l) - U U JT(1, i):FΓi(U J H L * - 1)) * 0} .

If F is an element of ^~(1, t) we will say F has order t. Because
^"(1) is a cover of the connected set X with connected sets, there is
a chain of elements of *^~(1) between any two points of X. That is,
if F is an element of ^"(1) then there exists some integer t and a
set {FiYi=Q c JH1) ™ch that 0 e Fo, F = ί7, and for i, i e {0,1, , ί}
Fi Π Fj Φ 0 if and only if | i — j \ ̂  1. This is the condition neces-
sary for F to have order t. Thus order is defined for all elements of

We now define sets J{F), for Fe^~(l), which will be in a sense
"predecessors" of the elements of F. For FeJ^il, 0) let J(F) = F.
If J(F) has been defined for Fe^~(l, t - 1) and if ^ 6 ^ ( 1 , ί) let

(2.1) J(Ft) = ί τ

ί UU {/(ί1): Ff]FtΦ 0 , F e ^ ( l , t - 1)} .

We now define the relation ^ on X by defining for all xe X the
set LΛ&) = {y: (y, x) e δλ}. Set

Lt(x) = U

The relation δλ is reflexive but not anti-symmetric or transitive.
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In order to define the relations δ2, •• , δn, it will be useful to in-
troduce some additional notation. Let F be an arbitrary fixed element
of o^(l , t) for some nonnegative integer t. Let dF denote the boundary
of F. For t = 0, let &*(F) = {0}, and for t > 0, let

(3.1) &*(F) = {EeJ^(l,t- l):Ef]FΦ 0} .

Notice that &*(F) is not empty by (1) since F e ^ ( l , ί ) . Let

(4.1) 3/

Except for the case when t = 0 and d*F = {0}, d*F is that part of
the boundary of F which is also part of the boundary of sets of order
t - 1. Let

: EΦ F and E f) F - d*F Φ 0} .

That is, ξ?(F) is the set of elements of J^( l ) , other than F itself
and the sets of order t — 1, whose intersection with F—d^F is not
empty. Note that the elements of &(F) either have order t or order
t + 1. Let ξ?*(F) be the set {Ee &(F): Fe ξ?*(E)} and let

d*F = {J{Ff)E:Eeξ?*(F)} .

Then g"*(jF) is the set of sets in ̂ "{1) which have order ί + 1 and
have a nonempty intersection with F. The sets ξ?(F) and ξ?*(F)
may be empty. For Ee C£(F) U &*(F) let dE(F) = E Γ\ F.

If ξ?*(F) is not empty, let p(F) be d{d*F,d*F), Thus p(F) is
the infimum of the distances between the points of F which are also
in the sets of order t — 1 and those points of F which are also in
sets of order t + 1. This distance is positive since, by (1), for each
Ee ϊf*(F), dEF and d*F are disjoint closed sets. If &*(F) is empty,
let p(F) be diam (F).

The remainder of the construction of δ2 generalizes directly to
the construction of δn. Thus we will assume that ^(n), a partition
of X, and the sets ^(n, t) have been defined for t ~ 0,1, •• , and
that for FeJ^in), d*F, gf*(F), ίf(F), gf *(F), d*F and ρ(F) have been
defined and that for each Eeξ?(F)Ό &*(F),dEF has been defined.
We will now define some special subsets of each FeJ^"(ri) which we
will use to define the relation δn.

In order for the final relation Δ to be transitive it will be neces-
sary that the elements of dF— (d^Flj d*F) have no successors in the
relation Δ. To this end we want to find for each Ee ξ?(F) U $?*(F)
a partitionable subset of F which contains d*F and dEF but contains
no points of dF which are not "close" to d*F or dEF. We use the
following lemma.
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LEMMA 2. Let ε>0 and let F be a partitionable compact subset
of a metric space X such that the interior of F is connected and
locally connected. Let Bo be either a nonempty closed subset of dF
or a point in the interior of F. Let {.BdJlo be a finite set of non-
empty closed subsets of dF, such that (Jî o B{ Z) dF. Then there exists
a set {CJfLo of partitionable subsets of F such that for i = 0,1, , m
Ci is closed, (int d) U Bt U Bo is connected, Bi a C, and if xe dF Π d
then either d(x, Bi)<ε or d(x, B0)<e. Further Co c C<, i = 0,1, , m
and F = UΓ=o C<.

Proof. By Lemma 1, F is partitionable so let &*(F) be a parti-
tion of F such that for P e &>(F), diam (P)<ε/2 and P is partitionable.

For x G int F let ^ be a connected open set containing x whose
closure misses dF. Let ^ = {Ux: xe int F). For each P e ^ ( F )
choose x(P) G int P Π int F and let

Q = {x(P):Pe^(F)}U [J {Pe ̂ (F): P f] dF = 0} .

Let ^ be a finite cover of the closed set Q by elements of %f. We
can write ^ = {£7J?=1# N O W flx some element Poe^(F) such that
P o Π Bo Φ 0 . The interior of F is connected by the connected open
sets of ^ , so that for each L ^ G ^ there exists {UiS})

{ll c ^ such
that α(Po) G C7ί0, Uik{i)=Ui and U^ n ̂  ^ 0 if and only if \j-l\^l.
That is, there is a finite chain of sets of ^ connecting each element
of ^ with x(P0). Let

^ " = {!/•«: i = 0, . . . , f c ; i = 0, ---^(i)}

P Π B o ^ 0} .

Note that U ^ " is a connected subset of F and that if x
and cZ(#, 50) > ε/2, then a; g δί7. This is because the boundary of each
element of ^ misses the boundary of F, so that if x were in dF, x
would be an element of P for some Pe^(F) such that P Γ\B0Φ 0
and we have that diam (P) < ε/2. Also note that

F c ( U ^ ' ) U U { P G ^ ( F ) : P Π d i ^ 0}

since ^ c g / ' and ̂  is a cover of U{PG &>(F): P Π 3F = 0}.
Now consider %S2 = {Ue <2έ'\ UΓ\ dF = 0}. Let

{ε/2, min {ώ(ϊ/τ, dF):Ue

For each Pe^(F) let ^(F,P) be a partition of P such that if

Fr G 5f CF, P ) , then diam (Ff) <
4

and F' is partitionable. Let
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( 5 ) S?(F) = U {S?(F, P ) : P e &>(F)} .

We are ready now to define the sets Ciyi — 0,1, , m. The set
Co will meet dF only "close" to Bo and Cif i = 1, , m will meet dF
only " close" to B{ or BQ. Let D = [(U ̂ " ) - dF] (J Bo. The set J9 is
a connected subset of (int F) U £ 0 Let

Co - U {J?7' G gf (F): F' nDΦ 0} .

Because D is connected and covered by &(F), Co is a closed and
connected subset of F. Also, if xeC0Γ) dF, then d(a;, Z?o) < ε, for if
a; e Co - J50 then x e Ff e S?(F) such that Ff Π -D Φ 0 . Consequently
there exists a C7e ̂ ' such that F' f) U Φ 0. It then follows that
if a? were in Fr Π dί7 then, by definition of v(F), U — P for some
Pe^(F) such that P Π JS0 ^ 0 , and

d(x, Bo) ^ diam (Fr) + diam (P) < i ί ί ί l + e/2 ^ e/8 + ε/2 < ε .
4

If we let Co = [(int F) Π Co] U BQ, then Cί is connected because
Co contains D and

Co - U {[ί7' Π (int F)] U [i^r Π Bo]: Ff c Co} ,

which is a union of connected sets which cover D and each of which
has nonempty intersection with D.

Now let

C* = CoU U { U 2 ^ ( F , P ) : P e ^ ( F ) , P n S i ^ 0} .

We see that C< is a closed subset of F and it is connected because
Co and each Pe^(F) is connected and X ( P ) G P Π C 0 . Let C[ =
[(int F) Π Cί] U Bi U J50. Then C is a connected subset of F, for

C: - Co U U {[P n int F] U [B< Π P]: P e ^(i^ 7), P f l B ^ 0 } ,

and Cί and [Pnint F] U [PnBJ are connected and α(P) e Co ΠPfl int F
for each P e ^ ( F ) .

Further note that if x e d Π 9F, then either d(α, β, ) < ε or
d(x, £0) < ε. Also F is a subset of UΓ=o C4.

This completes the proof of Lemma 2.
To apply this lemma to the theorem we let ε = p(F)β, Bo = d*F

and {5JΓJΓ - {dEF:Ee &{F) U &*(F)}. Thus for F€^" (n ) we get
sets d, i = 0, 1, , m(F) satisfying the conditions of the lemma. For
clarity we will sometimes write C(F) for C0(F) and use C(F, E) for
Ct(F) when 5, = 3^F for Ee &(F) U έf*(F). We will also use C'(F)
for Cί and C'(F, J&) for C\.

We will now define the relation δn on X. First we inductively
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define sets J(F) and J(F, E) for each FeJ^(n)y Ee <g(F) U ξ?*(F).
The elements of J(F) and J{F, E) will, in a sense, be "predecessors"
of the elements of C(F) and C(F, E) respectively.

For Fe^~(n, 0), let J(F) = C(F) and for Ee &(F) U &*(F) let
J(F, E) = C(F, E) U J(F). Then suppose J(F) and J(F, E) have been
defined for all Fe ^(n, t - 1), Ee &(F) U &*(F). Let F be an
element of ^~(n, t). Define

= C(F) U {/(F*, F) : F* e &*(F)} and let

E) = C(F,E)ΌJ(F) for # e gf(F) U g?

Thus we can define J(F) and J(F, E) for all

The sets J(F) and J(F, E) are each closed since they are a finite union
of closed sets. Also J(F, E) is connected if J(F) is connected since
for each Ee &(F) U t?*(F), C(F, E) contains C(F). But J(F) is con-
nected since if F* eϊ?*(F) then for each Pe&*(F*) such that

Thus C(F) is not separated from C(F*y F) for any F*ecg %{F).
We will let hn(x) — {y\ (y, x) e dn} and define δn by defining the sets

Ln(x) for all xeX. Let x e X and F e ^ w ) . If x$F, let #,,(&)= 0 .
If x 6 F and a; G C(F), let ^(a?) - J(F). If x e F and

x e U {C(ί\ £7): £/€ g'(F) u 8r*(F)} - C(F)

there exists some ^ e &(F) U ̂ *(F) such that xeC(F,E), so let

X*(αO - {J{J(F,E):xeC(F,E),Eeί?(F)Ό Ϊ

Then let

{ 6 ) Ln(x) = U {KF(x)'

Then Ln(x) is closed and connected for each x, for it is a nonempty
finite union of closed sets, and the nonempty sets comprising that
union are each connected and contain x.

The relation δn is closed because

δn = [J{C(F) x C(F):Fejr(n)}

( 7 ) U U {C(F', E') x C(F, E):FejT(n) ,

Ee &(F) U g 7 * ^ ) , C(F', E') c J(F, £7)}

which is a finite union of products of closed sets.
To complete the induction we will assume δn has been defined and

we will define the sets, ^{n + 1), ̂ {n + 1, t), t = 0,1, , and for
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<each FeJ^in + l) we must define <5*F, g%(F), gf(F), ξ?*(F), d*F,
p{F) and for each Ee gf (F) U £'*(F), d^F.

First let J^(w + 1) = U{2^(F): FeJ^(n)} where g^(F) is as de-
fined in (5).

As in the initial induction step, we will assign to each Fe ^(n + 1)
an order which will, in a sense, classify the sets of J?~(n + 1) accord-
ing to how "far away" they are from 0. But since we want to as-
sure that δn.H c δn, or, what is the same thing, Ln+1(x) c Ln(x) for all
x e X, we must take more care in defining the order of an element F
of JF~(n + 1). Because each Fe^"(n + 1) is contained in an unique
element of ^'(n), the "predecessors" of the elements of F must be
contained in the set of "predecessors" of that unique element of
which contains it.

We will partition ^~(n + l) into the sets ^~(n + l,t),t = Q,l,
and if Fe^(n + 1, t) we will say F has order t. First we let

jT(n + 1,0) - {FeJ7~(n + l):0eF} .

Let Fn be an element of ^(n, s — 1) and suppose that order has been
defined for the elements of some subset of &(Fn) which contains at
least {Fe gf(Fn): FΓ\d*FnΦ(d). Let F be an element of 5?(Fn) such
that F Π C'(Fn) Φ 0 and such that order has not yet been defined
for F. We will let F be an element of ^~(n + 1, t) and say F has
order £ if £ is the smallest positive integer such that there exists
F* e Z?(Fn) such that F*aC(Fn), F* has order t - 1, and F* ΠFf] int
Fn Φ 0. Let

2)
and F*nFn int F . ̂  0} .

Notice that this is enough to define order for all F e &(Fn) such that
F Π C'(Fn) Φ 0 , since C'(Fn) is connected and covered by the con-
nected sets [FnmtFn]U[Fnd*Fn]. Now suppose Fe&(Fn) but
FΠ C(Fn) = 0 . Then F c P for some unique P e &*(Fn), where ̂ ( F J
is as defined in the proof of Lemma 2. Let F be an element of
^~(n + l, t) and say Fhas order ί if ί is the smallest positive integer
such that there exists some F* e ̂ ~(n + l, t — 1) such that F^czP and
F Π F* Π int P ^ 0 . Let

(3 3) g * ( j P ) = {F* β ^(Fn): F * G ̂ ^ + l j * " 1 } ' F * C P

and F^ Π F Π int P ^ 0} .

This is enough to define order for all F e %?(Fn) since for each
P e &\F), int P is connected and covered by the connected sets Fπint
P for F e S?(Fn, P) and P Π C{Fn) Φ 0 .
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Suppose order has been defined for all Fe &(Fn) where
Fn e ̂ ~(n, s - 1 ) . Let F%fS be an element of ^~{n, s) and let F be an
element of &(F%t9) such that Ff}d*Fn>s Φ 0. We will let F be an
element of ^~(n + l,t) and say F has order t if t is the smallest
positive integer such that there exists F* e ̂ (n + 1, t — 1) such that

, s - 1), F^ e &*(Fn,Λ)

and FnF*f) d*Fn,s Φ 0. Let

+ 1, ί - 1): F* c F** e jT(n, s - 1) ,

F**e^(Fn,s), and i T n i 7 , n 3 / M ^ 0 } .

With this we have defined a unique order for each F'e ^~(n+l) and
we have ^(n + 1) = \Jt ̂ (n + 1, t).

Now let F be an element of ^~(n+l) and suppose FaFn e ^(n).
As mentioned earlier, in order to make the relation Δ a transitive
order, it will be necessary that the elements of dFn — (d*Fn U d*Fn) have
no successors. To ensure that this happens since d*F will have suc-
cessors in the relation δn+19 we must define δ*F for F e Z?(Fn) so that

d*F Π [dFn - (3*Fn U 3*^)] = 0 ,

when F ίi d*Fn = 0 . Also, if F Π C(FW) = 0 and FczPe &>(Fn), we
want d*.F n 3P = 0 .

We do this as follows. If Fe Z?(Fn) and F n S Λ ^ 0 , set

(4.2) a^-FnSΛ

If F n 3 * l ^ = 0 , but jPnC'(Fn)9fc 0 , for each # e ̂ ( F ) choose
p(F, E)eF ΠEnint Fn. Let

T(Fn) = {p(F, E): Fe S?(FU), FΠ d*Fn = 0 ,

FίlCW ^ 0 and

Since T(Fn) is a finite set it is a closed subset of int Fn. Because
Fn is normal, we can find S(Fn), an open subset of Fn such that

( 8) Cl(S(FJ) n T(Fn) = 0 and dFn c

Then for Fe &(Fn) such that F Π 3 ^ , = 0 and F Π C'(Fn) ̂  0 , set

(4.3) a ,F = [F n (U gf*(F))] ~ S(Fn) .

Since ^ ( F ) Φ 0 and for Be ^(F)9p(F, E)ίS(Fn)9 it follows that
δ^F is a nonempty closed subset of dF and 3*Fn [3FW — d*Fn] = 0 .
Similarly for Fe^(Fn) such that FΠC(-F7

n)= 0 , we know that
FdP for some unique Pe^{F%). Now for each FcP such that
FίΊ C"(-Fn) = 0 and each Ee &*(F), we can choose p(F, E) to be an
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element of F ΓΊ E Π int P. Let

T(Fn, p) = {P(F, E): Fe S?(Fn, P),FΓίC'(FH) = 0 , and Ee

Since T{Fn, P) is a finite set it is a closed subset of int P. There-
fore we can find an open set S(Fn, P) such that dP c S(Fn, P) and

n τ(Fn, P) = 0 .

Now for each F c P such that F n C"(.Fn) = 0 , set

(4.4) 3 / = [ f n ( U if*CF))] ~ S(Fn, P) .

It follows that d*F Π <3P = 0 and d î*7 is not empty.
For all Fe^~(n + 1), let

and let

3*F = U { 3 ^ Γ)F:Ee

If EeW{F) let

Let

έf(F) = {£ re^'(^ + 1): E Φ F, (E Γ\ F) - (d*FUd*F) Φ 0}

and for Eec^(F) let

Π F) - (3*F U

If gr*(F)^0, let pλ{F) = d(d*F,d*F) and if g ?*(F)=0, let
diamF. If FΓ)d*Fn=0 but F n C ' ( F J ^ 0 , let p2{F) = d(d*F,dFn).
If Ff)C'(Fn) = 0, and FaPe&(Fn), let ^(F) = d(d*F,dP); other-
wise let />2(F) = diam i*7. Finally let

( 9 ) /o(^) = min{ft(F),ft(F)}.

This completes the definitions necessary to define <?% for all positive
integers n.

We now define a relation J on J by letting Δ = ΠΓ=i 3t . It re-
mains to show that J is a partial order satisfying Theorem 2.

3* The relation Δ satisfies the hypotheses of Koch's Arc
Theorem* The relation Δ is continuous on X since Δ = Π~=i ̂  a n ( i
we have shown in (7) that each δn is closed in X x X. Also 0 is a
zero for J since OeL(x) for all a i e l We must further show that
L(x), the set of predecessors of each xeX under the relation Δ, is a
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connected set. To do this it is enough to show that Ln+1(x) £ Ln(x)
for each xe X, since then the set {Ln(x)}ζ=ι will be a nest of continua
and L(x) = Π~=i Ln(x) will be a continuum and thus be connected.

Because Ln+1(x), (6), is a union of sets of the forms J(F) and
J(F,E) where FeJ^(n + l), Ee&(F) [J &*(F) and xeC(F) or
xeC(F,E) to prove L ^ x j c L ^ x ) , it is sufficient to show that if
xeFe^(n + 1) and F c F e ^ W , then FU J(F) is a subset of
either J(F') or J(F',E') for some £7' G r ( F ' ) U if *(F'). This proof
is omitted but is a straightforward induction on t when

using definitions (2.1-2) of J(F) and (3.1-4) of &*(F).
It is clear that Δ is reflexive. That Δ is a partial order on X

will be established by the following lemmas.

LEMMA 3. Let F1 and F2 be distinct elements of J^(n) and let
x be an element of dFι — (d^F1 U d*Fj). Then x is an element of dF2 —
(d*F2 U d*F2).

Proof. We will proceed by induction on n. Suppose n = 1, and
that FL is an element of ^ ~ ( 1 , t). Then the order of F2 is either
t - 1, ί, or t + 1, using (1) since FγV\F2Φ Q). If F2e J^(l, t - 1)
then by (4.1) xed^F, and if F2eJ?~(l9t + 1) by (4.1) xed*F19 and
both of these situations contradict the hypothesis. Thus F2e^(l,t).
Suppose xed*F2. Then there exists a set Fde ^ ( 1 , t — 1) such that
^ e F 2 Π -P3. But also xe Fλ so ^ G FX n î s c 9*JPI which is a contradic-
tion. Similarly, if xed*F2 there exists a set ί 7

3 G t ^ ' ( l , ί + 1) such
that xeFznF2, so xe F1Γ\F^(zdή:F1 and we get another contradiction.

We now suppose the lemma is true for n = 1, 2, , k — 1. Let
ί7! and .P2 be distinct elements of ^~(k) and suppose jf^c 2\ 6 ̂ {k — 1)
and F2aT2e J^(k - 1). By (4.1-4) we have for i = 1, 2

(10) 3,i^ U 3*F, c (int TJ U 3* T{ U 3* Γ€ .

So a; ί 3 ^ , U d*Fι implies by (4.2) that x <£ d* T, U 3*2\.
Now if Γ, ̂  T2, x G Tt Π T2 implies a; e 9Γ, f]dT2. From the induction

hypothesis x e 3Γ 2 - (3* Γ2 U 3* Γ2). Therefore by (10)a e dF2-(d*F2 U 3*i^2).
If, however, both i^ and F2 are subsets of 2\, we will consider

first the case when ίceCίΓJ. If xeSiTJ, where ^(JΓO is as defined
in (8) then by (4.3) x^d^Fljd^F for any Fe&iZ) such that
Ff] C(TL) ^ 0 . In particular x£d*F2 U 3*i 2̂. If xίSiTJ, the argu-
ment that x $ d*F2 U 3*JP2 is analogous to the situation when n = 1.

The final case when xiC(T^ follows by a similar argument using
that either F, c Pλ and F2 c P2 where P1 Φ P2 and P : and P2 are in
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^(TJ; or F,{J F2aP for some Pe^(Tλ) and that

d*Ft U d*Ft c [P - S(TU P)] U 3*7\

for i = 1, 2.

. It follows from Lemma 3 that for x e (int Fx) 119*^119*1^
where 1^ G J^~{n, t) and if xeF2 for some J^2G^^(π), F2φFιy then
.τ G 3*F2 U 3*F2. Further if α G 3 * ^ then F2 G J ^ ( W , ί - 1) U J H ^ , 0,
and if x e d*Fly then F2 G ̂ ^(n, ί) U J^fa, ί + 1).

LEMMA 4. Let FeJ^in) and xedF-(d*F\J d*F). Let m be an
integer such that there exists EeJ^(m) such that xeEaF and
E Π (d*F U d*F) = 0 . Then C(E, E*) Π dF = 0 for all E* e ξ?*(E).

Proof. Let Fm = E and Fn = F. Then there exists {FJΓU such
that ^ e ^ f i ) and Fi+ιaF%. Let ϊ be the greatest integer such that
m > I ^> n and 3^^ — 9*1^ =7̂  0 and let A: be the greatest integer such
that d*E - d*Fk Φ 0 . Then m > l^n and m > k ^ n. Without loss
of generality suppose I ̂  k. Since d^Ecz d*Fι+1J

d(d*E, dFt) ̂  d(9,Fz+

From (8) 9FZ c S(Fi) and by (4.3) and (4.4) d*Fι+ι a FZ\S(F,). Therefore

d(3*Fz+1, 3^) = ftί^) ^ p(Fι) by (9) .

Thus d{d*E, dFι) ̂  ^(F,). Similarly

d(d,E, dFk) ^ d(d*Fk+ι, dFk) Ξ> p(Fk) .

Also

d(3*£7, dF) ̂  ώ(3*£7, 9F,) and d(d*E, dF) ^

Thus

d(d*E U 3*^, dF) ̂  min {^(3*^, 3.P,
> min {^(F,), p{Fι)} = p(Fι) ̂

From Lemma 2 if x e dE and

then a? ̂  C(E, E*) for any £7* G &*(E). Thus 3F n C(E, E*) = 0 for
any E* e &'*(

LEMMA 5. Let xedF - (3*F U d*F) for FeJ^in). Then x has
no successors other than itself in the relation Δ.
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Proof. Assume y^άx and y Φ x. Choose m>n such that
d(x, y) > 2rm and such that d(x, d*F U d*F) > 2~m. Then since for
F' e ^~(m) we have diam F! < 2~m, x and y are not both elements
of any one F' e^~(m). Also, if

xeF'e^~(m), then F' Π (d*F U d*F) = 0 ,

so that m satisfies the conditions of Lemma 5. However, since x e Lm(y)
and x is in no element of J^~(m) containing y, by (6) xe C(F', F*)
for some

Ff e J^(m) and F * e gf *(F') .

But by Lemma 4, C(F', F*) Π 3F = 0 . This is a contradiction and
proves that such a y cannot exist.

In the next lemma we will use the following notation. If x e int
F for some Fe^"{n, t), set qn(x) = t. If x e d*F for some Fe^~(n,t),
set tfn(a;) = £ — 1. By the note after Lemma 3, qn(x) is well-defined
and single valued for all x e (int F) U d*F U d*F where Fe ^"(n).

LEMMA 6. The relation A is antisymmetric.

Proof. Assume there exist x and y in X such that xφy,x *^Δy
and y^jX. Choose n such that d(x, y) > 2~n+1. Then, since xeLn(y),
there exists some i^ e ^"(n) such that y e F1e^(nJt) and xeJ(Fλ).
By Lemma 5, ^ ( i n t i ^ ) U 9*Fj. U 9*1^, so qn(y) is defined and qn(y)^
t — 1. Now because d(x, ?/) > 2~%+1, a; e F2 e j^~(n) where F2 e ^(n, s)
and s < t — 1. Also by Lemma 5, xe int F2 U 3 ^ ^ U 3*F2, so qn(x) is
defined and qn(x) <^ s < t — 1. It follows that qn(y) > gu(x). But by
a symmetric argument since yeLn(x), it can be shown that qn(x) >
<7™(2/) This contradiction proves that Δ is anti-symmetric.

LEMMA 7. T%β relation A is transitive.

Proof. Let a;, y and 2 be elements of X such t h a t x^άy and

y <^jZ. We will show x ^ j £ . We can assume x < y and y < z. Choose

w such t h a t min {d(x, y), d(y, z), d(x, z)} > 2~n+1. I t is enough to show

xeLn(z) since we have shown Ln_x{z) 3 Ln{z). Since y e Ln(z),y e Fy

for some Fy e ^(n, t) where y e J(Fy, E') c Ln(z) for some E' ei? *{Fy).
By Lemma 4, y e int ί7^ U ̂ ^ U d*Fy. It y e int Fy then since

x G Ln(y), x e J(Fy) c J(Fy, E') c Ln(«) .

If y g int Fy then either y ed*Fy or 2/ e d*i^. We will consider the
case when 2/ e 9 ^ ^ . The argument is similar when y e d*Fy. By the
note after Lemma 3 if yeFe^in), then Fe^(n, t) U ^{n, t-1).



A CONTINUOUS PARTIAL ORDER FOR PEANO CONTINUA 153

If yeF*e ^(n, t - 1) where x e J(F*) then x e J(F*, Fy) c Ln(z). If
we assume this is not the case then x & J(F*, Fy) for any F* e ίf*(Fy).
Let s^ = {F* e ^(n, t - 1): x e J(F*, F) for some FeJ^in, t) such
that yeF}. The set jy is not empty since xeLn(y). Let

r = mm{d(y,Fil):F*ej#'} .

Since y^F* for any F* e s/, r > 0. Choose m>n such that r>2~w .
Now because x e Lm(y) c Ln(y) there exists a set Te^(m) such that
yeT and xeJ(T). Either T c f for some Fe^~(n,t) or T c F , for
some F* e ^~(n, t — 1). However if

t - l),xeJ(T) aJ(F*, Fy)

which contradicts our assumption. Thus there exists Fe^(n, t) such
that TczF. Now by (2.2) x e J(T) c T U U {J(T*, T): Γ+ Π Γ Φ 0 ,
Γ* e ^ ( Γ ) and T7* c F * for some F* ^^"(n, t - 1)}. By the choice
of m and r,F*$,s*K But xe J(T) aJ(F*, F) implies that F* e j ^ .
This contradiction says that xeJ(F*,Fy) for some F* e ^ ( F J and
thus xeJ(Fy)dLn(z). This completes the proof that J is transitive.
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