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FACTORIZArLE SEMIGROUPS

KENNETH TOLO

A multiplicative semigroup £ is said to be factorizable
if it can be written as the set product AB of proper subsemi-
groups A and B. If this is possible, AB is called a factoriza-
tion of S, with factors A and B. The factors are not required
to be unique.

The following problems have been considered:
( I ) Given a factorizable semigroup S=AB, where A and

B are members of the semigroup classes P and Q9 respectively
(P and Q not necessarily distinct), to what semigroup class
does S belong?

(II) What are sufficient conditions for the factorizabiϋty
of a semigroup?

(III) Can the concept of faciorizability be used in charac-
terizing direct products of semigroups?

In § 2 various cases of (I) are considered; for example, if P or Q
is the class of groups, or if P and Q are each the class of cyclic
semigroups, what type of semigroup is SI Section 3 is also devoted
to (I); in this section certain inverse semigroups, as well as com-
pletely simple semigroups, are characterized by means of factorizations.
Converses are also included in the results of § 3.

Section 4 gives sufficient conditions for the factorizability of a
semigroup. These solutions to (II) involve the existence of magnify-
ing elements in the semigroup.

Problem (III) is considered in an attempt to obtain an internal
characterization, involving factorizability, of a direct product of semi-
groups. The possibility of using the concept of factorizability for this
is suggested by the occurrence, in group theory, of set products of
groups in certain characterizations of direct products of groups. In
§ 5 semigroup direct products A x B in which A and B contain a cer-
tain type of idempotent are characterized in this manner.

The reader is referred to [1] for basic concepts and terminology
of algebraic semigroup theory. In addition, the duals of any nonself-
dual result will be taken for granted without comment.

As for notation, that of [1] is used. By S\A is meant the set of
all elements in S which are not in A. As is customary, | S | will de-
note the cardinal of the set S. If £ is a semigroup without identity
then S1 will denote the semigroup obtained by adjoining an identity
element, say 1, to S. The empty set will be denoted by Π Finally,
<V> will denote the cyclic semigroup generated by x.
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2* Problem (ϊ). A logical starting point in a consideration of
factorizable semigroups is to look at (I), and in particular to consider
those factorizations in which one of the semigroup factors is a group.
[One reason for this approach is that there exist group-theoretic results
involving factorizable groups and, furthermore, almost all such results
give partial solutions to the group-theoretic analogue of (I).] Such
factorizations, as well as those involving cyclic factors, are examined
in this section.

LEMMA 2.1. // a semigroup S is factorizable as S = AB, where
A and B are groups, then S is a group.

Proof. Since the identity elements of A and B are left and right
identity elements, respectively, of S, and are thus equal, S has an
identity. That S is a group follows easily.

It has been shown [1, p. 38] that any right group is the direct
product of a group and a right zero semigroup. The next lemma con-
siders nondegenerate right groups.

LEMMA 2.2. Let S be a semigroup which is neither a group nor
a right zero semigroup. If S is a right group, then S is factorizable
as S — AB, ivhere A is a group and B is a right zero semigroup
thus, in particular, B is right simple. Conversely, if S is factori-
zable as S — AB, ivhere A is a group and B is right simple, then
S is a right group.

Proof. Assume S is a right group and let B denote its nonnull
set of idempotents. Since S is right simple, every element of B is
a left identity of S and B is a right zero semigroup. Let e be arbi-
trary but fixed in B and set A — Se. Then A is a group and S is
factorizable as S = AB.

Conversely, if S has the given factorization, then the identity 1
of A is a left identity of S. Moreover, 1 = αoδo for some α0 in A and
bQ in B, and bQb1 — b0 for some bL in B, so 1 = aobo = lδL = bLeB.

Hence an arbitrary element ab of S has a right inverse bfa~~ι in S
relative to 1, where αα"1 = 1 in A and bbf = 1 in B, so S is a right
group.

THEOREM 2.3. Let the semigroup S be factorizable as S = AB,
ivhere A is a group. If B is contained in the semigroup class
Pi(i — 1, 2, , 8), then so is S, where

Px\ Regular semigroups)
P2: Simple semigroups)
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P 3: Completely simple semigroups;
P 4 : Left simple semigroups]
P5: Right simple semigroups;
P 6: Left groups;
P 7 : Right groups;
P 8: Groups.

REMARK. Theorem 2.3 is not meant to be an all-inclusive result,
i.e., the semigroup classes P listed are not all those classes for which
such a result is true.

REMARK. Note in the proofs of some of the cases of Theorem
2.3 that stronger conclusions than those stated are obtainable.

Proof. In each case the identity 1 of A will be a left identity
of S.

(1) Assume B is a regular semigroup and let x = ab be arbitrary
in S = AB. Then there exist elements arι of A and b' of B such that
a~λa — 1 and b = bb'b. Setting xr = b'a~ι and recalling that 1 is a left
identity of S then gives x = xxfx, so S is regular.

(2) Assuming B is simple, let z ~ aib1 and y = a2b2 be arbitrary
in S = AB. Then there exist elements aγλ of A and 63, 64 of B such
that aγ1aί = 1 and b2 — 636iδ4. Thus y = a2b2 — (α263αr1)(tt1δ1)δ4 G SZS, SO
S is a simple semigroup.

(3) If B is completely simple then by (2) S is simple. In addition,
B contains a minimal left ideal [1, p. 78]; denote it by M. Then T =
AM is a left ideal of S, since

ST = (AB)(AM) S ASM - A(AJB)M - A2BM^ AM = T .

If T is not a minimal left ideal of S then there exists a left ideal
W of S such that Wd T. Then Λίn W is a left ideal of B contain-
ed in M so, by the minimality of M, MΠ Ŵ  = M", i.e., ΛίC TΓ. There-
fore T = AM^AW^ W, contrary to W e T.

Thus T is a minimal left ideal of S, so since S contains an idem-
potent, it follows that S is completely simple [4]. (This easily-proved
result is also stated as an exercise in [1, p. 84].)

(4) and (6). Let 1 = aobo. Since B is left simple there exists
some bι in B such that 6^0 — 60. But bQaQ ~ αo6o = 1, so btl = 1. Thus
(δj2 = b19 so bι is a right identity of B and hence of S. This implies
1 = bL is an identity of S. Then JS is a group, so S is a group by
Lemma 2.1.

(5) and (7). Lemma 2.2.
(8) Lemma 2.1.
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It is natural now to examine the possibility of generalizing Theorem
2.3 to obtain a theorem characterizing all factorizations in which a
group occurs as a factor. In this regard consider the following con-
jectures and accompanying remarks, which indicate somewhat the
difficulty of obtaining such a generalization.

CONJECTURE 1. Let S be a semigroup factorizable as S = AB,
where A is a group and B is contained in an arbitrary semigroup
class P. Then S is contained in P.

As a counterexample to this first conjecture, let S be a right
group which is neither a group nor a right zero semigroup and let P
be the class of all right zero semigroups. By Lemma 2.2, S is factori-
zable as S = AB, where A is a group, B e P, and S $ P.

A somewhat weaker generalization also thought to be false is

CONJECTURE 2. Let S be a semigroup factorizable as S = AB,
where A is a group. If B is contained in a semigroup class P which
contains the class of all groups as a subclass, then S is contained in P.

A generalization similar to Conjecture 2 but not requiring one
factor to be a group is

CONJECTURE 3. Let S be a semigroup factorizable as S — AB,
where A and B are contained in the semigroup classes Pλ and P2,
respectively. If Pt is a subclass of P2, then £ is contained in P2.

This conjecture is also false-for let S be the bicyclic semigroup
(with generators p and q, pq = 1) and let Pi and P2 each be the class
of all semigroups having only finitely many idempotents [alternative-
ly, let Pt and P2 each be the class of all nonsimple semigroups]. If
A = <#>' and B = <p>1, then S is factorizable as S = AB, where A e Ply

BeP2,P^P2, and SίP2.
One semigroup class not included in Theorem 2.3 was the class

of cyclic semigroups. Two results concerning such semigroups are
given in the next theorem.

THEOREM 2.4. Let the semigroup S be factorizable as S — AB.
(1) If A is a group and B is a cyclic semigroup, then S is a

group.
(2) If A and B are cyclic semigroups, then S is a group.

Proof. (1) Since the identity 1 of A is a left identity of S, it
suffices to show that each element of S has a left inverse in S rela-
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tive to 1. Let B — <δ>. Since every element s of S can be written
as s = αδ% some a in A and i ^ 1, it suffices to show that δ has a
left inverse in S. This follows from the fact that 1 = aj)k for some
αx in A and A: ̂  1.

(2) Let A = <(α> and B = <δ>. Since S = AB there exist minimal
positive integers i and u such that α = aιbr and 6 — α%δs for some
positive integers r and s. Then let i and v be minimal integers in
/ = {k ^ 11 a = α*δ*} and F = {w ^ 11 6 = αwδw}, respectively, and con-
sider the "minimal" representations a = α*'δ5' and b = αMδϋ. This part
of the theorem is proved by considering the possible relationships
between u and i and between v and j .

Case ( i ) . If i = u and i = v, then S — A 2 £ A, contradicting
A c S .

Case (ii). If i = w and j < v, then b = αw&ϋ = αδ0^". Thus % =
1, by the minimality of u, and v ^v — j , by the minimality of v, so
i ^ 0, a contradiction.

Case (iii). If i = u and i; < j , then a = α δ̂5' = fc*"-**1 e J5, so A g B.
Then S = B2QB, which is a contradiction of BczS.

Case (iv). lί i < u and t; = i, then δ = αw~ί+1€ A, so £ = A, a
contradiction.

Case (v) . If % < i and v = j , then α = α'^δ, so i <; i — ̂ 6 by
the minimality of i. Hence ^ ^ 0, again a contradiction.

Case (vi). If i < u and i < v, then δ = α*6β = au-i+1bυ~j, so u <:
u — i + 1 by the minimality of w. Thus i = 1, so δ = aubv~j. Then
the minimality of v implies j ^ 0, a contradiction.

Case (vii). If u < ί and i; < j , then α = ai~ub3'~υ+\ contradicting
the minimality of ί.

Case (viii). Assume i < u and t; < j . Then αM" ί+1 = αwδ5* = bj~υ+ι.
If i ^ 2, then δ = αί-1&i+1; then the minimality of % implies u ^ i — 1,
contradicting the assumption that i < u. Thus i = 1, so δ = b'+ι.
Then δ has index 1 so B is a cyclic group [1, p. 20]. Hence by the
left-right dual of part (1) of this theorem S is a group.

Case (ix). Assume u < i and i < v. It will be shown that aubj

is a right identity of S and that each element in S=AB has a right
inverse in S relative to αMδ\ Since a — aΨ — alawbvbj~l = awaΨbυ~ι =

α +i&β-i> t h e minimality of ΐ, together with w<i, implies that i — u = 1.
This implies δ = aubj+\ so similarly v — j = 1. Collecting results gives

(2.1) i - u = 1 , v -j = 1 .

From the fact that δ%* = αmδ% for some positive integers m
and n, it follows that ai+1 = aΨa1 = α ί + wδ% and α2 = αία^O = ai+1b3' =

b y ^2.1) a = α̂ δ5" = α ' - W - a^a'^b^Ψ = αmδ%, so

(2.2) α = α^' = δ V = α(αttδ0 = (bjau)a .
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Similarly, using b — aub% (2.1), and the fact that bvau = as¥ for some
positive integers s and t, it follows that

b = aubv = alibΨ~2 = auas+ubt+ϋbv~2 — aΨ ,

so

(2.3) b = aub" = bvau = b(bjau) .

Finally, (2.2) implies t h a t aιιbj = (bjauau)b3 = bj{aιιaΛbJ) = bdau, i.e.,

(2.4) aubj = bjaw .

By (2.2), (2.3), and (2.4) aubj is an identity of S. Let aabv be an
arbitrary element of S, and choose positive integers k and A such that
kj^y + 1 and /m >̂ x + 1. Then fcfei ^ y + 1 and fete ^ .τ + 1, so
by (2.4)

(axbv)(z)(ax) = ax , where z = bkhj-yakhu~x e S .

Thus (axbϋ)z = aubJ\ so every element of S has a right inverse in S
relative to the right identity aubj of S. Hence S is a group.

REMARK. Theorem 2.4 (1) cannot be generalized to the case in
which B is a finitely-generated commutative semigroup. For consider
the multiplicative semigroups A ~ {2i \ί is an integer} and B = {2j | j
is a nonnegative integer}, and let S = AB. Then S is a semigroup
and S = AB is a factorization of S, where A is a group and B is a
finitely-generated commutative semigroup. However, S is not a group.

3* Problem (I): continued* Certain inverse semigroups, as well
as completely simple semigroups, are characterized in this section.
The converse of (I) is also considered in connection with these charac-
terizations.

Recall that the natural partial ordering of the set E of idernpotents
of a semigroup S is defined by

e S f if and only if ef — fe = e .

THEOREM 3.1. Let S be a semigroup whose set E of idempotents
is finite (\E\ > 1) and forms a chain relative to its natural partial
ordering. Denote the maximal element of E {relative to this order-
ing) by en and assume \Hn\ > 1, where Hn is the group of units of
enSen. Then the following conditions are equivalent:

(1) S is an inverse semigroup;
( 2) S is a union of groups;
(3) S is factorizable as S=AB, where A is a group and B is

an inverse semigroup;
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(4) S is factorίzable as S = AB, where A is an inverse semi-
group and B is a group-,

(5) S is factorizable as S = AB, where A and B are inverse
semigroups;

(6) S is a semilattice of completely simple semigroups;
(7) S is a semilattice of groups;
( 8 ) S is a linearly ordered set of completely simple semigroups;
(9) S is a linearly ordered set of right groups;
(10) S is a linearly ordered set of groups.

Proof. (1) => (2). Clifford and Preston [2, p. 41] have given one
proof of this. An independent proof is given by the author in his
doctoral dissertation.

(2) => (1). Clear.
(1) ==> (3) => (5). If (1) is satisfied, then S is an inverse semigroup

and S — U*=i Hk, where E = {eί9 , en} and Hk is the group of units
of ekSek for k = 1, 2, , n. Let A = Hn and B = (S\A) (j {en}, where
en is maximal in E. Since en acts as an identity on S = A (J B and
since en e A Π B, S = AJB is a factorization of the type given in (3).
Clearly (3) implies (5).

(1) => (4) => (5). Similar to the above
(5) =* (1). Let x — ab be an arbitrary element of S — AB, and

let a' and V be the unique elements of A and J5, respectively, such
that αα'α = α, α'αα' = α', 66'6 = 6, and 6'66' = 6'. Then letting α?' =
δ'α', the commutativity of ί/ implies xx'x — x and x'xx' = x'. Thus <S
is regular and hence an inverse semigroup.

(2) « (6) - (7). [1, pp. 126-129].
(2) <=> (8) « (9) « (10). [3, pp. 189-190].

The conditions placed on .E7 in the preceding theorem seem to be
essential. In particular, there exists an inverse semigroup (namely,
the bicyclic semigroup) whose set of idempotents forms a countably
infinite chain relative to its natural partial ordering but which is not
a union of groups. On the other hand, as noted in the following
theorem, if the set of idempotents of an inverse semigroup S is as-
sumed to be a countably infinite chain with minimal element relative
to its natural partial ordering, then some (but not all) of the conclu-
sions of Theorem 3.1 are valid for S.

THEOREM 3.2. Let S be an inverse semigroup with a countably
infinite set E of idempotents, say E = {eίy e2, e8, •}. Assume E is
naturally ordered, with minimal element e19 as eι < e2 < β3 < .
Then S is a union of groups but is not factorizable as S = AB, where
A is a group and B is an inverse semigroup.
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Proof. (1) It is first shown that S is a union of groups. For
each n ^ 1 let Hn denote the group of units of enSen. Suppose there
exists an element x in S such that x & Hn for all n ^ 1. Then x' g Hn

for all n ^ 1, where x' is the (unique) inverse of x in S. Consider
the idempotents e$ = xxf and β̂  = x'x and assume, without loss of
generality, that ei > e5. [If β{ = ed then # e J3"€, a contradiction.] Here
&ey — x = e{χ = α βί.

Consider the idempotent x'βyX = em. If βm ^ ê  , then em = xfeόx~

x'xem = efim — βj. But then x — xed — eόx, so β£ = xxf = βjxx' = e^i = ed,

a contradiction. Thus βy > em. Next consider the idempotent x'emx =

ew. If ew ^ βm, then a β^αj' = x(x'emx)x' = e ίeme ί = βm, so βm = β,em =

eάxewx' = a βwβ ί̂c' = a?βTOα;' = e i β This is impossible, since eά > em, so

Continuing this procedure (i.e., next considering the idempotent
x'ewx) gives rise to a proper, decreasing sequence of idempotents less
than ed. But this is impossible, since there are only finitely many
idempotents of S less than ed.

Hence xe Hk for some positive integer k, and S is the union of
the groups Hn, n = 1, 2, 3,

(2) Assume to the contrary that S is factorizable as S = AB,
where A is a group and B is an inverse semigroup. Then A, being
a subgroup of S, must be contained in one of the maximal subgroups
Hn of S, say A £ Jϊfc. In this case, S = HkB = JJfcS.

Let α; in Hk and /̂ in S be arbitrarily chosen. Then y e Hi and
α;̂/ G Hj for some positive integers i and j . Thus there exist elements
x~ι in JΪΛ and w in iί^ such that xx~ι = x^x = eJn xek = α?, and xyw —
βy, from which it follows that eά — ekejy i.e., ek ^ ei# Thus xy e (JίUi fi»,
so HkSS U t i Ĵ n This implies AS = US=i S«> s o E i s necessarily finite,
a contradiction.

Thus S has no factorization of this type, completing the proof of
the theorem.

The remainder of this section is concerned with completely simple
semigroups without zero which are not groups. Let S be such a
semigroup, and let E denote its set of idempotents. If S is a right
group, then by Lemma 2.2 S is a right zero semigroup (in fact, S ~
E) or S is factorizable as S = AB, where A is a group (and thus a
left group), B is a right zero semigroup (and thus a right group),
and An B ΓΊ E Φ Π In addition, if S is a left group, then S is a
left zero semigroup or S is factorizable as S — AB, where A is a left
zero semigroup (hence a left group), B is a group (hence a right group),
and A Π B Π E Φ ••

Motivated by these observations, a semigroup S without zero is



FACTORIZABLE SEMIGROUPS 531

said to be a nontrivial completely simple semigroup if S is complete-
ly simple and neither a right group nor a left group. Hence to give
factorization characterizations for all completely simple semigroups
without zero, it only remains to consider nontrivial completely simple
semigroups, which is done in Theorem 3.3.

THEOREM 3.3. Let S be a semigroup without zero and with idem-
potent set E.

(1) S is a nontrivial completely simple semigroup if and only
if S is factorizable as S = AB, where A is a minimal left ideal of
S and B is a minimal right ideal of S.

(2) // S is factorizable as S = AB, where A is a left group, B
is a right group, and Af)BΓ)E^ Π> then S is completely simple.
Conversely, any nontrivial completely simple semigroup has such a
factorization.

Proof. (1) If S is a nontrivial completely simple semigroup, then
Se [eS] is a minimal left [right] ideal of S for every idempotent e of
S [1, p. 78]. Suppose S is left simple and assume xy = wy, where
x, y, w e S. Then S, being completely simple, is regular [1, p. 79].
Thus yy' e E for some yr in S, so yyf is a right identity of S. Hence
®(yy') = w(yy') implies x = w, so S is right cancellative and thus a
left group. This is a contradiction, so S is not left simple. Similar-
ly, S is not right simple. Thus there exist idempotents e and f in S
such that B = fS and A = Se are proper subsemigroups of S. Since
S is simple, S — AB is then a factorization of S, where A [B] is a
minimal left [right] ideal of S.

Conversely, assume S has a factorization of the type given in the
theorem statement, and let y = ab e S. Since A — Sa and B = bS,
S = AB = SabS = SyS, so S is simple. S is also completely simple,
since Af) B contains a primitive idempotent [1, p. 77]. If S is a left
group then S is left simple and A = S, a contradiction. Similarly, S
is not a right group. Hence S is a nontrivial completely simple semi-
group.

(2) Assume S is factorizable as described and let e e A Π B Π E.
Using properties of right groups and left groups, it is easily shown
that S is simple and that e is a primitive idempotent, i.e., that S is
completely simple.

Conversely, by part (1) of this theorem S — AB, where A [B] is
a minimal left [right] ideal of S. In addition, AΓ\BΠEφ[J [1, p.
77], so let e2 = e e A Π i?. Since A is left simple and B is right simple,
A — Aa for all α e A and B — bB for all b e B. Thus β is a right
[left] identity of A [B]. Further, eeAa for all aeA and eebB for
all 6 G 5, so A is a left group and B is a right group, which gives
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the desired factorization.

This section is concluded with the following result, the proof of
which is straightforward and is omitted.

THEOREM 3.4. A semigroup S factorizable as S = AB, where A
is a right group and B is a left group, is a group.

4+ Problem (II). In seeking to obtain sufficient conditions for
the factorizability of a semigroup S, there are two alternatives; on the
one hand, one can assume the existence of certain types of elements
in S (e.g., identity, idempotent, or regular) or, on the other hand,
one can assume that certain relations are satisfied by all the elements
of S (e.g., S is commutative). The former approach is used here.

Some definitions (due partially to Lyapin) are first needed. An
element x of a semigroup S is said to be a weak right [left] magni-
fying (WRM) [(WLM)] element of S if there exists a proper subset A
of S such that S = Ax[S — xA]. Similarly, x is said to be a strong
right [left] magnifying (SRM) [(SLM)] element of S if there is a pro-
per subsemigroup A of S such that S = Ax[S = xA]. An example of
a semigroup having both WRM elements and WLM elements is the
bicyclic semigroup.

THEOREM 4.1. If a semigroup S contains either a SRM element
or a SLM element, then S is factorizable.

Proof. Assume x is a SRM element of S. Then S = Ax for some
proper subsemigroup A of S. If S is noncyclic, then S is factorizable
as S = AB, where B = <V>.

So assume S is cyclic, say <χ> = S. Then x — yh for some posi-
tive integer k, so y = y{ylc = yi+!c for some yi e A. Thus S is a finite
cyclic group [1, p. 20]. If 1 denotes the identity of S, then it follows
that S = Sx~ι = Axx~ι = A\ = A, so S — A, a contradiction. Thus S
is necessarily a noncyclic semigroup and hence is factorizable.

The proof is similar if S contains a SLM element.

LEMMA 4.2. Let S be a semigroup and let K be the set of all
WRM elements of S. If K Φ • then K is a subsemigroup of S.
Moreover, if J — S\K Φ •, then J is a subsemigroup of S and
JQJK.

Proof. If y, ze K there are proper subsets A and B of S such
that S = Ay — Bz. Then S ~ A{yz), so yze K and K is a semigroup.

Assume u and v are arbitrary in J. If uv e K then S = D(uv) =
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{Du)v for some proper subset D of S. But ueJ so Duc S. This
implies v e K, a contradiction, so uv e J. Thus J is a semigroup if J
is nonempty.

Furthermore, if j and x are arbitrary in J and K, respectively,
then there exists a proper subset C of S such that S — Cx and an
element c in C such that i = cx. If ceK then i = cxe K, a contra-
diction. Hence ce J, so jeJK and J^

THEOREM 4.3. Let S be a semigroup containing a WRM element,
and assume S satisfies any one of the following conditions:

( i ) S has a left identity element;
(ii) S contains a WLM element;
(in) S is regular.

Then S is factorizable.

Proof. Throughout this proof let x be a WRM element of S and
let K denote the set of all such elements. By Lemma 4.2 K is a
semigroup. Also, let J = S\K.

( i ) Let 1 be a left identity of S. Since 1 g K, J is a semigroup
and JξΞ JK. In addition, K= lKξ^JK, so S = JU K is factorizable
as S = /if.

(ii) Assume y is a WLM element of S. Then there exist proper
subsets A and B of S such that S = Ax = yB. If yeK then S =
#J3 = Cty for some proper subset C of S, and y = yb = cy for some &
in B and c in C. If s is arbitrary in S, then s = yt — e?/£ = cs for
some £ in JB, SO C is a left identity of S. Hence by part (i) S is
factorizable.

So suppose y$K. Then J is a semigroup by Lemma 4.2 and
JξΞ JK. In addition, AQJK. For assume aeA. If aeJ then aeJK.
If ae K then a — yd for some d in JS. But c£ in necessarily in K,
so α e Jif .

Hence £ = ^xg(JίΓ)iί :g JKQS, SO S is factorizable as S=JK.
(iii) If S is regular then its set 2?7 of idempotents is nonnull.

Further E Π iΓ = Π> so by Lemma 4.2 J is a semigroup and JSJK.
Moreover, if yeK then y = (yy')yeEKSJK for some #' in S, so
KQJK. Thus S = JίΓ is a factorization of S.

5* Problem (III)* One motivation for considering factorizable
semigroups is to characterize a semigroup S which is the direct pro-
duct of semigroups. Theorem 5.1 gives a result in this direction.

THEOREM 5.1. If a semigroup S is isomorphic to the direct pro-
duct A x B, where A and B are semigroups with right and left
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identity, respectively, and where | A | > 1 and \ B | > 1, then
( i ) there is a factorization of S, say S = A*B*, such that
(ii) every element x of S is uniquely representable in the form

x = ab, where aeA* and beB*, and
(iii) (a1bί)(a2b2) = (α1α2)(δ1&2) / o f αZZ α l y &2 ^ A * α ^ δi> &2 ίw JB*

Conversely, any semigroup satisfying (i), (ii), α?ιc£ (iii) is isomorphic
to a direct product of semigroups.

REMARK. A direct product of semigroups is not necessarily
factorizable. For let S be the direct product P x P, where P =
{2* I i ^ 1}. Here P is a multiplicative semigroup and so, also, is S =
{(2% 20 I i, j ^ 1}. In this case, (2, 2 ) G S but (2, 2) g AB for any proper
subsemigroups A and B of S. Thus £> is not factorizable.

Proof. Assume S is isomorphic to A x J5, where the semigroup
A contains a right identity e and the semigroup 1? a left identity /.
Let μ denote an isomorphism of A x B onto S, and define

Aί = {(a,f)\aeA},B1 = {(e,b)\beB}.

Since A x SA x J5 and 5 ^ 4 x 5 , it follows that A* = Aγμ£S and
5* - £ ^ £ S. Also, Ax B = Aβx. Thus S = (A x £)μ = (A.B^μ =
(A^)(B^) = A*J5*. Furthermore, A* and J3* are proper subsemigroups
of S. For assume A* = S and let aeA, be B. Then (α, b)μ = se S —
A* = Ai/*, so (α, b)μ = s = (α', /)/£ for some α' in A. Therefore (a, b) =
(α', / ) , so 6 = /. Hence j? = {/}, so | B \ = 1, a contradiction. Like-
wise, B* = S is impossible. Thus A*U* is a factorization of S,
proving (i).

Now suppose aιb1 = α262, where

(5.1) α, - (αj, Z)^ e A*, 64 - (e, 6{)i" e 5*, i = 1, 2 .

Then

(αί, δί)ί£ - [(αί, f)(e, b[)]μ = (a[, f)μ-(e, b[)μ = aA

= a2b2 - (a'2,f)μ.(e, V2)μ - [(αj,/)(e, δj)]^

= (αί, b'2)μ ,

so αί = a2 and &J = fe2. Thus αx = α2 and bt — b2, proving (ii). More-
over, assuming (5.1), one obtains

= K<4 δjδί) - (α{,/)(αj,/)(β, b[){e, b'2)

- (α1^-1)(α2/i-1)(δ1^-1)(62i«-1)

= [(α1α2)(δ1δ2)]jt£"1 ,
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so (afi^iaj)^ = (α^X&iδg), proving (iii).
Conversely, assume S satisfies (i), (ii), and (iii). Consider the

mapping μ of the direct product A* x 2?* onto S = A*B* given by

μ: (α, 6) —> αδ , all ae A*, beB* .

That μ is single-valued follows from the definition of equality in direct
products. In addition, if (α1} b,) and (α2, &2) are arbitrary elements of
A* x B* then by (iii) and the definition of multiplication in A" x J3*
it follows that

[(au 6:)(α2, 62)]μ = (a,a2, bλb2)μ = (aLa2)(bJ>2)

(α 2 , δ2)

so // is a homomorphism. That μ is an isomorphism follows from (i)
and (ii).

The author wishes to thank Professor D. W. Miller for suggest-
ing these problems to him.
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