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LATTICES WITH NO INTERVAL HOMOMORPHISMS

J. D. LAWSON

This paper arose from the following analogous questions:
(1) Does a distributive topological lattice on a continuum admit
sufficiently many continuous lattice homomorphisms onto the
unit interval to separate points, and (2) does a topological semi-
lattice on a continuum admit sufficiently many continuous
semilattice homomorphisms onto the unit interval to separate
points? Earlier investigations of topological lattices and semi-
lattices have provided partial positive solutions. However,
examples of an infinite-dimensional distributive lattice and a
one-dimensional semilattice which admit only trivial homomor-
phisms into the interval are presented in this paper.

A topological lattice consists of a Hausdorff space L together with
a pair of continuous lattice operations Λ, V: L x L —*L. A topological
semilattice consists of a Hausdorff space S together with a continuous
semilattice operation Λ: S x S—+S. In the theory of topological lattices
and semilattices, the following problem, raised by Dyer and Shields in
[8], has received considerable attention: Does a distributive topological
lattice (a topological semilattice) on a continuum admit sufficiently
many continuous lattice (semilattice) homomorphisms onto the unit in-
terval [0,1] to separate points?

Anderson [2] has given an affirmative answer for finite-dimensional
lattices; Davies [7] and Strauss [12] have made further contributions
to the problem for the lattice case. The semilattice question has been
answered affirmatively for finite-dimensional semilattices on Peano con-
tinua [11]. The purpose of this paper is to provide examples that
show the answer is not yes in general. We give examples of an in-
finite-dimensional distributive lattice and a one-dimensional semilattice
which admit only trivial homomorphisms into the interval.

Since the idempotents of an abelian topological semigroup form a
semilattice, these examples have ramifications with regard to represen-
tations of such semigroups. In particular, Brown and Friedberg [6]
have a range space for representations (or semicharacters) of a special
class of compact abelian semigroups. These representations separate
points if and only if the homomorphisms of the idempotents into the
interval separate points.

1* Preliminaries* Let S be a (lower) semilattice. If A c S, we
define

L{A) — {y G S: y ^ x for some xe A}
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and

M(A) = {zeSix <; z for some xeA}.

The set A is an ideal if L(A) = A. The set A is convex if », 2 e 4̂.
and & <̂  ?/ <̂  2 imply y eA. The following theorem is a slight modifi-
cation of a theorem of Borrego [3]. It will simplify somewhat show-
ing multiplication is continuous at a later stage.

THEOREM 1.1. Let S be a compact, Hausdorff space which is
algebraically a semilattice. If the graph of the partial order is
closed and the operation A is continuous at all points of the graph,
then S is a topological semilattice.

Proof. Let {xa} and {yβ} be nets converging to x and y respectively.
Let z be a cluster point of the net {xa A yβ}. Since (xa A yβ, xa) clusters
to (z, x), we conclude that z <̂  x. Similarly we conclude z ^ y; hence
z <̂  x Λ y. By continuity of Λ on the graph, we conclude that
%a A (x A y) converges to x A y, yβ A (x A y) converges to x A y, and
hence (xa A yβ) A x A y converges to x Ay. Thus x A y ^ z since
%aΛyβ clusters to z. Hence z — x Ay. Since x Ay is the only cluster
point, multiplication is continuous.

The next theorem is an unpublished result of D. R. Brown although
apparently other researchers in the area of topological lattices and
semilattices were aware of it independently.

THEOREM 1.2. Let S be a compact topological semilattice. Then
the space S' of all closed ideals, ordered by inclusion, is a compact
distributive topological lattice. The mapping sending s into L(s) is
a topological isomorphism from S into S'. If S is connected (metriz-
able), then S' is connected {metrizable).

Proof. The space S' of closed ideals is known to be a compact
topological semigroup with respect to the operation

A-B = {aAb: aeA,beB}

[9, A-7.2]. Since A and B are ideals, A-B cz AnB a (AnB)2 a A>B.
Hence A B = Af]B. The union of two closed ideals is another such,
and a straightforward argument shows that this operation is continu-
ous. Hence S' is a compact distributive topological lattice.

The mapping G sending s into L(s) is an isomorphism since

L(sAt) = L(s)ΠL(t) .

By continuity of multiplication on the space of all closed subsets, if
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a net sa converges to s, then SΛsa converges to SΛs. Since L(s) =
SΛs, the mapping G is continuous and hence a homeomorphism.

If S is connected, then S' is connected since as a compact lattice
it is generated by G(S). If S is metric, it is well-known that the
space of closed subsets is metrizable; hence the subset S' is metrizable.

We now define a series which will be employed in the definition
of the first example. For each positive integer n larger than 1, we set

an = l/m2m~1 where 2m~ι < n ^ 2m .

This series may be thought of as dividing the m-th term of the
harmonic series into 2m~~ι equal parts. Hence this series is divergent.

PROPOSITION 1.3. For any ε > 0, there exists a positive integer
P such that if k ^ P, then Σ ίU an + ε > Σ2

Λ*=2 an.

Proof. We first note that Σ ê  ct% = 1/m if A = {̂ : 2W~1 <
Choose q and P such that 2/ε < q and 2q~1 < P. If ft >̂ P, there exists
an unique m such that 2™"1 < k <̂  2m. Then

2& 2 m + l 2 ? ? i ~ l /I 1 \ k O

V/y < V / T ~ V / Ύ 4- ί —— 4- < V / y _i_ __£_
Λ - 2 ^=2 w=2 \ m m + 1 / «=2 m

Since m ̂  q, we have 2/m g 2/q < ε; this completes the proof.

2* Examples with no interval homomorphisms* We first define
some basic building blocks from which we construct our examples.
Let H* denote [0, oo], the extended nonnegative reals; jff* is a topo-
logical lattice with respect to its natural order. For each positive in-
teger i, let s(i) be the least integer with the property that i ^ Σi=2 a*\
such an integer exists since Σ an is divergent. We set St = Πl{ii
{0, 1}; each S< is a finite lattice with respect to the coordinatewise order
with 0 < 1.

For x 6 Sif θ(x) will denote the number of zero entries of x. We
define σt: S, — H* by (i) <j4(&) - oo if θ(x) - 0, (ii) σ^x) - i if fl(α) - 1,
(iii) Gi(x) = 0 if 0(α?) = s(i), and (iv) (̂α?) = i - Σ i S ^^ for all other
cases.

LEMMA 2.1. ί/αcft σ{ is an order preserving function from Ŝ
into H*. If T > ε > 0 are fixed positive numbers, there exists a
positive integer Q such that if i ^ Q, x, y e Si, σ^x) > r, σ{(y) > τ, then
o{(x Λ y) > T — ε.

Proof. That each ^ is order preserving is a straightforward con-
sequence of its definition.
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Assume that τ > ε > 0. Choose the P guaranteed by Proposition
1.3 which corresponds to e. Choose Q larger than τ + Σ 2 ^ an.

We suppose that i^Q, x,y e Si9 a{(x) > τ and σt(y) > τ; we denote
x Ay by z. Either θ(z) ίg 2θ(x) or θ(z) ^ 2θ(y) obtains; we arbitrarily
assume θ(z) tί 2θ(x) (the reason one of the inequalities prevails is that
x Ay can have at most twice as many zero entries as one of x or y).
We note from the definition of σ{ that in all cases σ{{z) ̂  i — Σί=2 an

if the summation is interpreted to be 0 for θ(z) equal to 0 or 1.
If θ(x) ^ P, then

θ(z) 2β(x) 2P

σt(z) ^ i - Σ <*« ̂  Q - Σ « . ^ Q - Σ « » ^ ^ ;
%=2 n=2 n=2

the last inequality follows from the choice of Q. Hence σ{(z) > τ — ε

if θ(x) S P-
If P < θ(x), then

θ(z) 2θ(x) /θ(x) \

i Σ «» ^ ί - Σ « » δ ί - Σ « » + ε) = ^(x) - e > T - e .Σ
n=2

Hence σ^z) > τ — ε for both cases. We now define the first example.
We denote J5Γ* x ΠS=i ̂  by if. With coordinatewise order K is a
topological lattice homeomorphic to the Cartesian product of an interval
and the Cantor set.

EXAMPLE 1. We define L = {(ί, (&*)r=i) eK:t ^ σ^^ ) for all i}.
With respect to the order inherited from K, L is a compact, one-
dimensional topological lattice. If A is a sΰbsemilattice of L with
respect to the cap operation and if leA° (where 1 denotes the largest
element of L), then An (0 x Π St) Φ 0 .

Proof. (1) L is compact.
Suppose (t, (Xi)) 0 L. Then t > 0"Λ(sO for some n. There exists an

open neighborhood U of (t, («<)) such that if (s, (#<)) e Z7, then s > (7Λ(a?Λ)
and i/Λ = xn; then s > σn(xn) = σn(yn) implies (s, (y^) $ L. Hence K\L
is open and L is compact.

(2) L is algebraically a lattice.
With respect to the cup operation, L is a subsemilattice of if. This

follows from the fact each σ{ is order preserving.
To complete this part, we show that if (s, (a?<)), (ί, (^)) e L, then

(u, (Zi)) is a greatest lower bound in L where

u = sAtA inf. {σi(Zi)ι 1 ^ i}

and ^ = Xi Ayi. By its definition (w, (^)) is a lower bound and a member
of L. Let (r, (^)) be another lower bound for (s, (a?*)) and (ί, (^)) in L.
Then r ^ sΛί and ^ <£ ̂ Ai/i = ̂  for each i; hence σ^^) ̂  σ<(3<) for
each i. Since (r, («;<)) e L, then r <; inf {^(^): 1 ̂  i} ^ inf {σ, (^): 1 <̂  i}.
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Hence r ^ u; and thus (u, fe)) is a gib in L.
(3) L is a topological lattice.
The cup operation is continuous since L is a subsemilattice of K

with respect to this operation. This implies that the partial order on
L has closed graph.

Let x — (s, (Xi)) and 2/ = (£, {yd) be elements of L. To show con-
tinuity of multiplication, we may assume that y <£ a? by Theorem 1.1.

We first consider the case that 0 < t, s < 00 # For a positive in-
teger N and ε > 0, let W = {(w, s j e L: ί - 3ε < u < t + 3ε, yi = z{ for
i <̂  AT} be a basic neighborhood of 2/ where 3ε < t. Let Q be the
positive integer guaranteed by Lemma 2.1 for τ — t — ε and ε; we set
M = max {AT, Q}. We define neighborhoods C7 and V oί x and ,y resp. by

U — {(s', (α, )) e L: s — ε < s' < s + e, α< = cĉ  for ί <£ ikf} and
F = {(£', (6,)) G L: ί - ε < V < t + ε, b, = yi for ί ^ Λf}.

To complete the proof, we show UΛVaW.
Let (s', (α^) e U and (ί', (δi)) e V and let (%, («<)) be their greatest

lower bound in L, i.e., ^ = α̂  Λ 6̂  for all ΐ and

u = s' At' Λ inf (cr.(^): 1 ^ i} .

We have immediately u ^ t' < t + 3e and ^ = α{ Λ 6* = ^ Λ Vi = i/i for
i ^ N since N ^ M. Since (£', (&<)) is an element of F and hence of
L, we have £ — ε < V ^ ^(64) for all i. Similarly since t ^ s> we have
ί - ε ^ s - ε < s ' ^ ^(α, ). If i ^ Λf, then

£ - 2ε < ί - ε < σ.φi) = ^(α< Λ 6<) = ^fo)

since α̂  Λ 6ί = Xi AVi — yt = δ*. If Λf < i, then Q < i and

(£ - ε) - ε < Giidi A b{)

by Lemma 2.1. Hence t - 3ε < t - 2ε ^ s' Λ V A inf {^fe): 1 ^ i} = w.
Thus (u, (^)) e W.

The case £ = 0 is straightforward and omitted. The case that one
or both of t and s are co can be handled by a slight modification of
the above argument.

(4) L is one-dimensional.
This follows from the fact that L is homeomorphic to a closed

subset of the Cartesian product of the Cantor set and unit interval.
(5) If A is a subsemilattice and l e i ° , then A Π (0 x Π St) Φ 0 .
Note that (00, (χt)) where each xi has entries all 1 is an element

of L, and hence is the 1 for L. There exists at 1 a basis of open
sets of the form U — {(r, (xi)) e L: j < r, x{ has entries all 1 for i ^ j}
where j is a positive integer. We assume j is chosen so that UczAo.
We define T to be all elements of the form (j + 1, (a )̂) such that xt

has entries all 1 for i Φ j + 1 and xs+1 has one zero entry. Then T
has s(j + 1) elements. For each element of T,
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inf {

hence TczL and thus TaU. Let (t, (zt)) be the greatest lower bound
in L of T. Since A is a subsemilattice, (t, fe)) e A. Since (t, s4) e L,
t <L σj+ί(zj+ι) = 0 since zj+1 has entries all zero. Hence t = 0.

EXAMPLE 2. Let / denote all elements of L with first entry zero;
/ is an ideal of L with respect to the cap operation. The Rees quotient
£ — L/I is a compact, connected one-dimensional metric semilattice
with identity which admits no nontrivial semilattice homomorphisms
into the unit interval.

Proof. It is easily verified that the set / = {(0, (#;)) e L) is a closed
ideal of L with respect to the cap operation. Hence S = L/I, the
Rees quotient, is a compact topological semilattice.

Since S is topologically a subset of the cone over the Cantor set,
S is metric and one-dimensional. If (£, (»<)) e L, then {(r, (?/;)): r <L t,
Vi = αJi for all i} is a connected subset of L which meets /. Hence
in S each element lies in the component of 0; thus S is connected.

Assume that there does exist a nontrivial continuous homomorphism
h from S into [0, 1]. Then h(l) > h(0). If / denotes the natural
homomorphism from L onto S, then hf is a continuous homomorphism
from L into the unit interval such that hf(I) — h(G). Choose r such
that h(ΐ) > r > h(Q). Then {hf)~ι[r, h(l)] is a neighborhood of 1 in L,
a subsemilattice of L, and misses /. However, no subset of L has
these properties. Hence no nontrivial h exists.

EXAMPLE 3. Let S' denote the set of all closed ideals of S, the
semilattice of Example 2. Then S' is a compact connected metrizable
distributive topological lattice. With respect to the cap operation, S'
has no nontrivial finite-dimensional homomorphic images; hence, in
particular, S' admits no nontrivial lattice homomorphisms into the unit
interval.

Proof. By Theorem 1.2 S' is a compact, connected, metrizable,
distributive topological lattice and the mapping G from S into S' send-
ing s into L(s) is a topological isomorphism. Since (?(0) = 0 and G(l) —
1, S' admits no nontrivial cap homomorphisms into the unit interval,
because any such composed with G would be a nontrivial homomorphism
from S into the interval.

Suppose that h is a continuous cap homomorphism from S' onto
Ty a finite-dimensional topological semilattice. Since S' is a compact,
connected topological lattice, it is locally connected [1]; hence T is locally
connected. But then, by [11], if T is nontrivial, it possesses nontrivial
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homomorphisms into the interval. The composition would be a non-
trivial homomorphism from S' into the interval, and we have just
seen such does not exist. Hence T is trivial.

These examples shed some light on the subject of intrinsic topo-
logies in lattices. Birkhoff [4] describes several ways a lattice may-
be topologized from its algebraic structure. It has been shown that
in a compact topological lattice which is metrizable the topology of
the lattice agrees with the order topology (see [12] or [10]). Hence
Examples 1 and 3 both have the order topology.

The question has been asked whether the topology of a compact
topological lattice agrees with the interval topology [10]. Strauss [12]
showed that if this is true and if the lattice is distributive, then the
lattice admits nontrivial continuous homomorphisms into the unit in-
terval. Hence the lattice of Example 3 does not have the interval
topology.

It is a pleasure to thank Professors D. R. Brown and R. J. Koch
for their encouragement and Professors John Hildebrant and Bernard
Madison for their patient listening.
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