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LOCALLY GALOIS ALGEBRAS

ANDY R. MAGID

Separable subalgebras of commutative algebras which (a)
are the direct limit of separable subalgebras and (b) have suf-
ficiently many automorphisms are shown to be the fixed rings
of groups of automorphisms of the algebra. Necessary and
sufficient conditions for an arbitrary subalgebra to be the
fixed ring of a group are examined.

Also, we show that every element of every separable al-
gebra over a ring is separable if and only if the ring is von
Neumann regular.

Given a commutative ring R and a commutative ϋ?-algebra S,
Villamayor and Zelinsky [10, 3.1] call S a weakly Galois i2-algebra
if S is finitely generated and projective as an iί-module, separable as
an i?-algebra, and if there is a finite group G of ^-algebra automor-
phisms of S such that the subring SG of G-invariant elements of S
is precisely R. Under these hypotheses they achieve the following
generalization of the fundamental theorem of Galois theory: Every
separable i?-subalgebra of S is the fixed ring of a finite group of
automorphisms, and conversely.

Our study here is of infinitely generated algebras. We say S is
a locally Galois i?-algebra if every finite subset of S is contained in
a weakly Galois subalgebra of S with the following property: there
is a finite set of automorphisms of the subalgebra, each of which
extends to an automorphism of S, and the fixed ring of the subalgebra
under this subset is R. We prove that if S is a locally Galois JB-
algebra, every separable i?-subalgebra of S is the fixed ring of some
group of automorphisms of S. In general, the converse of this is
false.

Call an i?-algebra locally separable if every finite subset of the
algebra is contained in a separable i?-subalgebra. Under special hypoth-
eses on Rj which allow infinitely many idempotents, but are otherwise
rather restrictive, we characterize those locally separable subalgebras
of a locally Galois i?-algebra which are the fixed rings of groups of
automorphisms.

A major technique used here, as in [10], is to reduce to the case
where R has no nontrivial idempotents via Pierce's theory of the
Boolean spectrum [7]: Let X(R) denote the quotient space of Spec
(R) with connected components identified to points. The quotient map
of Spec (R) to X(R) induces a sheaf on X(R), the direct image of the
canonical sheaf of local rings on R. The resulting ringed space
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(X(R), ^ O is called the Boolean spectrum: the reason for the name
and the fundamental properties of the Boolean spectrum are discussed
in [7] and [10]. The principal feature is that each stalk of J^~ has
no nontrivial idempotents and that (X(R), J^) is universal with re-
spect to this property.

0* Preliminaries* Unless explicitly noted to the contrary, all
rings and algebras are assumed commutative with unit. R denotes
throughout the fixed, commutative base ring and all unadorned tensors
are taken over R.

We shall use the following description of the Boolean spectrum
(X(R), ^) of R: X(R) is the maximal ideal space of the Boolean al-
gebra B(R) of idempotents of R, topologized by taking the sets Ue =
{x: 1 — eex}, for all idempotents e, as basic open sets; and ^(Ue) =
Re. Ue c Uf if and only if e ^ / (that is, ef = e). The stalk of ^"
at x, which we denote Rx1 is R/xR. The equivalence of this descrip-
tion and the one given in the introduction above is established in
[10, 2.4].

(0.1) If M is an iϋ-module let Mx = R 0 Rx and for each m in
M let mx be the image of m in Mx.

(0.2) If M and N are ^-modules and / is in Ή.omR(M, JSΓ), let fx

be the morphism f®Rx.

When M is finitely presented the canonical map Hom îkf, N)x —>
Hom^ îkί,., Nx) is an isomorphism [3, p. 93, 2.8] and thus in this case
the two interpretations of fx for / in Hom îkΓ, N) are compatible.

(0.3) An i?-algebra S is strongly separable if S is a separable
i?-algebra which is finitely generated, protective and faithful as an
i?-module.

(0.4) A separable subalgebra of a strongly separable i?-algebra
is also strongly separable [6, p. 337, Remark 1].

For the convenience of the reader, we summarize here the results
of [10] used in our study (AutΛ(S) denotes the group of all iϋ-algebra
automorphisms of S):

(0.5) Suppose R has no idempotents except 0 and 1. If S is a
strongly separable iϋ-algebra and if SH = R for some subgroup H of
Autβ(S), then H spans Hom^S, S) as a left S-module [10, 3.5].
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(0.6) Let S be an i2-algebra and H a subset of AutΛ(S). The
closure of H is the set of all automorphisms g such that: for each x
in X(R) and each minimal idempotent / in Sx, f-gx = f hx for some h
in H [10, 3.7],

(0.7) Let S be a weakly Galois iϋ-algebra. If F is a finite group
of automorphisms of S and if T = SF, then AutΓ(S) is contained in
the closure of F. [10, 3.14]

(0.8) Let S be a weakly Galois 22-algebra, T an iϋ-subalgebra.
Then T is separable over R if and only if T = SF for some finite
subset F of AutΛ(S). [10, 3.10 and 3.12]

For later use, we will need a stronger version of part of (0.8).
We remark that proof given here uses only [5] and (0.5) and hence is
independent of (0.8).

THEOREM 0.9. Let S be a strongly separable R-algebra and F a
finite group of R-algebra automorphisms of S. Then SF is a strongly
separable R-algebra.

Proof. Let T = SF. Clearly S is a separable T-algebra. We
first assume that R has no idempotents except 0 and 1 and show that
(a) S is Γ-projective and that (b) SF = HomΓ(S, S). Since R has no
nontrivial idempotents S and hence T have only finitely many idem-
potents. Let e19 , en be the minimal idempotents of T. To prove
(a) and (b), we shall show that Se{ is Γβrprojective and that

SβiFβi = Ή.omTe.(Seif SeJ

for i = 1, , n\ that is, we assume T has no nontrivial idempotents.
Let e be a minimal idempotent of S and let H be the subgroup of F
fixing e. Since T has no nontrivial idempotents, F acts transitively
on the minimal idempotents of S and, exactly as in [9, p. 723, 1.3],
we have that T is isomorphic to Te and (Se)H = Te. By [5, p. 18,
1.3] Se is T-projective. Thus S is T-projective. Hence S is weakly
Galois over T and, by (0.5), SF = HomΓ(S, S).

Now let R be arbitrary. For each x in X(R),

(SF)X = SXFX s Hom^S,, Sx) .

By the above, SXFX = Ή.omSxFx(Sx, Sx), since Rx has no nontrivial
idempotents. Since also by the above Sx is a protective S/^-module,
we see that Sx

x is separable over its center SXFX [2, p. 380, 5.1]
and that SFχ is /^-separable [1, p. 762, 4.8]. Thus Sf* is 1^-separa-
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ble [2, p. 374, 2.5]. Since SF is a finitely generated ϋJ-algebra we
can now show that SF is iu-separable: for SF is* finitely presented as
an (SjF7)e-module, and thus it suffices [3, p. 94, 2.10] to show that for
any maximal ideal m of R SF'0 Rm is a separable ϋ?m-algebra. Let
x be the set of idempotents in the kernel of R—+Rm. Since Rm has
no nontrivial idempotents, x is in X(R). Then

m = (SF <g>Rx) ® RxRm

is inseparable. So the center T of SF is separable.

1Φ Separable subalgebras of locally Galois algebras* The
principal result of this section is that separable subalgebras of locally
Galois algebras are the fixed rings of groups of automorphisms. We
begin by proving an extension theorem for some special subalgebras
of arbitrary i?-algebras; it is this theorem which motivates the de-
finition 'locally Galois.' Our first lemma gives an equivalent definition
of the closure (0.6) of a group of automorphisms.

LEMMA 1.1. Let S be an R-algebra finitely generated and pro-
jectίve as an R-module, and H a subset of A\xtR(S). Then an auto-
morphism g is in the closure of H if and only if there are pairwise
orthogonal idempotents ely , en of S such that Σe3- — 1 and elements
hu , hn of H, such that g = Σβjhj.

Proof. Suppose that g is in the closure of H. Let x be in X(R)
and /i, , fk be the minimal idempotents of Sx. By definition of the
closure, there are h19 — ,hk in H such that

for i = 1, •••, k. By [10, 2.12], choose idempotents Elf , Ek of S
such that (Ei)x = f. These Et satisfy

{EiQ)x =

By (0.1), there is a basic neighborhood Ue of x on which these
equations are satisfied, i.e.,

( ** ) e(ΣEi) = e

e(EiQ) = e(Eih) .

For each y in X(R) there is a basic neighborhood of y and a set of
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idempotents of S and elements of H satisfying (*) on that neighborhood.
By compactness, choose finitely many disjoint such neighborhoods
covering X(R); let these be Ueq, q = 1, , m. Since the neighborhoods
are disjoint, epeq = δPfQep and since they cover X(R), Σeq = 1. For each
q there is a set of idempotents of S{E() and elements of H{hl} satis-
fying (**). The sets of idempotents {eqE{\ and elements of H{hl) then
satisfy

(e'Eϊ)(e*E3) = δpJitje<E*

(***) ΣeqE\ = 1

eqE\g = eqE\h\ .

Now, upon linearly ordering the indices i and g, (***) shows that
there is a set ely , en of pairwise orthogonal idempotents of S such
that Σβi — 1 and elements hly , hm of H such that e{g = eihi, i —
1, , n. Thus ^ — Σβihi.

If conversely gr = Σejii where the β̂  and h{ are as in the hypo-
theses of (1.1) then e{g = ejii for i = 1, , n and Ue{ — 1. Hence
by [10, 3.76], g is in the closure of H.

We remark that (1.1) improves [10, 3.76].

LEMMA 1.2. Let S be an R-algebra, e19 , em pairwise orthogonal
idempotents of S such that Σβi — 1 and hly , hm elements of AutΛ(S).
Suppose there is an R-subalgebra T of S such that each e{ is in T,
each hi leaves T setwise invariant, and g — Σejii restricted to T is
in AutR(T). Then g is in AutΛ(S).

Proof. Fix j and choose x in T such that g(x) = e5. Since

Σβihiix) = ejf βjhjix) = eό

and βihiix) = 0 for i Φ j . Thus hά(x) = eά + / where eά(f) = 0 and
x = hγ{e5) + hjι{f). Then h,(x) = hjιγ(eά) + khγ'if), for each ί. If
i Φ j , then 0 = eji^x) = eJiJiΫiej) + eihihγ{f). This last expression
is a sum of the form a + 6, where a is idempotent and ab = 0; if
such a sum is zero, α must be zero. Hence feί(Λ,"1(βί)Λ71(ei)) = 0, so
hτι(ei)h'j\ej) = 0. Thus the h~ι(e?) are pairwise orthogonal idempotents.
Moreover, their sum is one: for the sum lies in T, and

and g restricted to T is an automorphism.
Now let fi = hz^βi). If s is any element of S, we have:

g(Σfj8) - Σg(fjS) = Σh^h^s) = Σh^ff.s)
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Thus if we consider g as a map of ]JSfi to Π ^ we see that g sends
the factor Sfό to the factor Seά by the algebra isomorphism hά. Thus
g is an algebra automorphism of S.

THEOREM 1.3. Let S be an R-algebra and T a strongly separable
subalgebra. Suppose there is a finite set F of automorphisms of T
such that TF = R and each element of F extends to an automorphism
of S. Then every automorphism of T extends to an automorphism
of S.

Proof. Let Fo be the subgroup of AutΛ( T) generated by F. [By
[10, 3.14] Fo is finite.] Clearly each element of Fo extends to an
automorphism of S. Let h be in AutB(Γ); by (0.7) h is in the closure
of Fo. By (1.1) h = ΣeJi where the e{ are pairwise orthogonal idem-
potents of T with Σe{ = 1 and each fi is in FQ. Extend each f{ to
an automorphism g{ of S. By (1.2), g = Σeigi is in AutΛ(S), and g
extends h.

Our definition of locally Galois algebra is essentially that every
finite subset of the algebra belongs to a subalgebra to which (1.3)
applies:

DEFINITION 1.4. An iϋ-algebra S is called locally Galois if every
finite subset of S is contained in some strongly separable subalgebra
T with the following property: there is a finite subset F of AutΛ(Γ)
such that TF = R and each element of F extends to an automorphism
of S.

LEMMA 1.5. Let S be a locally Galois R-algebra and T a strongly
separable subalgebra. Then T=SAmτ{S\

Proof. Clearly T is contained in SAutΓ(ύ). Suppose s is in S\T
and choose a strongly separable subalgebra W of S containing T and
s such that there is a finite subset F of AutE{W) with WF = R and
each element of F extending to an automorphism of S. By (0.8),
there is an h in AutR(W) such that h(s) Φ s but h restricted to T
is the identity. Choose, by (1.3), an element g of Auti2(S) extending
h. Then g is in AutΓ(S) but g(s) Φ s. We conclude that T = SAntTiS).

THEOREM 1.6. Let S be a locally Galois R-algebra and T a
separable subalgebra. Then T is strongly separable and T — SAutT{S).

Proof. By (1.5), it suffices to show T is strongly separable and
by (0.4) it will suffice to show that T is contained in a strongly
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separable jβ-algebra. Since T is separable, there is an idempotent
e = ΣXi ®2/iinT(g)Γ such that IXM = 1 and for all t in T, (1 0 ί)β =
(ί (g) l)e. We shall also use e = 2 ^ 0 ^ for the image of e under
T0 T—*S(g)S. Choose a strongly subalgebra TF of S containing all
the ^ . For each g in Aut^S), apply 1 0 # to the equation (1 0 ί)e =
(ί 0 l)e and follow by the multiplication map S 0 S —* S; we get

giQΣXiVi = tΣxiyi

since #(?/;) = #*; since -Σ'a;ί2/< = 1 we get g(t) = ί. Thus ϊ 7 is contained
in SkmwiS) and by (1.5) this latter is W.

We observe that the technique of (1.6) also gives the following:

PROPOSITION 1.7. Let S be an R-algebra and C a class of sub-
algebras such that:

(a) Any finite subset of S is contained in some element of C.
(b) For all T in C, T= SkntT{S).

Then every separable subalgebra of S is contained in some element
of C.

In light of (1.6), it is natural to try to describe all subalgebras
of S of the form SH for some subgroup H of AutΛ(S). There are
examples showing that such subalgebras need not even be a union of
separable subalgebras. Something can be said, however, if H is of a
special type.

DEFSNITION 1.8. Let S be an i?-algebra and H a group of i?-algebra
automorphisms of S. H is almost finite if it has only finitely many
restrictions to each finitely generated subalgebra of S.

Equivalent forms of (1.8) are given below in (1.12).

PROPOSITION 1.9. Let S be an iϋ-algebra, H an almost finite sub-
group of AutΛ(S) and suppose that every finite subset of S is contained
in a strongly separable subalgebra of S. Then every finite subset of
S is contained in a strongly separable subalgebra left setwise invariant
under H.

Proof. Let F be a finite subset of S and let To be a strongly
separable subalgebra containing F. Let hίt •••,/&* be the restrictions
of H to To and let T = K(TQ)*h2(TQ), - , hk(T0). Clearly T is left
setwise invariant under H. T is an epimorphic image of Λi(Γ0) 0 •
®hk{TQ) hence finitely generated as an iϋ-module and separable as an
i?-algebra. Under our hypotheses, T is contained in a strongly separa-
ble subalgebra of S, hence by (0.4) is itself strongly separable.
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THEOREM 1.10. Let S be a locally Galois R-algebra, T, To separa-
ble subalgebras of S and H an almost finite subgroup of Aut^(S).
Then:

(a) T f] TQ is strongly separable.
(b) T Π SH is strongly separable.
(c) Every finite subset of SH is contained in a separable sub-

algebra of SH.

Proof, (a) By (1.6), T and To are finitely generated. Thus,
since S is locally Galois, there is a strongly separable subalgebra SQ,
containing both T and To, for which there is a finite subset F of
Aut^(S0) with SF = R. By (0.8), then, there are finite subsets K and
L of Auti2(S0) such that T = Sf and To = S0

L. We can assume, of
course, that both K and L contain the identity. Then T Π To = SfL,
where KL is the set of products kl for k in K, I in L. Thus by (0.8)
again, Γ n To is strongly separable.

(b) Since by (1.6) T is finitely generated, by (1.9) there is a
strongly separable subalgebra W of S containing T and left setwise
invariant under H. By (1.6) also, W = SJ where J = Autw(S). Since
W is setwise invariant under H, H is contained in the normalizer of J
so / is a normal subgroup of JH. Also, W Π SH = (SJ)JH/J. Now
JH/J = H/J Π H and this latter group is finite, since it consists of
of the distinct restrictions of H to W. By (0.9), then, applied to the
subalgebra Wn SH of W = SJ, Wf] SH is ^-separable. Now by (a),
TΓ)SH = Tf](Wf]SH) is also separable.

(c) Let F be a finite subset of SH. Choose a strongly separable
subalgebra V of S containing F. Then by (b), F ί l SH is a separable
subalgebra of SH containing F.

We formalize the property of SH established in (1.10) (c):

DEFINITION 1.11. An iϋ-algebra is said to be locally separable if
every finite subset of the algebra is contained in a separable subalgebra.

There are examples showing that, without further hypotheses on
R it is neither necessary nor sufficient for a subalgebra of a locally
Galois algebra to be locally separable to be the fixed ring of a group
of automorphisms. Moreover, a locally separable subalgebra of a
locally Galois algebra which is the fixed ring of a group need not be
the fixed ring of an almost finite group.

The remainder of this section studies a special class of locally
Galois algebras. We begin with equivalent characterizations of almost
finite groups of automorphisms.

PROPOSITION 1.12. Let S be an R-algebra, G a subgroup of AutR(S).
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The following are equivalent:
(a) G is almost finite.
(b) For each s in S the orbit Gs is finite.
(c) For each s in S there is a normal subgroup H of finite

index in G such that s is in SH.
(d) For any finite subset F of S there is a normal subgroup H

of finite index in G such that F is in SH.
(e) G is dense in a profinite group GQ of algebra automorphisms

of S such that when S carries the discrete topology, the action Go x
S—+S is continuous.

These equivalences are well known, and we omit the standard
proof.

We now cosider flat extensions of the base ring.

LEMMA 1.13. Let S, B, T be R-algebras, with T a fiat R-module,
and G an almost finite group of R-algebra automorphisms of S such
that SG = B. Then (S <g) Tf®1 = B <g) T.

Proof. Let x belong to (S (g) Γ)G®\ say x = Σst ® U Choose a
normal subgroup H of finite index in G such that each s{ is in SH.
Let g17 •••, gm be coset representatives of H in G. Then

0 > B > SH > Π SH

1 = 1

is exact, where the last map sends s to (g^s) — s, , gm(s) — s). Since
by hypothesis T is flat over R,

0 > B <g) T > SH ® T > Tl(SH (8) T)

is exact, where (ΐ[SH) (8) T is identified with ΐ[(SH ® T). The jth com-
ponent of the last map of the sequence sends y to (gs ® l)(y) — y for
any y in SH 0 Γ. Thus since & is in the kernel of this map, x is in
JB ® T. Thus (S 0 T)0®1 S -β ® Γ; the reverse conclusion is obvious
and the result.

PROPOSITION 1.14. Let S be an R-algebra such that:
(a) Every finite subset of S is contained in a strongly separable

subalgebra of S.
(b) There is an almost finite subgroup G of AutΛ(S) such that

SR = R. Then S is a locally Galois R-algebra.

Proof. By (1.9), every finite subset of S is contained in a strongly
separable subalgebra left setwise invariant under G. If T is such a
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subalgebra, F the group of restrictions of G to T then F is finite,
TF = R, and each element of F extends to an automorphism of S.
Thus S is locally Galois.

PROPOSITION 1.15. Let S be a locally Galois R-algebra and T a
flat R-algebra. The S 0 T is a locally Galois T-algebra. If G is an
almost finite group with SG = R, G 0 1 is an almost finite group
with (S (g) T)G®1 = T.

Proof. The first assertion is obvious and the second is an im-
mediate consequence of (1.13).

2 Locally separable subalgbras of locally Galois algebras*
This section characterizes, under suitable hypotheses on the base ring
R, those locally separable subalgebras of locally Galois algebras which
are the fixed rings of automorphism groups. The concept of normality
plays an important role in this.

DEFINITION 2.1. Let S be an jβ-algebra. An iϋ-subalgebra T of
S is said to be normal if every automorphism of S sends T into
itself. S is said to be a normally Galois ίϋ-algebra if every finite
subset of S is contained in a normal strongly separable subalgebra
T such that there is a finite subset F of AutΛ( T) with TF = R and
each element of F extends to an automorphism of S. (Note that
normally Galois implies locally Galois.)

LEMMA 2.2. Let S be an R-algebra and T a subalgebra.
(a) // T is normal, AutΓ(S) is a normal subgroup of Autβ(S).
(b) If H is a normal subgroup of AutΛ(S), SH is a normal sub-

algebra.

PROPOSITION 2.3. Let S be a weakly Galois R-algebra, T a normal,
separable subalgebra and suppose R is connected (i.e., has no nontrivial
idempotents). Then either T is connected or contains all idempotents
of S.

Proof. Each element of AutΛ(S) restricted to the set E of minimal
idempotents of S induces a permutation of E. If E has n elements,
the restriction map r induces a homomorphism of AutR(S) onto Sn,
the symmetric group on n symbols. T = SAntT{S) and AutΓ(S) is normal
by (2.2) (a). Thus r(AutΓ(S)) is a normal subgroup of Sn; if it is not
the identity, it acts transitively on E. In the first case each element
of E is in T; in the second case, the only idempotents left fixed
under AutΓ(S) are 0 and 1, so T is connected.
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PROPOSITION 2.4. Let R be connected and S a locally Galois R-
algebra. Then the following are equivalent:

(a) There is a collection S^ of weakly Galois subalgebras of S
such that every finite subset of S is contained in some element of
£f and if Tlf T2 are in S^ with Tλ contained in T2, Tγ is normal
in T2.

(b) S has finitely many idempotents.
(c) AntR(S) is almost finite.
(d) S is normally Galois.

Proof. (a)=>(b). Suppose e is a nontrivial idempotent of S and
let T be an element of S^ containing e. Let / be any other idempot-
ent of S and Tλ an element of Sf containing both T and /. T is
not connected and hence by (2.3) contains every idempotent of T19 in
particular /. Thus T contains all idempotents of S; since T is a
finitely generated protective iϋ-module these idempotents are finite in
number.

(b)=>(c). Let E = {elf , en} be the set of minimal idempotents
of S and H the kernel of the restriction map of AutΛ(S) to the per-
mutations of S. H is the product of the groups Hi — Aut^ (Ste*).
Each Sβi is connected and (Sei)Hi = Re{. Since each Se{ is locally
separable, by [6, p. 335, 1] each H{ is almost finite. Then H is almost
finite and since H is of finite index in AutΛ(S) this latter is almost
finite.

(c)=>(d). Since SAutR{S} - R, the implication follows from (1.9).
(d)=>(a). Take for £f the set of subalgebras satisfying the con-

dition of (2J\
In [9, p. 723, 1.3], it was shown that, over a connected ring,

the full automorphism group of a weakly Galois algebra is finite.

EXAMPLE 2.5. The full automorphism group of a locally Galois
algebra over a field need not be almost finite.

Let R be a field and S a Galois extension field of infinite degree
over R. Clearly S is a locally Galois iϋ-algebra. By (1.15), S (g) S is
a locally Galois S-algebra. Since S is locally separable over R, S is
S ® S flat so by [8, p. 94, 1] S 0 S is a von Neumann regular ring.
If Auts(S 0 S) is almost finite, by (2.4) S 0 S has only finitely many
idempotents. A regular ring with only finitely many idempotents is
a finite product of fields; it follows that the multiplication map S 0
S-+S splits, so S is iϋ-separable. But since S is iϋ-projective, by
[9, p. 722, 1.1] we also have S finitely generated over R, contrary
to hypothesis.

We remark that the Example (2.5) also shows that normally
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Galois is not preserved under flat base ring extension. In case the
extension is by a stalk over a point in the Boolean spectrum, however,
the property is stable.

PROPOSITION 2.6. Let S be a normally Galois R-algebra, x a point
in X(R). Then Sx is a normally Galois Rx-algebra.

Proof. By (1.15), Sx is a locally Galois i^-algebra. Let Sf be
the collection of all normal subalgebras of S satisfying the condition
of (2.1). Let Si = {Tx: TeS^}. Each element of Sx is weakly Galois
over Rx and every finite subset of Sx is contained in some element of
^ζ. Let To, T, be elements of Sζ with To C Ά and let T, T be
elements of £f with T S Tf and Tx = To, Tx = Tλ. Suppose h is in
Ant^T,). By [10, 2.14] choose g in Aut^(T') with gx = h. Since
g(T) S T, h(T0) C To- Hence To is a normal subalgebra TL. By (2.4)
(a)=>(d), applied to ^ , we conclude that Sx is a normally Galois i?x-
algebra.

PROPOSITION 2.7. Lei iϋ 6e connected, S a normally Galois R-
algebra and T a locally separable subalgebra. Then T — SH where
H is the subgroup of AutB(S) fixing T.

Proof. Give HomΛ(S, S) the weakest topology such that for every
finitely generated subalgebra So of S the restriction map Hom^S, S) —•
Hom ί̂So, S), induced by the inclusion of So in S, is continuous. This
is called the finite topology on Hom^S, S). We claim that AutΛ(S) is
compact in this topology. For by (2.4) (d)=>(c), AutΛ(S) is almost
finite, and by (1.12) (a)=*(e), AutΛ(S) can be embedded in a compact
group Go of automorphisms of S such that the action Go x S —+ S is
continuous. Thus Go = AutR(S) is compact in the finite topology. Now
the proof proceeds exactly as in the classical situation: let s be in
S\T and for each finitely generated separable subalgebra T' of T let
N(T') = {geAutR(S):g\T = id and g(s) Φ s}. N(T') is a nonempty
closed subset of AutΛ(S) and the collection of all N(T'), as V ranges
over the finitely generated separable subalgebras of T, has the finite
intersection property. Then since AutΛ(S) is compact, there is a g
in AutΛ(S) which belongs to each N(T'). We have g\T=id and
g(s) Φ Sy and hence conclude that T Ξg SH. Since the reverse inclusion
is obvious, we have the result.

Now suppose that R is arbitrary, S is a normally Galois .E-algebra,
and T is an almost separable subalgebra of S. Let s be in S\T and
x a point in X(R) such that sx is not in Tx. By (2.7), there is an h
in AutRx(Sx) such that h\Tx = id and h(sx) Φ sx. We would like to
find a g in AutΛ(S) such that g\T = id and gx = hx, so g(s) Φ s; t h a t
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is, we want to show first that AntR(S) —> AutRχ(Sx) is onto and second
that if / and g are in Hom^T, S) with fx = gx in Horn^T,, Sx) (i.e.,
equal as maps) then / = g on a neighborhood of x. In order to prove
the second assertion, however, we will need to assume that x is an
isolated point of X(R), and in this case the first assertion is trivial.
For completeness, however, we include a more general result.

LEMMA 2.8. Let S be a normally Galois R-algebra, G a profinite
group such that G x S —+ S is continuous and SG = R, and x a point
in X(R). Then AutR(S)—»AutRx(Sx) is onto.

Proof. Let Hom^S^, Sx) carry the finite topology; note that Gx

is compact in this topology. Let H = AntRx(Sx) Π (e1Gx + + enGx)
where e19 , en are the minimal idempotents of S. H, being the in-
tersection of compact sets, is closed in AutRx(Sx). We claim that H
is also dense in AutRx(Sx): for the family of normal weakly Galois
subalgebras of Sx which contain all the ei9 i — 1, , n, is cofinal, and
hence to establish the claim it suffices to show that if T is a sub-
algebra in the above mentioned cofinal family and g in AutRx(Sx) then
there is an h in H such that g \ T = h\T. But this is precisely what
was shown in (1.3). Hence H = AutRx(Sx).

Let g be any element of AutRx(Sx); by the above, g = eιgι +
+ engn9 where ĝ  is in Gx. Choose, by [10, 2.12], orthogonal idempot-
ents EL, " , En of S such that (E^x = e{. Let / be the sum of the
Eim

9 we can assume / is in R. Let T be a normal weakly Galois sub-
algebra of Sf containing E19* 9En. Choose h19 *--,hn in Gf such
that (h%)x = gi9 and let h = E,gγ + + Engn. Since (h | T)x - gx \ Tx

is an automorphism of Tx9 there is an idempotent e in Rf such that
he\ Te is an automorphism of Te. Hence by (1.2), he is an automor-
phism of Se. Then &' = (1 — e) + he is an automorphism of S such
that hx = g.

One can show by example that, under the hypotheses of (2.8),
Aut^S);, —> AutBx(Sx) need not be an isomorphism.

LEMMA 2.9. Let R be any commutative ring, x an element of
X(R). Then Hom^M", N)x-+ΈίomRx(Mx9 Nx) is one to one for all R-
modules M and N if and only if Rx is R-projective.

Proof. Suppose M is free, i.e., M = @R. We have the follow-
ing commutative diagram:

, N)
x
 > Rom

Rx
(®R

x9
 N

x
)

I i
(Π N). > J1(N.) •
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If the top map is one-to-one, so is the bottom, the vertical maps
being isomorphisms. Now let N = R and suppose the rank of M is
equal to the cardinality of x. Then if {/} is a sequence in Π ^ c o n ~
sisting of all the elements of x, we have {f}x —• {fx} = {0}. If the
map is one-to-one, then, we have {f}x = 0; thus there is an idempotent
h of R such that (1 - h) e x and k{f} = 0. Thus (1 - h)f = f for all
/ in x, and Rx — R(l — h), so Rx = Rh. Thus Rx is J?-projective.

If conversely Rx is protective, we have Rx = Re for some idempot-
ent e, and if M, N are iϋ-modules, clearly

HomΛ(Λf, N)®Re = HomΛβ(Λfe, Ne) .

LEMMA 2.10. Let R be any commutative ring. Then x in X(R)
is an isolated point if and only if Rx — R(l — /) for some (neces-
sarily minimal) idempotent f of R.

Proof. If x is isolated, then x — Uf for some idempotent /. Then
1 — e is in x if and only if Uf C Ue, i.e., if and only if fe = f, so
(1 — /)(1 — e) = 1 — e. Thus Rx = R(l — f). Now suppose, conversely,
that Rx = R(l — f) and y is any element of Uf. Then 1 — fey, so
Rx <̂  Ry. Let P be a prime ideal of R containing Ry; P Π B(R) is a
maximal ideal of B(R) containing both x and y, hence equal to both
x and y. It follows that Uf = {x}, and thus x is isolated.

We remark that by (2.9) and (2.10), if x is an isolated point of
X(R) then both the properties discussed immediately before (2.8) hold
for x: by (2.10), Rx = Rf, and hence

AutΛ(S) = AutRx(Sx) x AutΛ(1-/>(S(l - /)) .

Also, we many view (2.9) and (2.10) as evidence that the second pro-
perty will not hold unless x is isolated.

DEFINITION 2.11. Let S be a commutative i?-algebra. A sub-
algebra T of S is called separated if given s in S but not in T there
is a minimal idempotent e of R such that se in not in Te.

THEOREM 2.12. Let S be a normally Galois R-algebra, T a sep-
arated locally separable subalgebra. Then T = SAutT{S).

Proof. We need to show that if s is an element of S\T there is
a g in AutΛ(S) such that g(s) Φ s but g\T — id. Since T is separated,
there is an isolated point x of X(R) such that sx is not in Tx. By
(2.7), there is an h in A.\xtRx{Sx) such that h\Tx — id and h(sx) Φ sx.
Since x is isolated, there is a g in AutΛ(S) with gx = h (as maps).
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Considering g\ T, then, as an element of Honr^Γ, S) we have, by (2.9),
that (g\ T)x = gx\Tx — idx. By (2.10), there is a minimal idempotent
f of R such that Rx = #/; hence gf\Tf= id. Replacing g by (1 -
/) + 0/ then gives the desired automorphism.

Theorem (2.12) gives a sufficient condition for a locally separable
subalgebra of a normally Galois 2?-algebra to be the fixed ring of a
subgroup of AutR(S). We now consider hypotheses on R under which
the condition becomes sufficient.

Recall that a ring is said to be semi-hereditary if every finitely
generated submodule of a free module is projective. A ring is semi-
hereditary if and only if every finitely generated ideal is projective,
and hence a von Neumann regular ring is semi-hereditary.

THEOREM 2.13. Let R be a semi-hereditary ring and suppose
that every idempotent of R contains a minimal idempotent. Let S
be a normally Galois R-algebra and T a locally separable subalgebra
of S. Then T is the fixed ring of a subgroup of AutR(S) if and
only if T is separated.

Proof. By (2.12), we need only show that if T = SH for some
subgroup H of AutR(S) then T is separated. Let s be an element of
S and To a normal weakly Galois subalgebra of S containing s. Let
g be in H and consider the iϋ-submodule R{g(s) — s) of To; since R is
semi-hereditary, this submodule is projective. For any x in X(R),
(R(g(s) - s))x = Rx(gx(sx) - sx). Thus if gx(sx) = sx for all a; in a dense
subset of X(R), R(g(s) — s) would be a projective jR-module of rank
zero on a dense subset of X(R). Then since the rank function of a
projective module is continuous on X(R), R(g(s) — s) — 0 and g(s) = s.

The hypothesis on the idempotents of R means that the isolated
points of X(R) are dense. Thus if s is not in T, there is a g in H
with g(s) Φ s and hence, by the above, an isolated point x of X(R)
such that gx(sx) Φ sx. If e is the minimal idempotent of R such that
Rx = Re, Te = (SH)e = (Se)He = Sξx, so sx = se is not in Te. It follows
that T is separated.

The hypothesis that R be semi-hereditary was employed only to
show that if gx(sx) = sx on a dense subset of X{R), g(s) = s. A similar
result holds in general without hypotheses on R if we assume that s
is a separable element.

PROPOSITION 2.14. Let S be a normally Galois R-algebra, g an
element of AutΛ(S) and s a separable element of S (i.e., R[s] is a
separable R-algebra). Then g(s) = s if and only if gx(sx) = sx for all
x on a dense subset of X(R).
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Proof. Let To be a normal weakly Galois subalgebra containing
s. Let H be the subgroup of AutΛ(TΌ) generated by g\TQ, and let
T = T(f. H is finite [10, 2.16] and hence T is a strongly separable
iί-algebra. Let T = Γ[s]. T' is an epimorphic image of T<g>R[s],
hence separable, and T is contained in To, hence is strongly separable.
Since Γ g f , T i s a direct summand of T and Λf = T'/T is a finitely
generated protective iϊ-module. For each x in X(R), Tx = (Γ0)f% ϊ1* =
TJsJ and M, = Tx/Tx. Thus ^(sx) = sx if and only if Mx = 0. Thus
if gx(sx) — ŝ  on a dense subset of X(R), Mx has zero rank on a dense
subset of X(R); hence Λf = 0, T' = Γ and g(s) = s. The converse is
trivial.

With (2.14) available, it is clear that (2.13) can be proved with
the hypothesis of semi-hereditary replaced by the condition that any
element of any strongly separable i?-algebra is a separable element.
In fact, however, this condition on R is much stronger than semi-
hereditary. We shall show that it holds if and only if R is a von
Neumann regular ring.

PROPOSITION 2.15. Let R be a von Neumann regular ring, S a
strongly separable R-algebra. Then every element of s is separable.

Proof. Let s be in S. R[s] is finitely generated as an iϋ-algebra,
hence is separable if for each prime p of R (R[s])P is separable over
Rv. But since R is regular, Spec (R) = X(R) and hence we need to
show that each (2φ])x is separable to conclude the result. We have
(R[s])x = Rx[sx] ^ Sx, and hence, since Rx is a field and Sx is insep-
arable, R[s]z is i^-separable.

LEMMA 2.16. Let R be a connected ring and S a strongly sep-
arable R algebra not equal to R. If every element of S is separable,
every nonunit of R is nilpotent.

Proof. First observe that every subalgebra of S is separable: for
by hypothesis every finitely generated subalgebra is separable, and
hence every subalgebra is locally separable. Let T be a subalgebra
of S, and write T as the union of an ascending chain {ΓJ of separable
subalgebras. Since S is strongly separable, each of these subalgebras
is a direct summand of S. It follows that the ranks of the SITi must
properly decrease as i increases, and hence is constant for i ^ j , some
j . But then since T3 is a summand of T{ for all ί^j, and T{ and
T3 have the same rank, Tt = T3 for all i^j.

Now let b be a nonunit of R which is not nilpotent. Let m be
a maximal ideal of R containing b. We consider the subalgebra T =
R + mS of S. We will show that T Φ R and T Φ S. Thus T is a
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strongly separable ϋ?-algebra, not equal to R, such that every element
of T is inseparable, and [T: R] < [S : R]. By induction, then, we
have a contradiction. If T = S, S/mS = R + mS/mS = .β/ϋ? Π mS is
of rank <̂ 1 over R/m. This is impossible since S Φ R and hence
[S :R]>1. If Γ = R, Sb ^ iί so b annihilates S/R, which is a finitely
generated protective i?-module of rank grl. Let p be a prime of i?.
If 6 is not in p, Sp/Rp is zero since it is annihilated by a unit of Rp;
on the other hand [Sp/Rp: Rp] ;> 1. Hence 6 must be in p. But then
b is in every prime of R, hence nilpotent, contrary to assumption.

PROPOSITION 2.17. // every element of every strongly separable
R-algebra is separable, then R is a von Neumann regular ring.

Proof. Let x be a point of X(R); since R x R is a strongly
separable Λ-algebra, every element of Rx x i^ is separable over Rx.
Thus, by (2.16) every nonunit of Rx is nilpotent. Let r be in Rx with
r2 = 0. If r Φ 0, Rx[(r, 0)] is a separable subalgebra of Rx x i?x not
equal to Rx, hence of rank ^ 2 . Thus ϋ?x[(r, 0)] = Rx x i^.. But every
element of Rx[(r, 0)] may be written as t(l, 1) + s(r, 0) = (t + sr, ί)
for some s, ί in Rx. Hence there are s, t such that (t + sr, t) = (0, 1),
i.e., 1 = — sr. Thus r is a unit, contradiction. It follows that Rx

has no nilpotents, hence is a field, and since each Rx is a field, iϋ is
von Neumann regular.

This paper is based on the author's doctoral dissertation (North-
western, 1969). Thanks are due to Professor Daniel Zelinsky under
whose guidance this thesis was written.
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