
PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 2, 1970

THE STRICT TOPOLOGY ON BOUNDED SETS

F. DENNIS SENTILLES

If B is a Banach algebra with approximate identity and
the Banach space X is a left ^-module, the strict topology β
on X is the topology given by the seminorms x —» 11 T%\\, one
for each Te B. It is shown that β is the finest locally convex
topology on X agreeing with itself on the bounded sets in X,
and that in certain circumstances a single semi-norm α; —> ] 1 4̂_α? | J
determines β on each bounded set. It is then natural to in-
vestigate the sufficiency of sequences in determining the strict
topology. A study is made of the finest locally convex topology
on X having the same convergent sequences as β, and sufficient
conditions are given which place the strict topology in the
context of earlier sequential studies of other authors.

In [17] a study is made of the strict topology as defined above..
In [16] some partial results are given which make β the Mackey
topology o n l p , A crucial result is the extension of [7] to the general
setting of [17]. In this paper we present the proofs of this and other
results needed for [16] along with some improvements and more ap-
plication and exploitation, particularly to a study of sequences in Xβr.
where for example it will be shown that in the case of a countable
approximate identity for J3, a sequentially continuous linear operator
on Xβ is continuous.

2* The main result on bounded sets* For each r > 0 let Br —
{xeX: \\x\\ ^ r}. It follows readily from [14, Th. 2, p. 10] that ^ =
{WaX: W is absolutely convex, absorbent and for each r > 0 there
is a /3-neighborhood Vr of 0 such that WΓ\BrZ)Brf] Vr} forms a base
of neighborhoods of 0 for a locally convex topology on X which, fol-
lowing Dorroh [7], we will denote by β\ In the special case of
X = C(S) and B = C0(S), β' has proven useful in [4], [6] and [15]
and it was finally shown in [7] that β = βf on C(S). We will extend
this to the general setting in [17]. Notice that β' is the finest locally
convex topology on X agreeing with β on each set Br and that β ^ β'.
A general study of topologies defined in this way is made in [2]

Before going further, the reader familiar with [17] will recall the
introduction of another norm (a more natural one) defined by ||α?||' =
sup {|| Tx\\: TeB, \\ T\\ ^ 1}. These norms are equivalent if and only
if the β bounded sets are bounded in the given norm on X [17, Th..
4.6] and [17, Corollary 4.7] are equivalent whenever Xβ is complete
Let β" denote the finest locally convex topology on X agreeing with
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β on each set B'r = {xeX: \\x\\' ^ r). Since p | | ' ̂  | |$ | | clearly β ^
β" S β'- All further notation is taken from [17].

THEOREM 2.1. If We 7/^ is β-closed, then W is a β-neighborhood
of 0.

Proof. By hypothesis and [17, Th. 3.1], for each positive integer
n there is a TneB such that WΓ\Bnz)BnΓ\Vn where F^^fxeX:
|| 7 > | | ̂  1}. Hence T7=)U~=i (BΛn Vn) and therefore

W° - {x'eX'β: \<x, x'>\ ^ 1 for all xe W}aΓ\ (Bnf) Vn)° .
Λ = l

We will show that lim^ sup {|<a?, xf - Eλ — xry\: x e Xe, \\x\\ ̂  1} = 0 uni-
formly on x 'e W°.

Let ε > 0 and choose n with 1/π < ε/2. Then there is a λ0 such
that λ ^ λ0 implies || TnEλ - Tn\\ < 1/n. For xeX9,\\x\\^l let ^ =
n{Eλx - x) for λ ^ λ0. Then (l/2)yλeBnf]Vnc:W since | | ^ | | ^ 1 .
Therefore if x'e W°, then |<(l/2)^, ^ > | ^ 1 or |<^a? - α?, x'>| =
\ζx, x' Eλ- x'}\ < 2/n < e for all λ ^ λ0 and | |g | | ^ 1.

Finally since W is absorbent in X then W° is bounded in X^ and
applying [17, Th. 4.8(2)] one has that W° is equicontinuous in X'β
and hence that W°° is a /3-neighborhood of 0. Since W is /9-closed
and absolutely convex, W = W°° and the proof is complete.

THEOREM 2.2. β = β" = β'.

Proo/. It suffices to show /S = /9r. From [14, p. 12] β' has a
ΐase of / '̂-closed absolutely convex neighborhoods of 0. If we can
show that the /S'-closed convex sets are /3-closed then by Theorem 2.1
we are through. By [14, p. 34] the closed convex sets are the same
in any topology of a dual pair. Hence it suffices to show that the
^'-continuous linear functionals on X are /3-continuous.

Let / be a /S'-continuous linear functional. We can consider feX'
and X' is a right Banach J5-module under the multiplication (x' T){x) =
x'(Tx). By [17, Th. 4.1(1)] and [13, Proposition 3.4] it suffices to show
that \\mλsvφ{\f{Eλx — x)\: xe X, \\x\\ ̂  1} = 0. If this were not so
there would exist an ε > 0 such that for each λ there is a λ' ;> λ
and an xλ, eX, \\xx,\\ ̂  1, such that \f(Ex,xλ, - xλ,)\ ^ ε. Let Γ =
{λ'eΓ: there is an xeB, such that \f(Ex>x - x)\ ^ ε}. Then Γ is a
nonempty directed set and if xv e {x: \f{Eλ,x — x) \ ̂  ε} for each λ' e Γ\
then H&JtH l̂ and yλ, — Evxv — Xι, is a net in Xfor which | | ^ ^ — x^| |^2.
Furthermore if d > 0 and 76 5 then there is a λ0 and a λj e Γ' such
that λ ^ λj ^ λ0 implies || TEλ - T\\ < δ. Thus V e Γ', λ' ^ λj implies

Λ Of

\\T(Eλ.xλ,-xλ)\\<δ. Therefore yλ,—^->0. But being bounded, 2/^-^0
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and therefore \f{yχ)\ ^ e—*0, a contradiction.
Consequently β is the finest locally convex topology on X agreeing

with β on each set Br1 extending the result of [7] to the general
setting. This is an improvement over [16] which was not apparent
until the topics in §4 were considered. From this we can obtain a
kind of minimal Banach algebra B defining the strict topology of a
given B on X. Let Bo denote the minimal closed subalgebra of B
containing all the Eλ. Let β0 denote the strict topology on X defined
by BG.

COROLLARY 2.3. β = β0.

Proof. Clearly β0 ^ β and tc <^ β0 where K is defined in [17].
But by [17, Th. 3.3(2)], tc = β on each set Br so that β = β0 on each
set Br. Hence β ^ β'o and by Theorem 2.2 β = β0.

COROLLARY 2.4. // EλEμ = EμEλ for all λ, μ e Γ, then β is de-
fined by the commutative Banach algebra Bo.

Regarding Corollary 2.4 we point out the result in [11] that if B
is a C*-algebra with a positive element then B has a countable com-
mutative approximate identity and conversely. Finally from the de-
finition of β' we have

COROLLARY 2.5. If E is a locally convex space and L is a linear
operator on X into E then L is β-continuous if and only if L is β-
continuous at 0 on each Br. Consequently if E is complete, then
Jzf(Xβ, E) — {L: Xβ—>E:L is continuous} is complete under the topology
of uniform convergence on Bγ.

3* The case of a countable approximate identity* In this
section we obtain the very useful result that the strict topology on
each Br is determined by a single element AeB when, for example,
B has a countable approximate identity.

In [17] it is seen that Xe = {Tx: TeB, xe X} = {xe X: \\Eλx-x\\-*0}
is a norm closed, /9-dense subspace of X. Let U = {xeXe: \\x\\ ̂  1}
and U° = {xr e X'e: \ζx, O l ^ 1 for all xe U}. If TeB, then thinking
of Tas a continuous linear operator on Xβ into Xe, we have T'(Xr

e)aXβ
where T'x'{x) = x'(Tx) = x' T(x) in the notation of [17].

THEOREM 3.1. Let Fn be a bounded sequence in B such that
Fnx —>x strictly for each xeX and let 1 ^ an —» <x>. Then

(a) H — UΓ=i (l/an)F'n(U°) is β-equicontinuous
(b) There is an AeB such that x —>Ax is one-to-one on X and
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\\FnA~'\\ - sup{\\FnA^y\\:yeA(X), \\y\\ ̂  1} g an.

Proof. It is apparent that we can assume 11 Fn \ \ g 1 for each n.
Furthermore since H is bounded, then H° = {xeX: \(x, xry\ <̂  1 for
all x' G if} is /3-closed, absolutely convex and absorbent in X. If r > 0
and ak > r for k >̂ iV, then it quickly follows that i ί ° f]BrZ)Br Π F,
where F is the /3-neighborhood of 0, V = {x: \\Fnx\\ ^ an for w =
1, 2, , N}. By Theorem 2.1 if ° is a /2-neighborhood of 0 and hence-
H is equicontinuous.

Furthermore since H° is a /S-neighborhood then by [17, Th. 3.1]
there is an AeB such that iί°^{α;: \\Ax\\ ^ 1}. Thus if Aτ = 0 then
axeH° for any α: > 0 and consequently for all a > 0 one has
|<<ra, (l/αw)F.V>| ^ 1 for all x'e U°, or \<Fnx, x'>\ ^ αΛ/α, which im-
plies Fnx = 0 for each n, since Fnx e Xe. But since Fnx —* x in the
strict topology (which as defined in [17] is Hausdorff) one has x — 0
and A is one-to-one.

Finally if y = Ax, \\y\\^l, then x e H° and again \<x, (l/an)FZx'>\ =
-1^, a;'>| ^ α w for all x'eU°. Consequently [{FnA-ι\\^an on

Consequently if B has a countable approximate unit {En}, then
there is a one-to-one i e ΰ such that \\EnA~ι\\ ^ an on A(X) for a
given sequence αw —> OQ. Conversely, suppose there is an A e 5 which
is one-to-one and for which aλ = H^A""1!! = sup {\\E}A~ιy\\: y e A(X),
\\y\\ ̂  1} < °° for each λ. Then since {Eλ} is an approximate identity
for B one can choose a subsequence Fn = Eχn with Xn ^ λw_x such that
\\AFn- A | | — 0 and | | F % A - A | | — 0 . We "then have

THEOREM 3.2. (a) F%x —* cc m ίfee strict topology, (b) // A(X) is-
dense in XeJ then \\Fnx — x\\—>0 /or all xeXe.

THEOREM 3.3. // ω denotes the norm topology on X defined by
the norm x —> 11 Ax \ \ then

(a) tc ^ ω ^ β (see [17, Th. 3.3]).
(b) K = ω = β on each set B'r.
(c) If X is ω complete or Xβ is complete and sup ; l j& .A"1!! < cor

then β is the given norm topology on X.

Proof of 3.2. (a) For a fixed λ, \\Eλ{Fnx-x)\\^\\EλA-'ι{AFn-A)x\\^

aλ\\AFn - A | | ||a;|| — 0 as n—> oo. Since {Fnx} is bounded in X then

Fnx-£->x by [17, Th. 3.3(4)].

(b) If yeXe, ε> 0 and \\Ax - y\\ < e/3, then for n :> N such
that ||FΛAa; - Aίc|| < ε/3, we have \\Fny - y\\ < ε.

Proof o / 3 . 3 . (a) Clearly ω <Ξ /9. Since /c is defined by t h e
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seminorms #—• \\Eλx\\ and the sets {x: \\Eχ.x\\ ^ ε,X19 •••, X%eΓ} form
a base of neighborhoods for K and \\Ax\\ ̂  min {ε/(a2. + 1): 1 ^ i ^ n]
implies \\Eλ.x\\ ^ H ^ v ^ l l \\Ax\\ < ε, then Λ: ̂  ω.

(b) This follows*from [17, Th. 3.3(2)].
(c) If X is α)-complete and A#Λ —•» y e X then {#„} is ω-cauchy

and there is an xe X such that Ax = y. But then A has closed
range and by [17, Th. 2.4 and 3.2], β is the given norm topology on
X. In the case that M = sup* 11Ĵ A-111 < oo, if | | A a | | ^ l then
\\Eλx\\ ^ Λf for all λ. Hence the /3-neighborhood F^ = {x: \\Ax\\ ̂  1}
is /3-bounded and it quickly follows that p(x) — inf {λ: x e XA} is a
norm giving the strict topology on X. Since #>(&) <̂  | |A| | | | # | | and X
ΐs complete it follows from the open-mapping theorem that the β and
norm topologies are equivalent.

The sequence {Fn} in 3.2 need not be an approximate identity for
B. For example if S is the union of two disjoint σ-compact spaces
S, and S2 and if B = C0(S) with X = {feC(S):f~ 0 on S2} (where
fe C(S) if and only if / is bounded and continuous) then there is a
^eCo(S) such that φ == 0 on S2, /—>φf is one-to-one on X and {Fn}
would only be an approximate identity for C0{S^).

The results above, particularly 3.3(b) were crucial to the proof
of the main theorem in [16] because of a particular use of the follow-
ing observation.

COROLLARY 3.4. Under the conditions of 3.2, if E is a locally
convex space such that continuity of a linear mapping on E is deter-
mined by continuity on bounded sets in E and L: E —> X is bounded,
then L: E —> Xβ is continuous if and only if L: E —* Xω is continuous.

Consequently although the strict topology is in general not barelled,
bornological or Frechet (see [17]), continuity on Xβ is determined on
bounded sets and continuity into Xβ can be determined in the case
just described by a single AeB.

4* Sequences in Xβ. The above results along with [17] indicate
that the strict topology has some rather nice properties. In particular
in the light of 3.3(b) and §2 one naturally wonders—when are sequences
-enough? In considering this question we were fortunate to come upon
the work of Webb [18] and Dudley [8]. Following Webb's notation
we denote by β+ the finest locally convex topology on X having the
same convergent sequences as β. By [18, Proposition 1.1], ^ = {VaX:
V is absolutely convex and each /9-null sequence is eventually in V}
is a base at 0 for the topology β+. Clearly β <̂  β+ so that X'βczXβ+.
(Note also [17, Th. 3.3] that a sequence {xn} is /9-null if and only if
it is || ^-bounded and Eλxn—+0 for each λ.)
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Furthermore, if X% — { / G Γ : / W - ^ 0 for each /3-null sequence-
{xn}}, then X;+ = Xf = Xj+ = {fe X':f(xn)-»0 for each /3+-null sequence
{xn}}. Also by [18, Proposition 1.9], feXf if and only if N(f) =
{#:/(E) = 0} is /3-sequentially closed. Finally, a set KaX£ is called
/S-limited if every /9-null sequence {xn} converges to zero uniformly on.
K and by [18, Proposition 1.3], β+ is the topology of uniform con-
vergence on the /9-limited subsets of X~£.

Dudley [8] takes a more general approach to sequential properties'

and we list his definitions in our context for purposes of discussion.

If {xn}aX and xn >x (or equivalently xn >x), we will writer

xn - ^ x where C = C(β) [8, p. 484]. Then T(C) = {UaX: x e U and
c

xn > x implies xn e U for n ^ (some) AT}, while ΓC(C) = {VczX: x e V
implies there is a convex Ue T(C) such that x e Ucz F} Both T(C) and
TC(C) are topologies on X. While (X, !\C)) need not be a topological
vector space it is straightforward to verify that β^ = ΓC(C) since TC(C)
is a locally convex linear topology for X [8, pp. 492-3]. Among other
special spaces, Dudley goes on to single out spaces which he calls CS..
From what we have noted and [8, p. 493], Xβ+ is a CS-space since
Tΰ(C(β+)) = TC(C) = β+ and so X? is a CS-space when β = /S" and
conversely. Hence when β = β+ [8, §6] applies.

We begin with a study of when β = β+ and then go on to show
that the ideas developed in § 3 fit nicely into another general structure-
considered by Dudley.

The next result can be proven for arbitrary locally convex spaces.
E with suitable definitions, as is apparent from the proof, but we will
state it only for the case E — Xβ.

THEOREM 4.1. If β = β+, then every β-sequentially continuous-
linear operator L on X into a locally convex space F is continuous'
on Xβ. Conversely, if every β-sequentially continuous linear operator
L on X into any space C(T) of all hounded continuous functions on
T with the sup norm topology is continuous, then β = ,8~.

Proof. If V is an absolutely convex neighborhood of 0 in E,.
then L~\V) is a /S+-neighborhood of 0 when L is sequentially con-
tinuous. Hence L is /3-continuous when β = βJ\ Conversely, let T
be a /S-limited subset of X'β and give T the weak* topology. If x e X,
then the restriction Lx of x to T is a bounded continuous function on
T. The correspondence x—+Lx defines a /S-sequentially continuous
linear operator on X into C{T) because T is /5-limited. If L is β-
continuous then {x: sup^ e Γ K&, #'>i ^ 1} is a /9-neighborhood of 0, and
at the same time is the polar of T in X. By [18, Proposition 1.3}=
this means β — β^.
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At this point we will give some results on special cases of the
strict topology with interjections of more general results; hopefully
the two will illuminate one another. In the sequel S is a locally com-
pact, Hausdorff space and the strict topology on C(S) is defined by
the algebra C0(S).

THEOREM 4.2. S is pseudo-compact if and only if β+ is the norm,
topology on C(S).

Proof. If S is pseudo-compact and /n—>0 in the strict topology
then by [1, Th. 2], ||/Λ||—>0 since fn-+0 uniformly on compacta..
Hence β+ is finer than the norm topology and thus equivalent. Con-
versely, suppose β+ is the norm topology on C(S). By [1, Th. 3 and
1] it suffices to show that if % is a countable, locally finite disjoint
collection of open sets in S, then <2S is finite.

For each Un^^ there is a gn e CQ(S) such that 0 ̂  gn <J 1, gn(x) = 1
for at least one xe Un and gn = 0 on S\Un. Let fn = max {gk: l<^k<^n\
and / = max {gk: k = 1, 2, •}. Because ^ is locally finite, /Λ —>/ in
the compact open topology and since the fn are all bounded by 1,
/»—>/ in the strict topology. This also means that feC(S). Since
β+ is the norm topology, then |(Λ — / | | —>0 and if ^ were not finite,
this would lead to a contradiction.

The next few results consider the general case and indicate that
the relationship between β and β+ is intimately related with the
topological structure of S in the case of C(S), while in the general
case, it appears that a characterization of equality for these two
topologies when B does not have a countable approximate identity
must involve the topological relationship of Xe to X.

THEOREM 4.3. // there is a norm η on X which gives the strict
topology at 0 on each set Br1 then β = β+.

Proof Let U be an absolutely convex /^-neighborhood of 0 in
X and let W = {x: τη{x) ^ 1}. Let r > 0 be fixed. If there is no
α > 0 such that Uf)BrZ)BrΓ\aW1 then for each n there is an
xn e Br n (1/ri) W such that xn g U. But then η{xn) ~> 0 and hence xn e U
eventually. By Theorem 2.2 U is a /S-neighborhood of 0.

COROLLARY 4.4. If B has a countable approximate identity or
the hypothesis of Theorem 3.2 holds, then β — β+ and any β-sequenti-
ally continuous linear operator on X is β-continuous.

Proof. For the norm η(x) — \\Ax\\ satisfies the conditions of 4.3
according to 3.3(b).
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The next corollary is another version of the result given in [4,
Corollary 6.2].

COROLLARY 4.5. If S is σ-compact, then β — β+.

This brings up an interesting problem. Characterize those S for
which β = β+. In particular, is β — β+ when S is paracompact (and
perhaps even metrizable)? This case falls in between the extremes of
-S σ-compact and S pseudo-compact. Recalling [5, Th. 2.6], that β is
the Mackey topology on C(S) when S is paracompact, it is sufficient
t o show that C(S)$ — C(S)'β in order to obtain β = β+. Referring to
[17], [4, Th. 4.2], and the usual decomposition of a linear functional
into its positive and negative parts, one needs to prove or disprove
t h a t a positive /3+-continuous linear functional F has the property
that F(ψκ — 1) —• 0 where {φκ} is a β-totally bounded approximate
{net) identity for C0(S). After some consideration of even the case of
d(S)β9 S discrete (studied by Collins [3]) there appears to be no obvious
answer. The work of Glicksburg [10] is related to this problem but
i t too does not appear to provide a definitive conclusion. Finally,
Theorem 4.1 above and [16, Th. 2.1] indicates a relationship of sorts
between the β+ and Mackey topologies on C(S)β.

Returning to the general case, the converse of Theorem 4.2 does
not hold. To see this let X be a Hubert space and let B be the
algebra of compact operators in X. The strict topology is then the
topology of uniform convergence on compacta in X and is the finest
locally convex topology agreeing with the weak topology on each Br

[17], [12]. Consequently a strictly convergent sequence is bounded
and weakly convergent and conversely. Hence β+ is the finest locally
convex topology on X having the same convergent sequences as the
weak topology and

THEOREM 4.6. For B and X defined as above β = β+. When H
is not separable there is no norm giving the strict topology on each Br.

Proof. Since β+ is coarser than the norm topology on the reflexive
space X and since β is finer than the weak topology on X, then X'β =
X$ = X. Let K be a /3-limited subset of Xf. From our remarks
above and [18, Proposition 1.3] it suffices to establish that K is norm
relatively compact.

If this were not so then there is an ε > 0 and a sequence {xn}czK
such that \\xn — xk\\ ^ ε for k < n. Since K is norm bounded and
X = X', then by the Eberlein-Smulian theorem [9, V. 6.1] there is an
x e X and subsequence {xnjc} c {xn} such that xnjc —> x weakly. Since
1 !*»*+! ~ x*kW = ε> t h e r e ί s a Vk^X such that \\yk\\ ̂  1 and
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I (̂ "jfe+i "~ x*> y^ I > εl^ Again by the Eberlein-Smulian theorem there
is a | / G Z and a subsequence {ykά}c{yk} such that ykj—+y weakly.
Hence ykj—*y uniformly on the /^-limited set K and there is a j 0

such that j ^ io implies |(xn., ykj — y)\ < ε/8 for all i. Hence ε/4 >
|(a?Λ.+1 - a?Λ., ί/fti)| - |(a?»ί+1 - xn., y)\. Then there is a &0 such that
k^ k0 implies |(xn k + 1 — x»k, y)\ < d for a given δ > 0. If j" ̂  j 0 such
that A;,- > kQ, then ε/4 > | (x»kJ+1 - a?njfei, % ) | - δ > ε/2 - δ. Hence
£/4 > ε/2 — δ for all <5 > 0 and this is a contradiction.

Finally, if there is a norm on X giving the strict topology on
each Br, then by [9, V. 5.2], X = Xf is separable.

The next two results are easy consequences of previous work. In
both of the special cases considered above, X = C(S) or X a Hubert
space, it is well known that a norm-continuous linear functional on
Xe has a unique /S-continuous extension to X.

THEOREM 4.7. Let ζ be a topology on X which is finer than β
and having the same bounded sets. If each ξ-continuous linear func-
tional on Xe is β-continuous on XeJ then (in the topology of uniform
convergence on the ζ = β bounded subsets of X) X'ζ is the algebraic
and topological direct sum of Xr

β and the orthogonal complement of
Xe in X'ξ.

Proof. By [17, Corollary 3.4], Xe is /9-dense in X and hence the
restriction of an x' e XI to Xe has a unique /3-continuous functional J(x')
on X. Since J2 = J and J is continuous (because β and ξ have the
same bounded sets), then by [14, Proposition 30, p. 96], X* is the
algebraic-topological direct sum of X'β and X° = J-^O).

COROLLARY 4.8. // each β+-continuous linear functional on Xe

is β-continuous, then
(1) X$ = Xe° 0 Xβ topologically and algebraically where X°e =

{xf e Xp. x' = 0 on X.),
and (2) Xf = X'β if Xe is β+-dense in X.

Proof. For since β <£ β+ any /3+-bounded set is /S-bounded while
if M is /S-bounded and V is a /S+-neighborhood of 0 such that
jχneM\nV for all n, then {(l/n)xn} is /9-null but not eventually in F,
a contradiction. Hence β and β+ have the same bounded sets and
4.7 applies.

The introduction of the idea of a single AeB which determined
β on each Br was a device for obtaining the main result in [16, Th.
5.1]. This idea dovetails nicely with a structure studied by Dudley
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[8, §'s 7 and 8]. Throughout we suppose AeB has the properties
a s s u m e d for T h e o r e m 3.2. L e t p{x, y) = \\Ax — Ay\\,f(x) — \\x\\' =
sup{| |Tk| |: TeB, \\T\\ ̂  1}. In the notation of [8, §5], C(ρ, f) is, by
Theorem 3.3(b) and [17, Th. 3.3], C(β) = /3-convergence of sequences,
and (X, p, f) is a simple quasi-metric space. In the terminology of
[8] we will prove

THEOREM 4.9. (a) (X, C{β)) = (X, C(ρ, /)) is an L*-convex, L*-
linear space which is also an LS-space (by (p, /)).

(b) (X, p, f) is a simple quasi-metric linear space.

Proof, (a) Prom [8, p. 492], (X, C(ρ, /)) is an L*-linear space
because Xβ is a linear topological space and C(p, f) — C(β) as noted
above.

To see that (X, C(ρ, /)) is L*-convex, let {xn} be a β = C(ρ, f)
null-sequence. By the definition [8, p. 496] it must be shown that if
yk is a convex combination of {x3-: j ^ k), then {yk} is /S-null. If yk =
Σ5έfc asxs, Σ ? ^ % = 1,^. ^ 0 for all i , then || An\\ £ max {|| Axs\\\
k ^ j ^ £>&}. Since | | A ^ | | — 0̂ and A determines β on bounded sets>
and {xn} and {7/%} are bounded, we are through.

Finally (X, C(ρ, /)) is an LS-space because p is an invariant
metric and / is an LS-function [8, p. 496]. This last follows because
f(x) = | | α | | ' = sup {[[ Tx\\: TeB, || T\\ ^ 1} and consequently xn-+x in
C(ρ, f) implies that f(x) ^ l imsup/fe) .

(b) By [8, p. 496] (X, (O, /) is simple quasi-metric linear because
(X, C(ρy /)) is an L*-linear space.

As noted previously C(β) = C(ρ, f) and hence C(β+) = C(/O, /). .
But also as noted at the beginning of this section β+ = Tc(C(β)) so
that β+ = Γc(Cdo, /)) and [8, Th. 7.3] gives a new characterization
of the /3+-neighborhoods of 0 in X. Furthermore in this setting
β — β+f by Corollary 4.4; hence this amounts to a new characteriza-
tion of the /3-neighborhoods of 0 in X. That is, from [8, Th. 7.3].

COROLLARY 4.10. Under the hypothesis of Theorem 3.2, for each
sequence of positive numbers {δn}, let U{dn} = {Σ£=1 wft: wneSnVA

iΓ\Bf

n}
where VA — {xeX: \\Ax\\ < 1} and Bf

n = {x: \\x\\' ̂  n}. Then the col-
lection of all sets U{dn} is a base for the neighborhood system at 0
for the strict topology.

COROLLARY 4.11. Under the conditions of Theorem 3.2, with
C = C(β), β = TC(C) is the finest topology T weaker than T(C) such
that Xτ is a topological linear space.
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Proof. Referring to [8, Th. 7.4] we simply recall that under
these hypotheses, β = TC(C) by Theorem 4.3.

Finally, Dudley [8] goes on to study complete LS-spaces and our
final theorem shows that (X, C(β)) is complete by (p, f) when Xβ is.
complete so that the results of [8, §8] apply.

THEOREM 4.12. If Xβ is complete, then {X, C(β)) is complete by
(i°> /) and conversely.

Proof. By definition, if {xn} is a C(β) = C(p, /)-cauchy sequence
then xn — xm{n) —>0 in C(p, f) for any choice of m(n) ̂  n for all n*
Suppose {xn} is not bounded in the || | |'. Then there is a sequence
m{n) ^ n such that f{xm{n)) ^ f(xn) + n where f(x) = ||a?||' as before.
Since xm{n) - xn-*0 in C(ρ, f) then {f(xm{n) - xn)} is bounded by de-
finition. But f(xm{n) — xn) ^ /(a?«(n)) — ZOO ^ n a contradiction.

Since {xn} is || Unbounded and ρ(xmin) - xn, 0) = \\A(xm(n) - a?Λ) |H0,
then by Theorem 3.3(b), {xn} is /3-cauchy, hence /3-convergent to some
x e X. But then {xn} is C(/3)-convergent to x and (X, C(β)) is complete.

Conversely if (X, C(β)) is complete by (p, f) then by Theorem
4.9(a) and [8, Th. 8.1], X is complete for TC(C). But β = TC(C) as.
noted above.

Unfortunately, Theorem 4.12 along with 4.6 implies that [8, Th-
8.2] is false. In the notation of [8] and Theorem 4.6, if ytr = {N(x)ι
N(x) = \(x,y)\ for some y e H, \\y\\^l) then M(x) = sup {N(x): Ne^K) =

||351|, and hence Λf cannot be a continuous pseudo-norm for TC(C) =
/S+ = /3. Prof. Dudley acknowledges this and has pointed out to me
that [8, Th. 8.3] is probably also false, being dependent on 8.2. I t
does appear however that the strict topology possesses several nice
sequential properties and that Xβ is a complete LS-space for a wide
choice of B and X.

Remark added in proof. Because the β and norm topologies on
X are locally convex, the mixed-topology defined by these [A. Wiweger,.
Linear spaces with mixed topology, Studia Math. T.XX (1961), 47-68]
is locally convex. By Theorem 2.2 and [Wiweger, 2.2.2] β is then the
mixed topology and hence is the finest linear topology agreeing with
itself on each Br.

Regarding the paragraph following 4.5, L[0, 1]̂ + = L[0, l\β —
ZJO, 1] from 4.8 and the assumption of the continuum hypothesis,
which implies that [0,1] has nonmeasurable cardinal and hence that
[0,1] has no atomless measure defined on all subsets. Hence the
matter appears to ultimately concern the so-called "problem of measure"
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for which H. J. Keisler and A. Tarski, From accessible to inaccessible
cardinals, Fund. Math. 53 (1964), 225-308, and S. Ulam, Zur Mas-
-stheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930),
141-150, are appropriate references.
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