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INTERSECTION REPRESENTATIONS
OF GRAPHS BY ARCS

PETER L. RENZ

In this paper we investigate relationship between the in-
tersection pattern of families of arcs in a graph H and the
structure of H. Some steps are made toward an effective
characterization of such patterns when H is an acyclic graph.

An intersection representation of a graph G is a function r from
V(G), the set of vertices of G, into a family of sets F such that
distinct points vι and v2 of V(G) are neighbors in G precisely when
r(v^} Π r(v2) Φ 0 . The graphs G which admit intersection representa-
tions where the family F is a family of intervals in a linearly ordered
set have been characterized (Lekkerkerker and Boland [5], Fulkerson
and Gross [2], and Gilmore and Hoffman [1]). A. C. Tucker [6] has
made considerable progress in characterizing those graphs G which
admit intersection representations where F is a family of arcs in a
circle. Our major concern here is the characterization of graphs which
admit intersection representations where the family F is a family of
arcs in an acyclic graph, or tree. These graphs G are characterized
by Theorem 4.3 as being rigid circuit graphs which have the additional
more complex property of normality defined below.

An arc is for our purposes either the empty set, a single vertex
of a graph, or the set of edges and vertices of a simple path which
includes its endpoints. This definition is the analogue of defining a
topological arc to be either the empty set, a single point, or a set
homeomorphic with the closed unit interval. The inclusion of the
empty set and single points is a bit unusual but it will simplify some
of the definitions and theorems which follow. The above makes clear
what is meant when we say that r is an intersection representation
of a graph G by arcs in a graph H. Such a representation r is called
semi-normal if r(v) Π r(w) is an arc in H for all v, w e V(G). We
say that r is normal if Π [r(v) \ v e S} is a nonempty arc in H when-
ever S c V(G) spans a nonempty complete subgraph of G. A graph
G is called normal (semi-normal) if it admits a normal (semi-normal)
intersection representation by arcs in some graph. Semi-normality and
normality are basic assumptions of our approach. Our graphs will
always be finite and free of loops and multiple edges. The main posi-
tive result proved is the following.

THEOREM 4.3. A graph G has an intersection representation by
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arcs on an acyclic graph if and only if it is a normal rigid circuit
graph.

The following argument leads to a useful remark on normal re-
presentations and acyclic graphs. Suppose that H is an acyclic graph
and G has an intersection representation p by paths in H. Arguing
by using by Euler characteristic (see, for example, Lefshetz [4] and
Klee [3]) one may prove that p must be a normal representation. It
is not difficult to see that if H contains a cycle then some graph has
a nonnormal intersection representation by arcs in H.

REMARK 1.1. A graph H is acyclic if and only if every intersec-
tion representation by arcs in H is normal.

2* Reduced normal representations* Soon we will restrict our
attention to representations on acyclic graphs. We have shown that
such representations have the virtue of being normal. We will say
that G is represented on H if the arcs {p(v) | v e V(G)} cover H. The
virtue of a normal representation of G on H is that one may identify
the maximal complete subgraphs (cliques) of G with intervals in H
and then shrink these intervals in H to points to obtain a new graph
H\ This shrinking induces a representation of G on a graph H'
having the property that the vertices of Hr may be identified with
the cliques in G. This reduction will enable us to restrict our atten-
tion to graphs whose vertices are cliques in G and whose structure is
closely related to that of G. The exact nature of this reduction will
be made precise below.

A graph homeomorphism from the graph H to the graph Hr is a
map q of V(H) into V(H') with the following property. For distinct
kr and V in V(H') there is an edge between k' and V in H' if and
only if there are k and I in V(H) such that kf — q(k), V = q(l) and
there is an edge between k and I in V(H). A section graph of a
graph H is a subgraph K of H such that the inclusion map from
K to H is a graph homeomorphism. If K is a section graph of H
then every graph homeomorphism of H induces a natural graph homeo-
morphism on K. A graph homeomorphism q, as above, is connected if
q~ι of the vertices of a connected section graph H' always gives the
vertex set of a connected section graph in H. A representation p of
G on H will be called simple if given h e V{H) there is a subset S
of V(G) having the following property :

The connected component of n {p(s) \se S}

containing h consists of h alone.
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Notice that for a fixed h e V(H) and a fixed representation the union
of sets S possessing the above property also possesses the above pro-
perty. Thus, if any such S exist for h and r, we define S(h) to be
the maximal set with the above property. Notice that S(h) always
spans a complete subgraph of G whenever S(h) is defined.

LEMMA 2.1. Let p he a (semi-normal, normal) intersection re-
presentation of the graph G by arcs on the graph H. Then there is
a graph Hr and a natural connected homeomorphism q of H onto Hf

such that pq is a simple (semi-normal, normal) representation of G
on Hr.

We omit the proof of Lemma 2.1 which proceeds by straightfor-
ward induction on a cardinality of V(H). This lemma leads to more
complete results for normal representations. We give a few preliminary
definitions. For a graph G let G* be the family of all maximal
complete subgraphs of G. Let ,yK(G*) be the nerve of G* (see, for
instance, Lefshetz [4] for the topological notions of nerve and 1-skeleton).

Let p, q, H, Hr and G be as in Lemma 2.1. Let p be normal and
set r = qp. Then r is normal and simple. The map S is defined as
above on V(Hr) relative to r. It should be clear that S(h) = {s e
V(G) I h e r(s)} for he V(H'). We show that this map gives an embed-
ding of H' as a vertex spanning subgraph of the 1-skeleton of «^"*(G*).
In showing this it is helpful to define R(T) = Π {r(t)\te T) for T a
V(G). By the simplicity of r, R(S(h)) = h for h e V(H'). Since r is
normal we then have S(h)eG*. Thus S maps the vertices of Hr into
the vertices of ^K(G*). Since R is an inverse for the mapping S, S
is injective. Let TeG*. Since r is normal R(T) is a nonempty arc
in H'. If h is a vertex of R(T) then S(h) =) T and S(h) spans a
complete subgraph in G. Hence S(h) — T and R(T) — h is a vertex
of H\ We note that this shows also S(R(T)) = S(h) = T so that S
is an inverse for R and the maps are therefore bijections.

If h and k are neighbors in H\ since r represents G on H', there
is some g e V(G) such that r(g) covers the edge in Hr connecting h
and k. Thus r(g) e (S(h) Π S(k)) and hence there is an edge between
S(h) and S(k) in the 1-skeleton of ^/K(G*). Thus S provides a graph
isomorphism of Hf onto a subgraph i ί of the 1-skeleton of ^Γ{G*)
such that K includes all the vertices of ^/^(G*).

Consider the representation Sr of G on iΓ. The vertices of K are
the elements of G*. For TeG* and t?e F(G) we have the following.
If ve T then R(T)er(v) so Γ = S(R(T)) e S(r(v)). Conversely if Te
S(r(v)) then v e T because every clique in S(r(v)) includes v. Thus
ve T if and only if TeS(r(v)). All of this leads to the following.
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COROLLARY 2.2. Let p be a normal intersection representation of
the graph G by arcs on the graph H. Then there is a connected
graph homeomorphism f of H onto a subgraph K of the 1-skeleton of
^T(G*) such that

(1) fp is a normal intersection representation of G by arcs in
K.

(2) K includes all of the vertices of ^//"(G*), and
(3) The vertices of fp(v) are {TeG*\veT} for all ve V(G).

The proof follows from the remarks above where we take / = Sq
with q as in Lemma 2.1.

It is worthwhile noticing that the construction of the homeomorphism
/ in Corollary 2.2 is independent of arbitrary choices, although this
has not been made explicit. The representation which any normal
representation induces on a subgraph of the 1-skeleton of ^KiG*) is
the canonical reduced form for that representation.

3* Normal representations and the Euler characteristic. We
will suppose that the graph G has a normal representation p on the
graph H. Let ^V"(G*) be the nerve of G* and let χ denote the Euler
characteristic (see, for instance, Lefshetz [4] for the topological notion
of Euler characteristic and Klee [3] for the notion of a combinatorial
Euler characteristic). Define E(G) by E{G) = %(^V{G*)). Let α0 be
the number of connected components of G (and therefore at Λ^(G*)).
If H is thought of as a simplicial 1-complex embedded in E3 we may
use Klee's theory of the combinatorial Euler characteristic to compute
χ(H) as below. We note that {p(v) \ v e V(G)} is a cover of H. Further-
more, for any S cz V(G),

(0 if n {p(s)\seS} is empty
χ(Π {p(s)\seS}) =

(1 otherwise

0 if S does not span a complete subgraph of G

1 otherwise

1 if 0 Φ S c T for some Te G*

0 otherwise.

Let \S\ denote the cardinality of S. For se V(G) let s* be the simplex
in <sK{G*) spanned by all T in G* such that s is in T. According
to Klee [3] we may compute χ(H) as follows :

= Σ(-l) I Λ Ί- 1χ(n {p(s)\seS}) (0 Φ S C V(G))

= Σ (-1)151""1 (S c V(G) spans a complete



INTERSECTION REPRESENTATIONS OF GRAPHS BY ARCS 505

subgraph in G)

= Σ(-l | S '-1Z(n {s*|seS})) ( 0 ^ S c V(G))

= χ(Λ~(G*)) = E(G).

The above relies upon the combinatorial properties of the Euler
characteristic and finally upon the fact that {v*\ve V(G)} is a well
behaved cover of ^V(G*) by simplices. This establishes the following.

THEOREM 3.1. If the graph G has a normal representation on
the graph H then E(G) = χ(H).

In view of the known relationship of the Euler characteristic of
a graph i ί t o the number of components of H, denoted ao(H), and the
number of independent cycles in iJ, denoted a^H) (see, for example,
Lefshetz [4] p. 71) we have

χ(H) = ao(H) - aL(H)

= αo(G) - ax{H)

= E(G)

where we use the fact ao(G) — ao(H). These equations yield

ao(H) = αo(G) and

= ao(G) - E(G).

This shows how the Betti numbers of H may be calculated from the
structure of G.

The definition of a normal graph together with the above calcula-
tion and the characterization of acyclic graphs in terms of Betti num-
bers (Lefshetz [4]) lead to the following.

REMARK 3.2. A graph G has in intersection representation by
arcs on an acyclic graph if and only if G is normal and ao(G) — E(G).
In this case G can admit normal representations only on acyclic graphs.

This remark reduces the problem of characterizing graphs with
intersection representations by arcs on acyclic graphs to the problem
of characterizing normal graphs such that ao(G) — E(G).

It is always possible to check a graph G for normality by exhaus-
tive search. By Corollary 2.2 it is sufficient to check whether G admits
a representation of the sort induced there on some subgraph K of the
1-skeleton of <yK(G*) (a spanning tree, if G is rigid circuit). There
are only finitely many possibilities. However, although it is possible
to check many graphs easily by hand, no efficient algorithm for run-
ning such checks is known. Along this line one may ask if the global
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condition E{G) — ao(G) may be combined with some λ -local condition
on G to insure that G be normal, where by a fc-local condition of G
we mean a condition involving sub-graphs of G of some fixed maximum
diameter k.

Some further remarks on graphs representable on acyclic graphs
are worthwhile. A graph G will be called locally linear if for each
g e V(G) the graph spanned by g and all of g's neighbors is represent-
able on a line or linear graph. Every graph G representable on an
acyclic graph is easily seen to be locally linear. However, the graph GQ

(Figure 1) shows that local linearity plus E(G0) = aQ(Gp) does not imply
normality.

FIGURE 1.

The cliques of Go are numbered 1 through 6.
The vertices of Go are labeled r, s, t, v, w, x, y, z.

In Figure 2 the cliques of Go are listed and given numbers. Any
normal representation of Go leads via 2.2 and 2.3 to a representation
on some subgraph K of the 1-skeleton of ^V(Gf). Let p represent
GQ on K. If u is a vertex of Go then the vertices in K of p(u) may
be calculated using Remark 2.3. This information is also displayed in
Figure 2.

If Go were normal then there is a graph structure K for Go* such
that the relationships displayed in Figure 2 would be compatible with
each of the paths mentioned there being simple. But we will show
that no such graph structure for G* exists. Obviously {1, 2}, {3, 4},
and {5, 6} would have to be edges of any such graph K. Since p(v) Π
p(w) is a sub-path of both p(v) and p(w), p(v) Π p(w) must have one
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Number

Vertex of
i*Γ(elements
of G*)

1

{r, x, v]

2

{r,w, v}

3

{s, w, v]

4

{s, 2/, v}

5

{w, ί, v}

6

{w, t, z]

Path

2>(r)

2?(s)

Pit)

p(v)

p(w)

p(v) Π p(w)

Vertices of path in K

{1,2}

{3,4}

{5,6}

{1, 2, 3, 4, 5}

{2, 3, 5, 6}

{2,3,5}

FIGURE 2.

FIGURE 3.

of three possible forms. The possibilities for K are then exactly as
shown in Figure 3. None of them is compatible with the requirement
that p(v) Π p(w) be a subpath of both p(v) and p(w).

It is not hard to see that Go is rigid circuit and locally linear.
The above analysis should lend substance to the remarks following the
introduction of the concept of a normal graph on how one may check
a graph for normality.

4* Rigid circuit graphs* A graph G is a rigid circuit graph if
every cycle in G has at least one triangular chord in G. Lekkerkerker
and Boland [5] defined a simplicial vertex of a graph G to be a vertex
whose neighbors span a complete subgraph of G. They proved that
every nonempty rigid circuit graph has a simplicial vertex. Fulkerson
and Gross [2] gave the following characterization of rigid circuit graphs
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in terms of simplicial vertices. The graph G is a rigid circuit graph
if there is an enumeration {v{ | 1 ^ ί tί n} of V(G) such that vt is a
simplicial point of the subgraph spanned by {v5 | 1 ^ j ^ i) in G.

Using the Fulkerson and Gross characterization of rigid circuit
graphs we may prove the following lemma.

LEMMA 4.1. Let C be a simplicial complex and let p be an in-
tersection representation of the graph G by closed simplices of C
such that

( i ) {p(g) I g £ V(G)} is a cover of C and,
(ii) vihenever a nonempty set S c V(G) spans a complete sub-

graph in G, then Π {p(s)\seS} is nonempty.
Then if G is a connected rigid circuit graph C is contractible over
itself to a point.

We sketch the proof of this lemma. The proof is by induction
on fc(G, C) = cardinality of V(G) + cardinality of V(C) where V(C) is
the vertex set of C. Since G is a rigid circuit graph there is a sim-
plicial vertex v0 of G. We distinguish two cases. First, if p(v0) is a
single point in C we may suppress vQ and p will induce an intersection
representation satisfying the hypotheses of Lemma 4.1 of the reduced
graph on C. Thus we are finished in this case by induction. In the
second case, if p(v0) is a nontrivial simplex in C we construct a strong
deformation retract q of C onto a proper subcomplex C" of C such
that p followed by the retraction q induces an intersection representa-
tion of G on C" satisfying the hypotheses of Lemma 4.1. This strong
deformation retract of C may be constructed by collapsing two points
of Π {p(v)\v and v0 are neighbors in G} to a point in U {p(v)\v and
v0 are neighbors in G}, leaving the other points of C fixed. In the
second case we finished by induction since C has been retracted onto
C" and G is represented on C" with V(C) < V(C). Thus by induction
C and hence C is contractible over itself to a point.

Noticing that the natural intersection representation of a graph
G by simplices in ^V{G*) satisfies the hypothesis of Lemma 4.1 we
conclude that if G is a connected rigid circuit graph E{G) = χC^f (G*)) =
1. Hence we have established :

THEOREM 4.2. If G is a rigid circuit graph E{G) = ao(G).

The converse of this theorem is not true as the example Gt (Figure
4) shows.

The remarks in § 3 following the introduction of the concept of
a normal graph together with the above lemma lead to a proof of
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Gi n(Gΐ)

FIGURE 4.
Gι is not rigid circuit but N(G?) is a tetrahedron so E(Gι) = 1.

Theorem 4.3. First, the conditions are sufficient. If G is rigid circuit
and normal then by Remark 3.2 E(G) = ao(G) and G is normal. Thus
G may be represented on an acyclic graph. Second, the conditions
are necessary. Without loss of generality we may assume that G is
represented on some acyclic graph. We will show that this implies
that G has a simplicial point. This will prove the sufficiency since
every section graph of G may also be represented on an acyclic graph
and thus every nonempty section graph of G must also have a simpli-
cial point. Hence, by the criterion of Fulkerson and Gross, G is a
rigid circuit graph. We now prove that if a graph G is representable
on an acyclic graph then G has a simplicial point.

In view of Corollary 2.2 and Remark 1.1 we may assume that
vertices of H are identified in the natural way with G*. This reduc-
tion uses the fact that the graph homeomorphism of Corollary 2.2
preserves acyclicity of graphs. Since H is acyclic it has at least one
terminal vertex. Let SeG* correspond to a terminal vertex h0 of H.
Then since n {p(s)|seS} = h0 and since there is only one edge in H
emanating from the vertex h0, there is an sQe S such that p(sp) = hQ.
and s0 is a simplicial point of G.

The effective algorithms which exist for finding linear representa-
tions of graphs (see [1] and [2]) suggest that one may search for normal
representations (and hence representations on an acyclic graph) of rigid
circuit graphs in an effective way by simply trying to knit the local
representations together in a coherent way. However this approach
merely suggests how such a calculation might proceed without giving
details or suggesting the size of the problem. If a A-local condition
guaranteeing normality were known the problem of checking a graph
for normality would be considerably easier. Note that if such a con-
dition works for rigid circuit graphs it would solve the problem of
characterizing graphs representable on acyclic graphs. It would also
probably lead quickly to an excluded subgraph characterization of such
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graphs. My conjecture is that no such fc-local condition is sufficient
and that further conditions of a global character are required.

Addendum. We give in Figure 5 another example of a locally
linear nonnormal graph. Its pathology is sufficiently distinct from the
earlier example to warrant inclusion.

The author wishes to thank Professor Victor L. Klee for suggesting
this problem.

FIGURE 5.
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