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WEAK DENSENESS OF NONATOMIC MEASURES
ON PERFECT, LOCALLY COMPACT SPACES

NOrRMAN Y. LUTHER

Our primary result is that the space of all compact zero-
set-regular, nonatomic, countably additive Baire measures is
dense, with respect to the weak topology, in the space of all
finitely additive, zero-set regular Baire measures if the un-
derlying topological space is locally compact, Hausdorff, and
perfect. Moreover, a corresponding result holds for Borel
measures. These results yield, as easy corollaries, the
existence of nonzero, nonatomic, countably additive, compact-
regular Baire and Borel measures on a locally compact, Haus-
dorff space which contains a nonempty perfect subset., Two
converses conclude the paper,

We use the methods and results of Knowles [5] and Varadarajan
[10] to prove our primary result (Theorem 3.1). This result extends
an earlier result in which the underlying space was assumed compact,
Hausdorff, and perfect (see [5, Th. 1 (i) and Remark (i), p. 65] and
[2, p.214]).

2. Preliminaries. Let X be a Hausdorff topological space. If
Y is a subspace of X, we use F(Y) and B(Y) to denote the algebra
and c-algebra, respectively, generated by the zero-sets of Y; we let
F%*(Y) and B*(Y) denote the algebra and oc-algebra, respectively,
generated by the closed subsets of Y. B(Y) and B*(Y) are called the
Baire and Borel subsets of Y, respectively. For brevity, we let =
FHX), B =BX), F* =F(X), and B* = B*(X). A measure on an
algebra A is a nonnegative, finite, finitely additive set function on 2L.
A signed measure on U is the difference of two measures on .
Measures on B(Y) and B*(Y) will be called Baire and Borel measures
on Y, respectively. We use (YY), €(Y), €(Y) and 3(Y) to denote
the classes of closed sets, compact sets, compact zero-sets and zero-
sets of Y, respectively. For brevity, we let = $(X), € = €(X),
€, = CyX) and 8 = 3(X).

If A is an algebra of sets and ® — 2, a measure m on A shall
be called D-regular in case

m(A) = sup {m(D); A > DeD} for every Aec?.
Characteristically, ® will play the role of 9, €, €, or 3.

Let m be a measure on an algebra 2. A set Ec is an atom
for m in case (i) m(E) >0 and (ii) for every F — E for which
F e either m(F) =0 or m(E — F)=0. m is called nonatomic in
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case it has no atoms. We shall need the following special case of
[4, Th. 2.4].

LEMMA 2.1. Let p, v be countably additive measures on a o-
algebra ¥ and suppose v < p. If p is nmonatomic, then so is v.

Incidentally, one cannot replace “c-algebra” by “algebra” in the
preceding result.

Finally, if 2 is an algebra and ® < A, we let

M+, D) = {m; m is a D-regular measure on 2}

MQAL D) = {m, — my; m,, m,e MU, D)}

N, D) = {m; m is a D-regular, countably additive, nonatomic
measure on A}

RQ, D) = {m, — my; m; m, e N, D).
We note that I, D) and N, D) are linear spaces whenever D is
closed under finite unions, which will be the case in all of our con-
siderations. In order to relate our notation with that of Varadarajan
[10], we remark that our P(F, B) is precisely Varadarajan’s M(X)
[10, p. 164] and that N(F, €,) < M(F, €,) < M,(X) [10, Th. 29, p. 179]
where M, (X) denotes the space of tight signed measures [10, p. 174].

We shall consider 2%(, ®) primarily when (¥, ®) is one of the
pairs (§, 8), (B, 3), (F* D), or (B* 9). In each of these cases we
put the weak topology (called the weak*-topology by some authors)
on M2, ©). This is the topology with basic neighborhoods of the
form

N(mg A, ¢ = {me M, @);H fdm~§fdme <¢ for every fe A}

where m,c M, D), € >0, and A is a finite subset of C*(X), the set
of all bounded, continuous functions on X. (I, D) will be completely
regular in each of these cases and will be Hausdorff if 2, ®) is (F, 3)
or (B, 8); T(F*, ) and M(B*, ) are Hausdorff if X is normal (see
Taylor [9, pp. 151-153] and the proof of [10, Th. 1, p. 181}]). It may
be relevant to Theorem 3.1 to point out that the linear subspaces
M(F*, €) and IN(B*, €) of JM(F*, H) and IM(B*, §), respectively, are
Hausdorff in the weak topology if X is completely regular, hence also
if X is locally compact, Hausdorff. Finally, we note that a net
{m,} < M@, D) converges to me I, D) in the weak topology if,
and only if,

Sfdma ——»Sfdm for every fe C*(X).

If m is a signed measure on an algebra %, we use m*™ and m~
to denote its positive and negative variations, respectively. If m =
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m, — m, where m,, m, are measures on 2, then m* < m, and m~ < m,.
Thus clearly we have m € I(, D) if, and only if, m*, m—e M+, D).
Moreover, we have

THEOREM 2.2. Let (U, D) be any one of the pairs (F, €,), (B, €,),
(B* €), or (B*,€). Then meRY, D) of and only if, m*, m—¢€
R+, D).

The following two lemmas, which will also have further application
later, will be helpful in the proof of Theorem 2.2.

LEMMA 2.3. Suppose m is a countably additive measure on amn
algebra A and let 1 be the unique extension of m to a countably
additive measure on the o-algebra generated by . If p is nonatomic,
then so is m.

The proof is fairly routine and will be left to the reader.

The converse of the preceding lemma is not true in general, but
is true with the added assumptions that are inherent in our setting.
This fact is contained in the following lemma.

LEMMA 2.4. Let X be a topological space and let m be a measure
on F = F(X) [resp., F* = F*(X)] which is countably additive. Let
p denote the unique extemsion of m to a countably additive measure
on B =B(X) [resp., B* = B*(X)].

(i) m s Crregular [resp., C-regular], if and only if, ¢ is.

(ii) Swuppose m is Z-regular [resp., H-regular]. Then m is non-
atomic if, and only if, p 1s.

REMARK. With respect to (ii), it should be noted that every
countably additive measure on $ (or on %) is necegsarily 3-regular
[10, Th. 18, p. 171].

Proof. (i) The one implication is clear. Suppose m is € regular
[resp., C-regular]. Then y is B-regular [resp., $-regular] by a standard
proof ([10, Th. 18, p. 171]). Let E < B [resp., B*] and € > 0. There is
a set Fe 3 [resp., §] such that F C F and p (£ — F) < ¢/2. There
exists Ce @, [resp., €] such that ¢ (X — C) = m(X — C) <¢/2. Let
H=FnC. Then HeG, [resp., €], HC E, and ¢ (F — H)<e&.

(ii) The one implication follows from Lemma 2.3. To prove the
other implication, we note once again that g is 3-regular [resp., $-
regular]. Hence if ¢ has an atom, it must have an atom Ze 3
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[resp., $]. But then Z would also be an atom for m which is a
contradiction.

Proof of Theorem 2.2. The only nontrivial part of the proof is
showing that m e R, D) implies that m*, m~ are nonatomic. This
follows directly from Lemma 2.1 in case (2, D) is (B, €,) or (B*, €).
Suppose (U, D) is (§, €, [resp., (F*, €)]. Let m = m, — m, where m,,
mye NHY, D). Then m* <m, and m~ < m, so that m*, m~ are B-
regular [resp., §-regular]. Let x,, ¢, denote the unique extensions of
m,, m, respectively, to countably additive measures on B [resp., B*].
Then p,, ¢, are nonatomic by Lemma 2.4 (ii). Now m™*, m~ are countably
additive. Let v, v, denote the unique extensions of m*, m~, res-
pectively, to countably additive measures on B [resp., B*]. Then
v, = o, and v, < p, because m*™ < m, and m~ < m,. Thus y,, v, are non-
atomic by Lemma 2.1. Consequently, m*, m~ are nonatomic by
Lemma 2.4 (ii).

3. Main result. Let X be a topological space. We say that a
nonempty subset Y of X is perfect in case Y contains no isolated
points (with respect to the induced topology on Y).

THEOREM 3.1. Let X be a perfect, locally compact, Hausdorf
space.

(i) NF, C) is dense in M(F, 3) with the weak topology.

(ii) N(B, ) ts dense in M(B, B) with the weak topology.

(iii) NUF*, €) is demse in M(F*, ) with the weak topology.

(iv) N(EB*, €) is dense in WM(B*, ) with the weak topology.

REMARK. In the setting of Varadarajan [10], (i) says that the
set of all differences of € regular, countably additive, nonatomic
measures on F is dense in M(X).

The proof of the preceding theorem will require the following
three lemmas.

LEMMA 3.2. Let X be a topological space.

(i) If X s perfect, them every open subset of X s perfect.

(ii) If Y is a perfect subset of X, them the closure (in X) of
Y s perfect.

The proof is easy and will be omitted.

If 2 is an algebra of subsets of X and z € X, we shall use p, to
denote the measure on A defined by
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1 ifxeFE
p.(E) = 0 ;fzeE for every Ec ¥ .

LEMMA 3.3. Let X be a topological space. If (A, D) is any one
of (&, 8), (B, ), (F*, ), or (B*, ), then the set of measures on A
- of the form X, @, D, where a, =0 and v, eX, k=1, --+, n, s
dense in MU, D) with the weak topology.

The proof of [10, Th. 10, p. 187] can obviously be adapted to
each of these cases.

LemMMA 3.4. Let X be a locally compact, Hausdorff space.

(1) If yeRT(B*, €), then v/BeN+(B, €) where v/B denotes the
restriction of v to B.

(ii) Suppose ¢ is ¢ Baire measure in the sense of Halmos [3,
p. 223] and v denotes the unique extension of p to a regular Borel
measure in the sense of Halmos [3, 54.D]. If p is nonatomic, then
S0 18 V.

Proof. (i) Let p=y/B. Since v is €-regular, there exist
K;e€,1=1, 2, ---, such that v (X — U, K;) =0. Hence by [3,
50.D] there are sets C;c€, 2 =1, 2, ---, such that, defining B=
Uz, C;, we have

1) ME) = p(E N B) for every EeB .

Let B, denote the class of Baire sets in the sense of Halmos [3,
p. 220].
Since every compact G, is a zero-set, we have

2) B,CB.
Moreover,
3) {ENn B; EcB} C B,

because of [1, Exercise 57. 13 (i)] and the fact that every zero-set is
a G,. Since every Baire measure in the sense of Halmos is € regular
[3, 52.G], it follows easily from (1), (2), and (3) that x is € regular.

Suppose now that x has an atom Ee®B. Since v is nonatomic
there is a set FFe®B* such that FC E and 0 <y(F) < vy(E). Now
there are sets Ce @, U open such that Cc Fc U and 0<y(C) £
V(F) < v(U) < v(E) because of G-regularity. We pick a set C,e G,
such that Cc C,c U and define H=FE N C,, Then He®B and HCE.
Moreover, C c Hc U so that 0 < p(H) < p(E) which is a contradic-
tion.
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(ii) Suppose v has an atom Ee®B*. By the regularity of v
there is a set C e € such that C c F and v(E) = v(C). As in [1, 59.1]
we can find a set C,c €, such that CcC, and »(C) = v(C,). Now g
is nonatomic so there exists F'e B such that FFcC, and 0 < p(F) < p(C,).
Since C U F < C, and v(C) = v(C,), we have v(FF — C) = 0. Consequ-
ently, if we let H=F N C, we have He®$*, HC E, and 0<y(F) =
y(H) < v(E) which is a contradiction.

Proof of Theorem 3.1. The proof follows closely those of Par-
thasarathy, Rao, and Varadhan [6, Th. 6.1] and Knowles [5, Th. 1(i)]
and, in addition, makes strong use of the latter result. Let (¥, D)
be any one of the pairs (%, 8), (B, 8), &% ) or (B* H) and let
me ML, D). We shall exhibit, for each case (but all at once), a net
{m,} from the appropriate 9t space such that m,— m in the weak
topology. Clearly we can assume m = 0 and, moreover, that m is of the
form 37, a; p,, where ¢, =0 and z,¢ X, k=1, ---, n(Lemma 3.3).
In any of the cases we can extend m to be of this form on B*.

Now since X is locally compact, Hausdorff and perfect, it follows
easily from Lemma 3.2 that the perfect, compact neighborhoods in X
are basic. Denote by ® the family of n-vectors v = (U,(x,), ---, Uy(x,))
where U,(x,) is a perfect, compact neighborhood of the point z, and
U,(x,) N Uy(x;) = ¢, #k. We direct & by saying that v > if, and
only if, U,(x,) < U,(;) for every k=1, ---, n. We fix v€®. Since
each U,(x,), k=1, ---, n, is a perfect, compact Hausdorff space,
there is by [7, p. 214] or [5, Th. 1 (i)] a nonatomie, €(U,(x,))—regular,
countably additive Borel measure v, on U,(x;) such that v, (U,(x,))
=1, k=1, .-+, n. Define

N(E) = av(EN Ulz,)) for every E e B* =B*X),k=1,--+,n, and let
My = ey N -

It is not hard to see that m, is a nonatomic, €-regular, countably
additive Borel measure on X (i.e., m,e N+ (B* €)). (Note that for
any closed K X, {E N K; Ec®B* = B*X)} = B*(K), hence B*(K)C
B*(X).) Finally, one can readily see, by elementary continuity con-
siderations, that m, — m in the weak topology. Clearly this conver-
gence also holds for the restrictions of m, and m to §*, B, and G,
respectively. But it follows from Lemmas 2.4 and 3.4 (i) that
m,/F* € RH(F*, €), m, /BN (B, €), and m,/F e N+ (G, €;) for every 7.
The proof is complete.

COROLLARY 3.5. Let X be a locally compact, Hausdorff topological
space which contains a monempty perfect subset. Then there is a
nonzero, nonatomic, countably additive, C-regular measure on F*
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[resp., B*] and there is a monzero, nonatomic, countably additive €
regular measure on §F [resp., Bl.

Proof. Let W denote a nonempty perfect subset of X. Then W
(the closure of W in X) is a locally compact, Hausdorff, perfect
topological space in the induced topology (Lemma 3.2 (ii)) so there is
a nonzero, nonatomic, countably additive, €(W)-regular measure v on
B*(W) by Theorem 3.1. Hence, defining

m(E) = v(E N W) for every EcB* = B*(X),

we find, as before, that m is a nonzero, nonatomic, countably additive,
C-regular measure on B*, The restrictions of m to F*, B, and F,
respectively, provide the other desired measures because of Lemmas
2.4 and 3.4 (i).

For the sake of completeness, we conclude the section by listing
two converses of Corollary 3.5. They extend a result of Rudin [8,
Th. 5] and, indeed, follow quite easily from it.

THEOREM 3.6. Let X be a Hausdorff topological space which con-
tains mo perfect subsets. Then there is no nonzero, nonatomic, coun-
tably additive G-regular measure on B* [resp., F*].

Proof. Suppose there is such a measure m. By E-regularity
there is a compact set K — X such that m(K) > 0. Defining

v(E) = m(E) for every KEecB*(K) [resp., F*XK)],

one readily sees that v is a nonzero, nonatomie, countably additive
§(K)-regular measure on B*(K) [resp., F*(K)]. By Lemma 2.4, we
can assume v is defined on B*(K). Hence by a theorem of Rudin
([8, Th. 5]; [5, Th. 1 (ii)]), there is a perfect subset of K, hence of X,
which is a contradiction.

REMARK. The preceding theorem remains true if we simply require
our measures to be finite on compact sets; the proof goes through
unscathed. This same remark applies to the next theorem.

Since any continuous function on a compact subset K of a com-
pletely regular topological space X can be extended to a continuous
function on X [2, p. 43], we have 3(K)={ENK; E>3 = 8X)}
and, consequently, similar results for ¥(K) and B(K). This fact is
used in the proof of the following theorem.

THEOREM 3.7. Let X be a completely regular, Hausdorff topologi-
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cal space which contains mo perfect subsets. Then there is no non-
zero, nonatomic, countably additive, Gy-regular measure on B [resp., Fl.

Proof. Suppose there is such a measure m. There is a compact
zero-set K < X such that m(K) > 0. Defining

V(E) = m(E) for every EcB(K) [resp., FK)],

we see that v is a nonzero, nonatomic, countably additive, &,(K)-
regular measure on B(K) [resp., F(K)]. By Lemma 2.4 we can assume
that v is defined on B(K). Since K is compact, Hausdorff, it is clear
that v is a Baire measure on K in the sense of Halmos [3, p. 223].
By Lemma 3.4 (ii), v extends to a nonzero, nonatomic, countably
additive, @-regular measure on B*. This contradicts Theorem 3.6.

4. Concluding remarks. Clearly the hypotheses on X in Theorem
3.1 and in Corollary 3.5 cannot be weakened significantly. For if X
is the rationals (with the relativized usual topology of the reals), then
X is a perfect, separable metric space. But obviously there is no
nonzero, nonatomic, countably additive measure on ¥, B, F*, or B*,
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