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ON THE STRUCTURE TOPOLOGY OF
SIMPLEX SPACES

ALAN GLEIT

This paper studies the hull-kernel topology of the maximal
ideal space of separable simplex spaces, We show that the
properties of local compactness, first countability, and second
countability are equivalent,

A simplex space is an ordered Banach space V with closed posi-
tive cone whose dual is an L-space [4, 5, 6]. Let P(V) be the
positive linear functionals on V with norm less than or equal to one.
'The pure states are the extreme points of P(V) and are denoted by
EP(V). We shall write £+ for the nonzero extreme points of P(V),
ie.,

E+ = EP(V) — {0} .

‘We let Z be the closure, in the weak* topology, of E+*.

We let max V be the set of closed maximal ideals of V equipped
with the hull-kernel topology. The closed ideals of V are in a one-to-
one order inverting correspondence with the closed faces of Py(V)
containing zero. Thus, max V may be identified with E*+ as point
sets. By this identification we can transfer the hull-kernel topology
to E* and define a new topology, called the structure topology, on
E+. Its closed sets are the nonzero extreme points of a closed face
containing zero. Hence, the structure topology is weaker than the
weak* topology.

In this paper we shall consider various topological properties of
max V. In particular, we consider compactness, local compactness,
first countability, second countability, and standard Borel structure.
It was conjectured in [5] that for separable simplex spaces the latter
four properties are equivalent. This is very nearly correct, as we
see in Theorem 3.3 and Proposition 3.6.

In section 1, we study the structure topology and introduce
several new maps. We give several criteria for determining whether
.a set in E- is structure closed. In section 2 we consider the property
of first countability for max V.

Finally, in section 3, we state and prove the main theorems.
‘We show that if V is separable, then max V is compact if and only
if 0 does not belong to Z. We also show, for V separable, that the
properties of first countability, second countability, and local com-
pactness are equivalent for max V.
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0. Conventions. The notation and definitions are those used
in [4, 5, 6]. We shall use results freely from these papers. Through-
out, we assume that vector spaces have nonzero elements. In normed
spaces, the subscript X on a subset indicates the subset intersected
with the closed ball of radius \.

For any set A < P(V), A will denote the weak* closure of A
and A* will denote 4 — {0}.

For any net, Greek subsecripts, e.g., «, B8, denote arbitrary index
sets while Latin subscripts, e.g., %, j, %, denote the natural numbers
as an index set, i.e., {x,} is a sequence.

For the entire paper, V will always denote a separable simplex:
space.

Throughout, propositions are stated in terms of the hull-kernel
topology of max V and proven for the structure topology of E-.
Hopefully, this will cause no confusion.

1. The structure topology and several maps. In this section,
we prove some preliminary results concerning the structure topology.

As V is separable, V* is weak* metrizable and, thus, so is P(V).
As P(V) is a simplex, Choquet’s Theorem asserts that for each
qe P(V) there is a unique maximal probability measure 7, which
represents ¢ and for which

T(P(V) — EP(V)) = 0.

[10, p. 70]. We shall always denote this measure by =,.

Let S[q] be the smallest weak* closed face of P(V) containing
0 and q, for qe P(V). As S[q] is compact, metrizable, and convex,
the Choquet Theorem applies equally as well to it. Hence, there is.
a maximal probability measure g which represents g and for which

1(S[q] — extreme points of S[g]) =0.
As S[q] is a face, its extreme points are extreme in P(V) and so
1(Slal — EP(V)) = 0.
Since P,(V) is a simplex, ¢ = m,. Hence

supp 7, < S[q] .
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For qe P(V), we let supp* 7, = {y € P(V)* | each neighborhood
N < P(V) of y satisfies 7,(N) > 0}. Then, supp® 7, = supp 7, — {0},
congistent with our convention. The first proposition gives some
relations between the structure and weak* topologies. Recall that
for A € P(V), the weak* closure of A is denoted by A.

ProrosiTiON 1.1. (A) Let qe P(V)*. Then supp*w, 1s the
closure in P(V)* of supp*w, N E*. Further,

E* N S[q] = structure closure (supp* 7, N E*) .

(B) Let D< P(V). Suppose for each q€ D we have supp 7, D.
If D is weak* closed, then the weak* closed convex hull of D is a
face of P(V) and DN E* is structurally closed.
(C) Let D< E*. Then the following are equivalent:
(1) D s structure-closed.
(2) For each monzero qe D, S[gl N E+ = D.
(8) For each monzero q< D, supp* =, E~ < D.
4) (@) D is weak* closed relative to E~.
(b) For each qe D — EP(V), supp* «, N E+* < D.

Proof. (A) Since P(V)* is a locally compact metric space,
T, (P(V)* —supp*xw,) =0.
Since 7, is a maximal measure,
T(P(V)" — E*) =0.

Suppose ¥ is not in the closure in P(V)* of supp” 7, N E-. Then
there is a relatively open set N & P,(V)* about y such that

NN (supp™n, NEY) =@ .
But then N is open in P,(V) and obviously
T (N) = 7 (P(V)* — (supp* 7, N E*)) = 0.

Thus y ¢ supp* m,. The other inclusion is trivial.
For the second conclusion, from the discussion preceeding the
proposition,

supp* 7, N E* < S[g] N E* .
As the latter is structurally closed,
structure closure (supp* 7, N E*) < S[q] N E~.

For the other inclusion, let K be the closed face containing zero
which satisfies
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K N E* = gtructure closure (supp™ 7, N E*),

which exists by the definition of the structure topology. As K is
closed and contains zero, the first part implies that suppw, & K. As
K is convex, ge K. But then S[¢] £ K and so S[¢] N E* < KN E*.

(B) The first conclusion is [5, Th. 3.3] while the second follows
easily from the definition of the structure topology and the Milman

Theorem [10, p. 9].

(C) ()= (2). Let q be a nonzero element of D. Then there
is a sequence {p,} & D such that p, —¢q. Then {p,} tends structurally
to each element of S[g] N E+ [6, Lemma 2.3] and so S[¢] N E* & D.

(2) = (3). Trivial.

8)=(4). Let {g,) =D and gecE+ satisfy q,—¢q. Then geD
and so supp* 7, N E* = {q} & D. Therefore D is weak* closed relative
to E*.

4)=@1). Let F=DU{0}. If qeF — {0}, then supp* 7, N E*< D
and so supp*n, S D by part (A). Hence suppz, & F and so (B)

implies that F'N E* is structurally closed. Since D is weak* closed
in B+, FNE+=Dn E* = D.

We must now define certain maps. Let @: Z — structure closed
subsets of E+ by
o(q) = Slgl N E* .

If 0eZ, then

P0) =@ .
We let : E* — subsets of Z by

@) ={gcZ|pedg).

Hence, for each pec E+,

0¢v(p) .
We extend these maps to set functions by letting

o(4) = U &(9)

for every set A & Z, and, for any B & E*,

v(B) = U () ={ge 2] d(@) N B = o} .

For each qgeZ, we shall write @(¢) to mean @({q}). Similarly, for
each pe E*, we write +4(p) to mean +({p}). Then, obviously, for
q9¢€Z,



ON THE STRUCTURE TOPOLOGY OF SIMPLEX SPACES 393

D(q) = 9(9)
and for pe E*,
¥(p) = ¥(p) -

We may, alternately, describe the maps @ and + in terms of the
relation R in E+ x Z defined by

pRq if and only if peS[q] N E*.
‘We have, for any A < Z,
@(A) = {p | pRq, some qe A}
and for any B & E-,
¥(B) = {q| pRq, some pe B} .
Elementary relations for these maps are contained in the next lemma.
LemMaA 1.2. (1) For AZS Z+, v0(A) 2 A.
(2) For Bg< E*, 04(B) 2 B.
() Let peE* and gqe Z. Then g€ (p), e d(q), and pRq are
equivalent.

4) For B E*, E* N y(B) = B.
(5) Let geZ. Then &(q) = structure closure (supp* 7, N E*).

Proof. They are all obvious.
If A and B are any topological spaces, a map I': A — subsets of
B is called lower semi-continuous if whenever U & B is open then

fxeAI @) N U= @}
is open in A [2, Th. 1, p. 115].
PrROPOSITION 1.3. @ is lower semi-continuous when E*t is given

the structure topology. In fact, if U < E*+, then U 1s structurally
open if and only if (U) is weak™ open in Z.

Proof. Let UZ E*. Then

Z—yU)={geZ|0(NU= g}
={geZ|0(q) S E* - U}.

Let us first suppose that U is structurally open. Then E+ — U
is structurally closed. Hence, there is a closed face K containing
zero so that KNE+*=E+— U. Let gqeKNZ. Then S[q] & K.
Thus &(¢g) S E* — U and so geZ — y(U). If qeZ — y(U), then
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supp7, S 0} UP( S (UK NENHESK and so ge K. Therefore,
Z—4y(U)=KNZ and so Z — (U) is weak* closed.

Second, let us suppose that y(U) is open. Then (Z —yw(U))NE* =
E+ — U is weak* closed in E*. In order to show that £+ — U is
structure closed, we let ¢ be any nonzero element of £+ — U. Since
EE-U<cZ—-—y(UO)nE+=Z—y(U), we have that S[g]nNE* =
&(q) € E* — U. Hence, E- — U is structurally closed [Proposition
1.1 (O)].

The main reason we introduced the map @ is the following.

PrROPOSITION 1.4. Suppose {p,} S E* and ge Z. If p,— q, then

1) F = {p,} U D(q) is structurally closed.

(2) Let p, € F — @(q). Then {p,} is structurally open relative
to F.
(8) {p.} converges structurally to each element of @(q).

Proof. The conclusions are all trivial if ¢ = py = pyy, = ++- S0
we may assume that {p,} is not eventually the constant sequence
{g}. For (1), we let D = {p,} U S[g]l. We claim that for each ze D
we have supp7w, & D. Indeed, if z = p,, supp Tp,, = (Pap & D If
z€ S[q], then suppr, & S[z] < S[¢g]. Since S|q] is closed and {p,} U {q}
is closed, D =D. Therefore, D N E* = {p,} U (S[g] N E*) = {p,} UD(q) =
F is structurally closed [Proposition 1.1 (B)]. To show (2), we let
I ={i|p;#p.}. Askrunsoverl, p,—q. Bypart(l), {p.|keclI}U®(q)
is structurally closed, i.e., {p,} is structurally open relative to F.
Part (3) is contained in [6, Lemma 2.3].

COROLLARY 1.5. Suppose {p,} & E+* and ge Z. If p,— q, then
the set of structure convergence points of {p,}, the set of structure
cluster points of {p,}, and @(q) are the same set.

Proof. We need only show that if ze E* is a structure cluster
point of {p,} then xe®(q). Let F = {p,} U @(g). As F is structure-
closed, = a cluster point implies € F. Part (2) of the above shows
that such an x is not in /' — @(q). Hence, x¢c @(q).

2. Preliminary results. We study in this section the property
of first countability for max V. We shall derive several equivalent
properties. Given that max V is first countable, we can find structure
open sets by the following.

LEMMA 2.1. Let xcE+ and W be any w*-open set containing
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). If x has a countable structure base, them E+* N W has struc-
ture interior and, further, x is in the structure interior of (E+ N W).

Proof. The proof will be by contradiction. Let U, DU,D---
be a structure base at x. Suppose that there isan x,c U, — (BN W).
Then {x,} converges structurally to x. Since Z is compact metric,
there is a subsequence {x,} of {x,} and a point yeZ such that
x,, — Y. Therefore y e (x) and so ye W. But

xnke(Uﬂk - (E+ m W)) ﬂ E+

and so w, ¢ W for each m,. This contradicts the assumption that
W is a w*-neighborhood of .

LEMMA 2.2. Let xc E*. Let U, = E+ N {z|dist (2, v(x)) < &} and
let U, be the structure interior of U.. Assume (x) is compact and
that x € U. for each € > 0.

Then, of U s a structure meighborhood of x, there exists an
e>0 such that xcU. S U.S U. In particular, (U, form a
countable structure base at .

Proof. Let U be a structure neighborhood of x. First note
that +(U) is a neighborhood of +(x) [Proposition 1.3]. As +(x) is
compact, there is an ¢ > 0 such that

() S {z | dist (2, ¥(x) < &} S ¥(U) .
Intersecting with E*, we have ze U, € 4(U) N E* = U.

LeEMMA 2.3. Let xe E* and suppose that x has a countable
structure base. Then +(x) ts compact.

Proof. Since Z is compact, it suffices to show that (x) is
closed. Let {¢,}Ccv¥(x) and ge Z satisfy ¢,—¢q. Let 0,20,D ---
be a w*-base at ¢q. We may assume that ¢,<€0,. Let G,O0G,D---
be a structure base at x. As (x) C¥(G;) and +(G;) is open
ji=12,.--, ¥(G,) N O, is a w*-open neighborhood of q,, n =1, 2, «+-.
Hence, there is a p,< E* N ¥(G,) N 0,. Consequently, p,€G, and so
{p,} converges structurally to z. As 9,€0,, -p,—¢q. But then
x € ?(qg), i.e., g€ ¥(x) and so 4 (x) is indeed compact.

Putting these three lemmas together yields the following.

COROLLARY 2.4. Let xc€ E* and suppose that x has a countable
structure base. Let U, = E+ N {z|dist (2, ¥(x)) < &} and let U. be the
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structure interior of U.. Let U be any structure neighborhood of .
Then there exists an € > 0 such that xc U, S U, & U. In particular,
{U,;.} form a countable structure base at x.

If C and D are topological spaces, a map I': C — subsets of D
has a closed graph (at ¢) if whenever {c,} =& C converges to ccC,
{d.} & D converges to de D, and d,e I'(c,), then de I'(c).

We can now state and prove the main theorem in this section.

THEOREM 2.5. The following statements are equivalent:
1) @ has a closed graph.
2) (@) +(x) is compact for each xe E-.
(b) Let xc E+ and Ue) = {z]|dist (2, v(x)) < &} N E~.
Then % s in the structure interior of E* N Ue).
(8) max V is first countable.
(4) max V is second countable.

Proof. We shall show (1) = (2) = (3) = (1) and (3) = (4).

(1)= (2). Let xc E* and U(e) = {z|dist (2, v(x)) < e} N E~. We
first show that « is in the structure interior of U(¢). Indeed, suppose
that there is a net {x.} & E* — U(e) such that {x,} converges struc-
turally to . Since Z is compact, there is a subnet {x,.} and a point
y € Z such that Lag— Y- Since Loy = D(x, ), the closed graph condi-
tion implies that x e @(y), i.e., y € ¥(x). Thus, dist (agr ¥(2)) — 0 and
80 @, € {7 | dist (2, ¥(x)) < €} eventually. It follows that «, s € Ue)
eventually and so x,c U(e) frequently. This contradicts the choice
of {x,} and so the claim is proven. Next, we must demonstrate that
+r(x) is compact. In fact, we must only show that +(x) is closed
since Z is compact. Let {y,} be a net in +(x) and yeZ satisfy
¥.— Y. The closed graph condition then implies that x e @(y), i.e.,
Y € Y(2).

(2) = (3) is Lemma 2.2.

(8) = (1). Suppose {x,} S E*, vcE*, {y =Z and yeZ. Let
Yo— Y, {&,} converges structurally to x, and x,€@(y,). We must
show that e @(y). Let U, = E* N {z|dist (2, ¥(x)) < 1/n} and U, be
the structure interior of U,. Then {U,} forms a structure base at
2« [Corollary 2.4]. Let {O,} be a w*-base at y. Since {x,} converges
structurally to z, there is an «, such that for each a = ai, 2,¢ U,.
Similarly, there is an a3 such that for each a = &}, y,€0,. Choose
«, larger than a;, a, and «,_,. Taking ¥y, = y., .= 2., clearly
Y,— Y, {x.} converges structurally to z, z,€®(y,) N U,. Recall that
we must prove that x <€ @(y).

Let
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Ue, m) = E* 0 {z] dist (2, v(x,) < &} .

Since 2,€ U, and U, is a structure neighborhood about x,, there is
an e(n) > 0 such that x, e U(e(n), n) < U, [Corollary 2.4]. Let d(n) =
min (¢(n), 1/n). Then x,c U@B(n), n) < U,. Since E+ is dense in Z,
we can find z, € E* such that dist (z,, ¥,) < 6(n) < 1/n. Since y, — ¥, we
have z,—y. Because y, € ¥(x,), we have 2z, e E* N {z] dist (z, ¥(z,)) <
d(m)} = U©B(n), n). As U@B(n), n) < U,, we have z,¢ U,. Hence {z,}
structurally converges to x. Thus, x<€ @(y) [Corollary 1.5].

(3) = (4). Let & = {S;} be a countable base for Z. Let x¢ E*
and U be an arbitrary structure neighborhood of x. Then (U) is
a w*-open neighborhood of each ye+(x). For each ye(x), choose
S,e.&” such that yeS, £ v(U). The neighborhoods {S, ]|y ey ()}
cover (x). As +(x) is compact [Lemma 2.3], a finite number of
these neighborhoods cover +(x). Thus,

v@) = US,, S (V) -

But Lemma 2.1 implies that x is in the structure interior of
N
(B nUS.,)-
i=1

Since E- N UL, S,. € E-N+(U) = U, sets of the form

Y, =
{structure interior of £* N A | A is a finite union of sets from .5}

form a countable structure base.

The proofs of Lemma 2.1 and (3)= (4) are adapted from [12,
Lemma 1 and Lemma 3, § 4]

3. The main theorems. The preceeding section has thrown
light on several of the topological properties which we wanted to
discuss. We will now discuss the others.

Though usually compactness and segquential compactness are not
comparable for nonfirst-countable spaces, we have the following
result:

PropPOSITION 3.1 Let K< max V. Then the following are
equivalent:

1) K s compact.

(2) K 1s sequentially compact.

Proof. (1)=(2). Let K < E*+ be structurally compact and let
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{x,} be a sequence in K. Since Z is compact metric, there is a
subsequence {v,} and a point yeZ such that z,, —y. As K is
structure-compact, the net {x, } S K has a cluster point ze¢ K. But
then ze ®@(y) [Corollary 1.5] and so {w,} converges structurally to
z € K [Proposition 1.4]. Thus, K is sequentially compact.

(2)=(1). Let K < E* be structurally sequentially compact and
let {x.} be a net in K. Since Z is compact, there is a subnet {xﬂﬁ}
and a point y € Z such that T, —Y. As y has a countable neighbor-
hood base, we may find a sequence {x,} & E* such that x, — y and
{2} & {we) Then {x,} is a sequence in K and so there is a sub-
sequence {x,} and a point z e K such that {, } converges structurally
to z. Then ze ®(y) and so {x”ﬁ} tends structurally to z [6, Lemma
2.3] and so K is compact.

We can now completely characterize those separable simplex
spaces for which max V is compact.

THEOREM 3.2. The following are equivalent:
(1) max V is compact.

(2) max V 1s sequentially compact.

(38) 0eZ.

Proof. (1)= (2) is a special case of Proposition 3.1.

(2) = (3). Suppose 0ecZ. Then there is a sequence {p, & E*
such that p, — 0. Since max V is sequentially compact, there is a
subsequence {p,,} and a point p € E* such that {p,,} tends structurally
to p. But then Corollary 1.5 implies that pe @(0). However 9(0) =
@ and we have a contradiction.

(8)=(1). Let {U, be a structure-open cover of E-. Then
U.U.= E* and so v(U. U, = Uu¥(U,) = v(E*) = Z*. Since 0¢ Z,
Z+ =17 and so {y(U,} is an open cover of the compact set Z.
Hence, there exists a finite subcover, i.e., there are sets U,, ---, U,,
such that U, v (U,) = Z. Then, intersecting both sides with E*
yields

N N
E-=UE nyU.) =UU,
{Lemma 1.2(4)]. Hence, E* is structurally compact.

REMARK. The proof of (3) = (1) establishes the fact that for a
set K € max V, if (K) is compact, then K is compact.

We now come to the major result of this paper.
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THEOREM 3.3. Let V be a separable simplex space. Then the
Jollowing are equivalent:

(1) @ has a closed graph.

(2) max V s first countable.

(8) max V s second countable.

(4) max V s locally compact.

Proof. Using Theorem 2.5, we must only show that (4) is
equivalent to the others. We show first that first countability at
one point implies local compactness at that point. Let pe E+ and
suppose p has a countable structure neighborhood base. Let U be
a structure open set containing p. We must find a structure-
compact neighborhood K of p within U. Let F=E+— U. It is
structurally closed and, hence, there is a closed face @ of P/(V),
containing zero, such that Q N E*+ = F. Since peF, v+(» NQ = O.

At this point, we shall specify the metric which we are using
for P(V). If {¢,} is dense in V), then we take

dist (@, 9) = 527" |a(5) — (&) | -
Since @ and +(p) are compact [Lemma. 2.3],

dist (Q, ¥(p)) =0 > 0.

Let

D = {ze z|dist (h(p), ») < -‘21}

and

T = {zeZ]dist(Q, Z) = %} .

‘Then, clearly, T is compact, TNQ =@, and DS T.

We first claim that E* N T is a structure neighborhood of p
within U. Indeed, pc E*ND S E*NT and E+tND is a structure
mneighborhood of p [Lemma 2.1]. Obviously, E* N T < U.

We next claim that E* N T is structure-compact. Let {p.} be a
met in E+N T. Since T is weak* compact, there is a subnet {agh
and a point g€ T such that Doy — 4 Then {paﬁ} tends structurally to
<€ach point of @(q) [6, Lemma 2.3]. Hence it is sufficient to show
PN ENT)# @. For ze P(V), let
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flz) = dist (2, @) .

Obviously f is weak* continuous, f(0) =0 and f(q9) = 6/2. We next
claim that f is convex. Indeed, let 2, yeP(V) and 0 <A <1. We
must demonstrate that

SO + 1 =Ny = (@) + 1 = NfY) .
Choose ¢, and ¢, in @ such that

Sflx) = dist (z, q.)

and

fly) = dist (y, q,) -
Then

SO+ @A —Ny) =distvx + 1 — Ny, Q)
= dist (v + (1 — My, Mg, + (1 — Mg,)
since Aq, + (1 — N\)g, € @ by convexity

=227 ol + (L= My() — M) — (1= NS |
= 2270 () — a.&) [+ A =M [Y(E) — &) D)

= A2 o(6) — @) [+ 1 =N X277 [ y(E) — a(&) |
= ndist (x, ¢,) + (1 — N) dist (y, ¢,)

= NM(@) + L — MNf(Y) .

Since S[q] is convex and weak* compact, f restricted to S[q] achieves
its maximum at an extreme point of S[q] [1, Satz 2]. As S[q¢] is a
face and ¢ < S[q], there is a pe EP(V) N S[q] such that f(p) = (@) =
0/2. Since f(0) = 0, there is a pe E+ N S[q] = @(¢) with f(p) = d/2.
But this means that there is a pe®@(q) N T. Thus, E* N T is struc-
turally compact.

Next, we shall show that if max V is locally compact at a point,
then that point has a countable neighborhood base. Let xe E*+ and
assume that E+ is structurally locally compact at x. Let U(e) =
{ze Z|dist (2, v(@)) < e N E* and U(s) be the structure-interior of
U(s). We claim that we U(¢). Indeed, suppose not. Then there is
a net {z,) S E+ — U(e) such that {v,} tends structurally to x. Since
Z is compact, there is a subnet {2ag) and a point y € Z such that
Cup— Y- Suppose x ¢ O(y). Let U= E+*— &(y). Itisa structure open
set containing x. By local compactness, there is a structure-compact
neighborhood K of « in U. Therefore, w,,c structure-interior (K)
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for all a; = a;. Then {xaﬂ |as = a;} still converges to y. Since Z
is metrizable, we may select a sequence {x,} & E* such that z,—y
and @,€{v.|a; = @ }. Then {xz.} & structure-interior (K) is a
sequence in K. As K is sequentially compact [Proposition 3.1], there
is a subsequence {x,} and a point z€ K such that {x,} tends
structurally to ze¢ K. As =, —y, we have 2¢®(y) [Corollary 1.5].
Thus z¢ @(y) N K, which contradicts the choice of K. Hence, x < @(y),
ie., yey(). As wz,—y, dist(®,, ¥()—0. Therefore ¢ Ule)
eventually and so x,¢ U(¢) frequently. This contradicts the choice
of the net {#,} and so we have shown that xe U(e).

In order to conclude that x has a countable structure neighbor-
hood base, we need only show that y(x) is compact [Lemma 2.2]. As
Z is compact, we need only show that (x) is closed. Let y e (x).
Suppose yéy(x). Let U= E* — &(y). It is a structure neighbor-
hood of 2 and so by hypothesis there is a compact neighborhood K
of x in U. Let G = structure interior (K). Then +(G) is a weak*
neighborhood of +(x). Since y € ¥(G), we may choose {x,} S E*N¥(G)
such that x,—y. Since {x,} & G & K, and K is sequentially strue-
turally compact [Proposition 3.1], there is a subsequence {x,} and
there is a point ze K such that {z,} tends structurally to z. As
x,,— Yy, we have ze®(y) [Corollary 1.5]. Thus, ze®(y) N K, con-
tradicting the choice of K. Hence y e+ (x) and so +(x) is compact.

REMARK. The proof of Theorem 3.3 established a stronger
equivalence than that stated. Namely, we showed that first
countability at a point is equivalent to local compactness at that
point.

Specializing Theorem 3.3. to the case when cardinality (Z— E) < oo,
we get the following.

COROLLARY 3.4 Let V be a separable simplex space. Suppose
cardinality (Z — EY) < . Then max V s locally compact and
second countable. Further, suppose {p,} is a met in E* converging
weak* to q and pe E*. Then the following are equivalent:

1) ped(g).

(2) {p.} converges structurally to p.

Proof. We first note that +(p), for each pe E*, is a finite set
and so is trivially compact. Fix pe E* and let U, be the structure-
interior of {ze E*|dist (2, ¥(p)) < ¢}. If we show that pe U,, then
Theorem 2.5 allows us to conclude the first statement. Let

A=U{®@)|ge Z— E*, p¢ 0(q)}
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and
F={zecE"|distz v(®)=c UA.

Let « be a nonzero element of F. Suppose

xe{ze BT |dist (z, ¥(p) = ¢} .

Then dist (x, v(p)) = . If xe E*, then {0} =0@)SF. If xeZ— EH,
then, since, « ¢ y(p), we have @(x) & A. On the other hand, suppose
xeA. As each 9(q) is structurally-closed and cardinality (Z — E*) < o,
we have that A is structurally closed. Thus, @(x) & A [Proposition
1.1 (C)]. Hence, we see that F' is structurally closed [Proposition 1.1
(C)] and so E* — F < U.. As p¢F, we conclude that pe U..

To show the second statement, we merely note that (1) = (2) is
[6, Lemma 2.3] and that (2) = (1) is implied by @ having a closed
graph.

Specializing Theorem 8.3 to the case of M-spaces, we have the
following.

THEOREM 3.5. Let V be a separable M-space. Then the following
are equivalent:

1) Suppose {p,} S E* and {\,p.} S Z. If {p,} converges and if
\,p,— 0, then p,— 0.

(2) @ has a closed graph.

(8) max V is first countable.

(4) max V is second countable.

(5) max V 1s locally compact.

(6) max V is metrizable.

Proof. Since max V for a separable M-space is normal [5, Th.
3.8], the equivalence of (2) through (6) follows from Theorem 3.3 and
Urysohn’s metrization theorem.

(2) = (1). Since ?#(0) = @, (1) is merely the statement that @
has a closed graph at 0, and so the implication is clear. In more
detail, suppose p,—y and y = 0. Let ze®(y). Then {p,} tends
structurally to z [Proposition 1.4]. The closed graph condition
implies that ze @(0) = @, which is a contradiction.

(1) = (5). The map @: Z* — E* by

Ap— D

is the factor map of Z*, with the weak* topology, onto E*, with the
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:structure topology [5, Formula 3.2 and -Th. 3.6]. Let K be any
.compact set in Z+*. If 0~'@(K) is compact for all such K, then E+
is locally compact [3, Proposition 9, Ch. I, §10]. To show that
-0~'@(K) is compact, we note that

-0(K) = preZ|0<rn=1, zcK)}.

As Z is compact, it suffices to show that @—'@®(K) is closed in Z. To
.show this, let {g,} & ¢o~'0(K) and g e Z satisfy ¢,— q. By definition,
q, = \2x, for some z,€K and 0 <A, <1. Since K and [0, 1] are
-compact metric, there is a subsequence {¢.,}, an € K, and a v e |0, 1]
such that w, —ua and X,; —\. Hence, ¢ = \x. Since z€ K, if we
.show that X\ == 0 then we have that qe @'@(K). However, if x =0,
then ¢ =0 and so ¢,,—0. By (1), @,;,—0. Since K & Z*, this is
impossible.

The results (3) = (4) = (6) = (5) are contained (tacitly, if not
«explicitly) in [5, Corollary 3.9; 12, Th. 3].

We may now answer a question posed in [5]. Poulsen [11] has
<constructed a metrizable compact simplex K for which E* is dense
in K, i.e., Z = K. Taking V to be the affine functions on K vanish-
ing at 0, we have a separable simplex space. Then max V cannot
‘be locally compact. In fact, if pe E*, then xpe Z for 0 <A <1 and
80 0 e closure (v(p)). Hence, ¥(p) is not compact and gso max V is not
locally compact at M, [Th. 3.3 and Th. 2.5]. More careful analysis
.shows that max V cannot contain even one compact set with interior.

It was conjectured in [5] that local compactness, first countability,
:second countability, and standard Borel structure were equivalent
for separable simplex spaces. We have shown that the first three
are indeed equivalent. As for the latter, we say that a Borel space
has a standard Borel structure whenever it is Borel isomorphic to
the Borel space associated with a Borel subset of a complete metric
.space [9, p. 138]. Since the extreme points of a metrizable compact
convex set in a topological vector space form a G,-set [10, Proposi-
tion 1.3}, EP(V) may be metrized by a complete separable metric
[8, §29, VI]. As E* is a Borel subset of EP(V), E* is standard.
‘'The map M: p,, — M is one-to-one, onto and continuous. Clearly, if
M~ is a Borel function then max V is standard.

ProposITION 3.6. If max V has a countable base, then max V is
standard. Further, there is a separable M-space V' for which max V
18 standard dbut max V is not locally compact.

Proof. The first statement follows immediately from [9, Th.
3.2]. As for the second, let
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v={recipo1 If(%) - %f(l), n=2 o}

V is a separable M-space for which max V is not locally compact
[5, Th. 4.3]. By [5, Proposition 4.1],

E‘:{52,10<y§1and y—#l for 7@32}
| n

and
Z={0,l0=sy=1}.

Therefore Z — E~ is a closed set. Hence, E~ is an open set in a.
compact metric space and so can be written as the countable union
of compact sets, i.e., there are compact sets K; & Z such that

E{A - UKL .

For any set A < E7, let
M(4) = U {M(p) | peA}.

Then M(A) = (M")"'(A). Let F be any closed set in E°. Hence
M(F)=U; M(K;NF'). Since K;NF is a compact set in £, M(K;NF)
is closed [5, Corollary 3.5]. Thus, M(F') is a countable union of
closed sets in max V and so is Borel. Therefore, M maps Borel sets
to Borel sets, i.e., M~ is a Borel map. From above, this implies
that max V is standard.
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