A NECESSARY AND SUFFICIENT CONDITION FOR THE EMBEDDING OF A LINDELOF SPACE IN A HAUSDORFF *%*, SPACE

BRENDA MACGIBBON

It is known that complete regularity characterizes the Hausdorff topological spaces which are embeddable in a compact Hausdorff space. The theory of \mathcal{H} -analytic and \mathcal{H} -Borelian sets leads naturally to the search for an analogous criterion for the embedding of a Hausdoff space in a Hausdorff \mathcal{H}_{σ} space. (A Hausdorff \mathcal{H}_{σ} space is a Hausdorff space which is equal to a countable union of its compact subsets.) We shall give an answer to this problem for Lindelof spaces.

Strong regularity and strong normality of a closed subspace with respect to a given Hausdorff space are defined. It is shown that a Hausdorff Lindelof space is embeddable in a Hausdorff \mathscr{H}_{σ} if and only if X is equal to a union of an increasing sequence of its strongly regular closed subspaces. An example is given of a nonregular space which is equal to a union of an increasing sequence of its strongly normal subspaces.

One might think that if a Hausdorff space were equal to a union of an increasing sequence of its closed completely regular subspaces, it would be embeddable in a Hausdorff \mathscr{K}_{σ} . However, in [3] an example of a Hausdorff space which is equal to a union of an increasing sequence of its closed normal subspaces and which is not embeddable in a Hausdorff \mathscr{K}_{σ} is given.

In 1959 in [1], Professor G. Choquet proved that a \mathcal{K} -analytic space is embeddable in a space in which it is \mathcal{K} -Souslin if and only if it is embeddable in a Hausdorff \mathcal{K}_{σ} space. Since all \mathcal{K} -analytic spaces are Lindelof, it is desirable to characterize Lindelof spaces which are embeddable in Hausdorff \mathcal{K}_{σ} spaces.

2. Preliminaries. We will need the following definitions.

DEFINITION 2.1. Let Y be a closed subspace of a Hausdorff topological space X. Y is said to be strongly regular with respect to X if for all subspaces A closed in Y and for all $x \in (Y \setminus A)$, there exist 0, P open in X such that:

$$A \subset 0$$
; $x \in P$; $0 \cap P = \emptyset$.

Clearly such a subspace Y is a regular topological space in the subspace topology. The converse is false, because there exist closed

and regular subspaces Y of a Hausdorff space X that are not strongly regular with respect to X. For example, let [0, 1] have the following topology \mathscr{T} :

$$0 \in \mathscr{T}$$
 if and only if $0 = 0' \cup (0'' \cap Q)$

where 0', 0'' are open in the usual topology and Q is the set of rationals in [0, 1].

Denote by X the Hausdorff topological space $([0, 1], \mathscr{T})$. Let I be the set of irrationals in [0, 1]; and let $Y = I \cup \{q\}$, where q is a rational in [0, 1]. Now Y is a closed and regular subspace of X, but Y is not strongly regular with respect to X because every open set in X containing I is everywhere dense in X.

DEFINITION 2.2. Let Y be a closed subspace of a Hausdorff topological space X. Y is strongly normal with respect to X if for every two closed subspaces A, B of Y, there exist open sets 0, P in X such that:

$$A \subset 0$$
; $B \subset P$; and $0 \cap P = \emptyset$.

Obviously, such a Y is a normal topological space in the subspace topology. But note in the example given above, Y is a closed and normal subspace of X, but Y is not strongly normal with respect to X.

Now several lemmas concerning these properties will be given.

LEMMA 2.1. Let Y be a closed subspace of a Hausdorff space X. Then the following conditions are equivalent.

(1) Y is strongly regular with respect to X.

(2) For each $y \in Y$ and for each 0 open in X and containing y, there exists an open set P in X such that:

$$y\in P\subset \bar{P}^{x}\subset 0$$
,

where $\overline{P}^x = the \ closure \ of \ P \ in \ X$.

(3) For each closed $A \subset Y$ and each $y \in (Y \setminus A)$, there exists an open 0 in X such that:

$$y \in 0$$
 and $\overline{0}^x \cap A = \emptyset$.

Proof. (The same proof as used to prove regularity in the classical sense.)

LEMMA 2.2. Let Y be a closed subspace of a Hausdorff Lindelof space X. If Y is strongly regular with respect to X, Y is strongly normal with respect to X.

Proof. Let A, B be two closed disjoint subspaces of Y. After Lemma 2.1 we have:

(1) for each $x \in A$, there exists an open subspace of $X, 0_x$ containing x, such that:

$$\overline{0}_x^{\scriptscriptstyle X} \cap B = \oslash$$
; $(\overline{0}_x^{\scriptscriptstyle X} = ext{closure of } 0_x ext{ in } X)$;

(2) for each $y \in B$, there exists an open subspace of X, P_y containing y, such that:

$$P_y^x \cap A = igodot$$
.

Since X is Lindelof, the open cover of X consisting of

$$\{\{0_x\}_x \in A, \ \{P_y\}_y \in B \quad ext{and} \quad X ackslash (A \, \cup \, B)\}$$

has a countable subcover. That is, there exist sequences $\{0_n\}_{n=1}^{\infty}, \{P_n\}_{n=1}^{\infty}$ of open subsets of X such that:

 $A \subset \bigcup_{n=1}^{\infty} 0_n$; $B \subset \bigcup_{n=1}^{\infty} P_n$; with $\overline{0}_n^X \cap B = \overline{P}_n^X \cap A = \emptyset$ for each n. Define $0'_1 = 0_1$ and $P'_1 = P_1$; and by induction for each n

$$0_n'=0_nigvee_{j=1}^nar{P}_j^{\scriptscriptstyle X},\,P_n'=P_nigvee_{j=1}^nar{0}_j^{\scriptscriptstyle X}$$
 .

Now $0'_n \cap P_j = \emptyset$ for all $j \leq n$ implies that $0'_n \cap P'_j = \emptyset$ for all $j \leq n$. Similarly $0_j \cap P'_n = \emptyset$ for all $j \leq n$ implies that $0'_j \cap P'_n = \emptyset$ for all $j \leq n$. Thus, $0'_j \cap P'_n = \emptyset$ for all j and n. Then

$$(igcup_{j=1}^{igcup} 0'_j) \cap (igcup_{n=1}^{igcup} P'_n) = arnothing$$
 .

For each $n, \overline{0}_n^{\scriptscriptstyle X} \cap B = \overline{P}_n^{\scriptscriptstyle X} \cap A = \emptyset$. Therefore, $A \subset \bigcup_{j=1}^{\infty} 0_j'$ and $B \subset \bigcup_{n=1}^{\infty} P_n'$ and these unions are disjoint. Thus, Y is strongly normal with respect to X.

3. Embedding in Hausdorff \mathcal{K}_{σ} spaces.

THEOREM 3.1. Let X be a Hausdorff Lindelof space. Then a necessary and sufficient condition for X to be embeddable in a Hausdorff \mathscr{K}_{σ} space is the following: there exists a sequence $\{X_n\}_{n=1}^{\infty}$ of subspaces of X such that:

- (1) $X = \bigcup_{n=1}^{\infty} X_n$, and for each n
- $(2) \quad X_n \subset X_{n+1}$
- (3) X_n is closed and strongly regular with respect to X.

Proof. Necessity. By hypothesis, X is embeddable in a Hausdorff $E = \bigcup_{n=1}^{\infty} K_n$, where K_n is a compact subspace of E. Without loss of generality, we can suppose that $K_n \subset K_{n+1}$ for each n.

Let $X_n = K_n \cap X$. Obviously, $X = \bigcup_{n=1}^{\infty} X_n$; $X_n \subset X_{n+1}$ for all n;

and X_n is a closed and regular subspace of X. Moreover, X_n is strongly regular with respect to X; for suppose that A is closed and contained in X_n and $x \in (X_n \setminus A)$. Then $x \notin \overline{A}^{\kappa_n}$. Thus, there exist open sets U, V in E such that $x \in U$; $\overline{A}^{\kappa_n} \subset V$; and $U \cap V = \emptyset$. Let $0 = U \cap X$ and $P = V \cap X$. Then $x \in 0$ and $A \subset P$ and $0 \cap P = \emptyset$.

Sufficiency. By hypothesis, X is a Hausdorff Lindelof space; $X = \bigcup_{n=1}^{\infty} X_n$; and for all $n, X_n \subset X_{n+1}$, where X_n is closed and strongly regular with respect to X.

After Lemma 2.2, X_n is strongly normal with respect to X. Let βX_n be the Stone-Cech compactification of X_n (for $n = 1, 2 \cdots$). For all $n, \beta X_n$ has a canonical embedding in βX_{n+1} . Since X_n is strongly normal with respect to X for all n, then $\beta X_n = \text{closure of } X_n$ in βX_{n+1} . (This is a consequence of the theorem of Tietze [2].)

For all *n*, let $K_n = \beta X_n$. Using the canonical embedding of βX_n in βX_{n+1} , we can consider $K_n \subset K_{n+1}$ for each *n*. Let $E = \bigcup_{n=1}^{\infty} K_n$ (or more precisely, the inductive limit of the K'_n s).

To define the required topology on E, it is necessary to prove the following lemma.

LEMMA 3.2. Let $X = \bigcup_{n=1}^{\infty} X_n$ be a Hausdorff Lindelof space, where X_n satisfies conditions (1), (2), and (3) of Theorem 3.1 for each n. Let $K_n = \beta X_n$ for each n (from which it follows that $K_n \subset K_{n+1}$). For any open subspace 0 of X and for each index n, there exists a subset 0_n^* of K_n such that:

(i) 0_n^* is an open subspace of K_n ,

(ii) $0_n^* \cap X_n = 0 \cap X_n$,

and (iii) $0_n^* \cap K_{n-1} = 0_{n-1}^*$.

Proof. Let $A = (X \setminus 0)$. Then A is closed in X. Let $A_n = A \cap X_n$ for all n. Then $A = \bigcup_{n=1}^{\infty} A_n$ and $A_{n+1} \cap X_n = A_n$ for all A_n .

Consider $\overline{A_1}^{\kappa_1} =$ the closure of A_1 in K_1 . Obviously, $\overline{A_1}^{\kappa_1} \cap X_1 = A_1$ and $\overline{A_1}^{\kappa_1} \cap (X_2 \backslash X_1) = \emptyset$ (since $K_1 \cap (X_2 \backslash X_1) = \emptyset$).

If we consider $\overline{A_2}^{K_2}$, then $\overline{A_1}^{K_1} \subset \overline{A_2}^{K_2}$ and $\overline{A_2}^{K_2} \cap X_2 = A_2$. It is necessary to show that $\overline{A_2}^{K_2} \cap K_1 = \overline{A_1}^{K_1}$. Obviously, $\overline{A_1}^{K_1} \subset (K_1 \cap \overline{A_2}^{K_2})$. Suppose that there exists a $y \in K_1 \cap (K_1 \setminus \overline{A_1}^{K_1}) = K_1 \cap (K_2 \setminus \overline{A_1}^{K_1})$. Then there exists an open neighbourhood U of y in K_2 such that:

$$ar{U}^{\kappa_2}\cap ar{A_1}^{\kappa_1}=arnothing \ .$$
 That is $ar{U}^{\kappa_2}\cap (ar{A_2}\cap X_1)^{\kappa_2}=arnothing \ .$

This implies that $(\overline{U}^{\kappa_2} \cap A_2) \cap (\overline{U}^{\kappa_2} \cap X_1) = \emptyset$.

Since X_2 is strongly normal with respect to X and since $K_2 = \beta X_2$, then:

$$\overline{(ar{U}^{\kappa_2}\cap A_{\scriptscriptstyle 2})}^{\kappa_2}\cap\overline{(ar{U}^{\kappa_2}\cap X_{\scriptscriptstyle 1})}^{\kappa_2}=arnothing$$
 .

(This is a consequence of the fact that two closed disjoint subspaces in a normal space Y have disjoint closures in βY ; and this is a consequence of Urysohn's lemma [2].)

Since $y \in K_1$, then $y \in (\overline{U}^{\kappa_2} \cap X_1)^{\kappa_2}$. Thus $y \notin (\overline{U}^{\kappa_2} \cap A_2)^{\kappa_2}$. Thus, $y \notin \overline{A_2}^{\kappa_2}$. This shows that $\overline{A_2}^{\kappa_2} \cap K_1 \subset \overline{A_1}^{\kappa_1}$; from which it follows that $\overline{A_2}^{\kappa_2} \cap K_1 = \overline{A_1}^{\kappa_1}$.

In the same way, it can be shown that for all n:

$$\overline{A_n}^{{\scriptscriptstyle K}_n}\cap K_{n-1}=\overline{A_{n-1}}^{{\scriptscriptstyle K}_{n-1}}$$
 .

If we let $0_n^* = K_n \setminus \overline{A_n}^{K_n}$; the sequence $\{0_n^*\}_{n=1}^{\infty}$ has the required properties.

The end of the proof of Theorem 3.1. For each open set 0 in X, let $0^* = \bigcup_{n=1}^{\infty} 0_n^*$, where the 0_n^* were defined above. To show that the 0*'s define a base for a topology on $\bigcup_{n=1}^{\infty} K_n$, it is necessary to show that $(0 \cap P)^* = 0^* \cap P^*$ for any two open subspaces 0, P of X. Since $0^* \cap P^* = \bigcup_{n=1}^{\infty} (0_n^* \cap P_n^*)$, it suffices to show for each n that:

 $(0_n \cap P_n)^* = 0_n^* \cap P_n^*$, where $0_n = 0 \cap X_n$ and $P_n = P \cap X_n$ for each n. Let $A_n = X_n \setminus 0_n$ and $B_n = X_n \setminus P_n$. Then $0_n^* = K_n \setminus \overline{A_n}^{K_n}$ and $P_n^* = K_n \setminus \overline{B_n}^{K_n}$.

Then $0_n^* \cap P_n^* = K_n \setminus (\overline{A_n}^{K_n} \cup \overline{B_n}^{K_n}) = K_n \setminus (\overline{A_n \cup B_n})^{K_n}$.

Since $A_n \cap B_n = X_n \setminus (0_n \cup P_n)$; then, by definition $(0_n \cap P_n)^* = K_n \setminus \overline{(A_n \cup B_n)^{\kappa_n}}$.

Thus, the 0^{*}'s define a base for a topology τ on $\bigcup_{n=1}^{\infty} K_n$. From now on, let *E* designate the topological space $(\bigcup_{n=1}^{\infty} K_n, \tau)$. By the definition of τ , *X* is embedded in *E*.

To show that E is Hausdorff, let x, y be in E. Then there exists an n such that $x, y \in K_n$. Without loss of generality, let us suppose that n = 1. Let us choose U, V open in K_1 such that $x \in U; y \in V$ and $\overline{U}^{K_1} \cap \overline{V}^{K_1} = \emptyset$. Let $0_1 = U \cap X_1$, $P_1 = V \cap X_1$; then $\overline{0}_1^{X_1} \cap \overline{P}_1^X = \emptyset$.

From Lemma 2.2, it follows that X_1 is strongly normal with respect to X. Thus, there exist 0, P open in X such that $\overline{0}_1^{X_1} \subset 0'$; $\overline{P}_1^{X_1} \subset P'$ and $0' \cap P' = \emptyset$. Thus, there exist 0, P open in X such that $0 \cap P = \emptyset$; $0 \cap X_1 = 0_1$ and $P \cap X_1 = P_1$.

Let $A = (X \setminus 0)$; $B = (X \setminus P)$; and for each n:

$$A_n = X_n ackslash (0 \cap X_n)$$
 , $B_n = X_n ackslash (P \cap X_n)$.

For each n, define $0_n^* = K_n \setminus \overline{A_n^{K_n}}$; $P_n^* = K_n \setminus \overline{B_n^{K_n}}$. Let $0^* = \bigcup_{n=1}^{\infty} 0_n^*$

and $P^* = \bigcup_{n=1}^{\infty} P_n^*$. Since $(K_1 \setminus U) \supset \overline{A_1}^{K_1}$; then $U \subset (K_1 \setminus \overline{A_1}^{K_1})$; then 0^* is an open neighborhood of x in E. In the same way, it can be shown that P^* is a neighborhood of y in E. We have already shown that $0^* \cap P^* = (0 \cap P)^*$. Since $0 \cap P = \emptyset$ and X is dense in E, then $0^* \cap P^* = \emptyset$. Thus, E is a Hausdorff space.

Since E is Hausdorff and $0^* \cap K_n = 0^*_n$ for each n; then K_n is a compact subspace of E. Thus X is embeddable in a Hausdorff \mathscr{K}_{σ} .

4. An example of a nonregular space satisfying the conditions of the theorem. To show that the theorem is not trivial, we shall give an example of a space satisfying the hypotheses of Theorem 3.1 without being regular.

Let [0, 1] have the topology \mathscr{T} already used in the example that follows Definition 2.1. From now on, let Y denote the topological space ([0, 1], \mathscr{T}); I the set of irrationals in [0, 1]; and C the Cantor set in [0, 1].

Consider the following subspace X of Y, defined by $X = Z \cup A \cup B$ where:

 $egin{aligned} Z &= C \cap I \ , \ A &= Q \cap ([0,1] ackslash C) \ , \ B &= a \ ext{substant}$

B = a subset of I which is countable and dense in [0, 1] with respect to the usual topology.

For convenience, let $B = \bigcup_{n=1}^{\infty} \{b_n\}$ and $A = \bigcup_{n=1}^{\infty} \{a_n\}$. (Note that A is not finite.)

Now, let $X = \bigcup_{n=1}^{\infty} X_n$, where

$$X_n=Z\cup (igcup_{j=1}^n \left\{ b_j
ight\})\cup (igcup_{j=1}^n \left\{ a_j
ight\})$$
 .

It can be shown that X is Lindelof and that X_n is strongly normal with respect to X. But X is not regular, since $(Z \cup B)$ is closed in X and all open sets that contain $(Z \cup B)$ are everywhere dense in X.

I would like to acknowledge my thanks to Professor G. Choquet for reading the manuscript and for his helpful suggestions.

464

BIBLIOGRAPHY

1. G. Choquet, Ensemble \mathcal{K} -analytiques et \mathcal{K} -Sousliniens. Cas général et cas métrique, Ann. Inst. Fourier **9** (1959), 74-86.

2. J. L. Kelley, General Topology, New York, 1955.

3. B. MacGibbon, Exemple d'espace \mathcal{K} -analytique qui n'est \mathcal{K} -Souslinien dans aucun espace, Bull. des Sci. Math. **94** (1970), 3-4.

Received January 14, 1970.

MCGILL UNIVERSITY MONTREAL, CANADA