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A NEW APPROACH TO REPRESENTATION THEORY
FOR CONVOLUTION TRANSFORMS

D. LEVIATAN

There are two different ways by which one obtains re-
presentation theorems for the Laplace transform. One way
is to impose integral conditions on the inverse operator; and
the other way is to impose summation conditions without
referring to the inverse operator. Representation theorems
for the convolution transform have hitherto been obtained by
imposing integral conditions on the inverse operator, and no
attempt has been made to impose summation conditions. We
obtain here some representation theorems, which involve sum-
mation conditions, for convolution transforms with kernels in
Class lί. A representation theorem for convolution trans-
forms of Class II with determining functions of bounded
variation in (—°°, °°), is given. Also, representation theorems
involving determining functions which are integrals of func-
tions in the Orlicz class LM{—^, °°) are obtained.

In the sequel we follow the notation of Hirschman and Widder
[2].

2* Notation and an auxiliary lemma* Let the sequence {an}
(n Ξ> 1) satisfy

(2.1) 0 < α 1 ^ α 2 ^ . . ^ α . g . . Σ — = ^ ; Σ Λ < ° °

S e t

where s is complex and where the convergence of the infinite product
is insured by (2.1) (see [2], p. 11). Our representation theorems
will be concerned with convolution kernels of the form

G(t) = (2ττΐ)-1ΓTO [E{s)]-ιestds , - oo < t < oo .

Also set

Em(s) = k Π + i ( l - ~)eslak , m ^ 0

Gm(t) = (27ri)~1\ [Em(s)Yxestds , m ^ 0
J-ioo

n / Q \

p /g\ _ TT( 1 _ )gs/αfc 7̂  > 1 *
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a n d

Hn(t) = ( 2 π i ) - ί Γ [P%(8)Yιe«ds , n ^ l .
J-ico

Let D be differentiation with respect to x and let

PΛD) = Πfl - —V'β* , π ̂  1 .

With a function /(#) differentiable infinitely often in (α, oo), associate
the sequence of functions defined on (α, oo) by

Mx) = f(x)
fn(x) = Pn{D)f{x) , n ^ l .

Then a proof similar to that of [2] p. 151 (4) gives

S *-(l/α w )

e-a*%(t)dt + a&e^w*"
α-(l/αΛ)

where Cn is a constant independent of cc. Change of variable under
the sign of the integral yields for all x, u, a < x, u < oo,

(2.3) e-β-Λ_1(a?) = e-β V » » + α J V β */n(ί - —)dί .

Denote λ0 = 0 and \n = Σi=iVak> n^l; and denote α0! = 1 and
aj = αx αw, w ̂  1. Then the following result plays a central role
in the sequel.

LEMMA. Let f(x) be differentiable infinitely often in (α, oo) and
let a < x < u < oo. Tλβw /or ê βr̂ / n ̂  0,

(2.4) /(a?) = Σ-l-/ A (% - Xk)Hk+ι(x -

(2.5) iίn(ίB, u) - ( 7 +i(< - K+i)Hn+1(x - t + Xn+1)dt .
Jx

REMARK. It should be noted that formulae (2.4) and (2.5) bear
strong resemblance to Badaljan's formulae for the generalized Taylor
expansion with remainder (see for example [1], (1.23) through (1.25)).

Proof of the lemma. Let a < x < u < oo. Then it follows by
(2.3) for n=l, that
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f(x) = e^
χ-n)f(u) +

= —fi^H^x -U + XJ + R0(x, u) .

Now proceed by induction assuming (2.4) and (2.5) for n ^ 0 and
proving it for n + 1. To this end we have by (2.3) for n + 2 and
by (2.4) and (2.5) for n,

f(χ) = Σ — Λ f a - *k)Hk+l(x -u + \h+1)

(2.6) + ί V +^'-^Λ+^w - Xn+1)Hn+1(x - t + Xn+1)dt
J re

^{t~υ)fn+2(v - Xn+2)dvHn+1(x - t + \n+1)dt .

Now it is well-known that

(2.7) ϊ V»+itt-)JEZn+1(a? - t - \n+1)dt - - i - ^ + 2 ( α ; - u + λw+2) .

Also changing of the order of integration in the third term on the

right-hand side of (2.6), shows that it is equal to

fn+2(v - Xn+2)Hn+2(x - v + Xn+2)dv = Rn+ι(x, u) .

X

This completes our proof.

3* Determining functions of bounded variation* In this sec-
tion we prove the following

THEOREM 1. Necessary and sufficient conditions in order that
f{x) possess the representation

(3.1) f(x) = Γ G(x - t)da{t) , 7 < x < oo ,
J-oo

where a(t) is of bounded variation in (—00,00), are that f(x) is
differentiable infinitely often in (7, 00) and that

(3.2) sup Σ — ! / • ( * - λw) I = H < - .
r<x<co w=o a n + 1

Furthermore

J°° I da(t) \ = H .
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REMARK. A kernel in Class II has usually one more parameter,
a real number b. Also the definition of the kernels Gm(t) and Hn(t)
involves a sequence of parameters {bm} tending to 0 as m —> °o, (see
[2], p. 125). We have restricted ourselves to the case b = bm = 0,
m ^ 1, for convenience in both the writing of the article and the
use of references [1, 5] where this case is the only one discussed.
The results of this paper can be easily extended to the general
case and this is left for the reader.

A representation theorem involving integral conditions can be
found in [2], p. 156, Th. 5.2 a. However, in this result the re-
presentation (3.1) is assumed to hold throughout the real line while
we allow representation in a half line.

Proof of Theorem 1. First we prove sufficiency. We prove first
that condition (3.2) implies that for 7 < x < u < w,

(3.3) f(x) = Σ — Λ f a - ^k)Hk+1(x -u + λ4+1) .
ko a

Since Hn(t)—+G(t), uniformly in (— oo, oo), as n-+ <*> (see [2], p. 152,
Lemma 4.1) and since G(t) is bounded in (— oo, oo) it follows that
for n sufficiently large the functions Hn{t) are uniformly bounded
in (— oo, oo). Hence the series on the righthand side of (3.3) con-
verges. Therefore by virtue of (2.4) it suffices to prove that for
some subsequence {%}, Rn(x,u)—+0 as j —> oo. To this end observe
that by (3.2)

on the other hand by (2.1)

Consequently there is a subsequence {nά + 1} such that

(3.4) j j Λ i + 1 ( ί - λ n j . + 1 ) | d ί - > 0 as i - * o o .

Now by the uniform boundedness of the functions Hn{t) for n
sufficiently large it follows by (2.5) and (3.4) that Rn.{x, u)~+0 as
j —• oo. This completes the proof of (3.3). We have already noted
that Hn(t)—*G(t), uniformly in (— oo, oo), as n—• oo. Also for each
fixed n, Hn(t) —> 0 as t —> — oo and G(t) —» 0 as t —» — oo. Hence it
follows by (3.2) and (3.3) that for Ύ < x < oo



REPRESENTATION THEORY FOR CONVOLUTION TRANSFORMS 445

(3.5) f(x) = lim Σ — Λ ( " - ^k)G(x -u + λt+1) .
w-^co k=o a k + 1

Define now the functions au(t) (u > 7) by

(3.6) au(t) = Σ — Λ f a - K) , - <*> < t < - .
u-λn+1<t an+1

Then the functions au(t) are of uniformly bounded variations and
(3.5) can be rewritten as

(3.7) f(x) = lim [° G(x - t)dau(t) , 7 < x < co .

By [2], p. 156, Th. 5.1 there exists a sequence {%} and a function
of bounded variation a(t) such that «„.(£)—•#(£), — °° <t < oo, as
j —> co, and f or all 7 < x < oo,

/(a;) = lim Γ G(a; - t)dau.(t) = [° G(x - t)da(t) .

Since G(t)—^0 as ί—•±©o. This completes the proof of (3.1). Also
it is obvious that

(3.8) ( I da{t) \^H.
J—oo

The converse follows by [1], (1.30) and [5] Th. 1, however, we
will give a direct proof as we need some of the results for § 4.

First it follows by (3.1) and [2], p. 129, Th. 5. 2a that f(x) is
differentiate infinitely often in (7, co) and that

fn(x) = \__J2nix ~ t)da(t) , 7 < x < oo .

Consequently

(3.9) Σ — \Mχ -K)\έ\~ Σ —G»(χ - λH - ί)

and our proof will be complete when we show that for all x, t,
— oo < χ9 t < oo,

(3.10) Σ —Gn(x - K - t) g 1 .
*=° α»+i

Now set α0 = 0 and define the functions Λyw(ί), 0 ^ n ^ iSΓ, by

Γ ΛNn(t)e~stdt = \(an ~ s) f[ (l - —)Ύ\ Re s < αw ,

where for n = N the right hand side is interpreted as (an — s)-1. It
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then follows similar to [2], p. 241-242 (although some of our ak

may not be different from one another) that

ΛNn(t) = 0 , 0 <t< oo

a n d

(3.11) Σ ΛNn(t) = 1 , - - < t ^ 0 .

Convoluting both sides of (3.11) by GN(t) we obtain

Γ G(ί + λ^ - u)du + ^-L-G^t + λ^ - λ4) = \°

Hence

Γ G(ί - u)du + Σ 1 -^—G 4 (ί - λ,) ^

S o
G(ί - u)du ^ 0, (3.10) is evident. This completes the

— CO

proof of (3.2); and to conclude the proof of the theorem we observe
that by (3.9) and (3.10),

H ^ Γ I da(t) I .
J-oo

Our proof is now complete.

4* Determining functions in Orlicz classes* Let the function
M{u) be an even, continuous, convex function satisfying (1) M(u)/u—+0
as u—>0, (2) M(u)/u—>oo as u—> oo. Let LM(— oo, co) denote the
class of measurable functions <p(x) in (— oo, oo) which satisfy

M[φ(x)]dx < oo .

LM(— oo, oo) is known as the Orlicz class associated with M{u) and
is not necessarily a linear space (see [3]). The space Lp(— oo, oo),
1 < P < °°> is obtained as the orlicz class associated with M(u) = \u\p.

First we give a necessary condition.

THEOREM 2. If f(x) possesses the representation

(4.1) f{x) - Γ G(α? - t)φ{t)dt , 7 < x < oo ,
J-oo

where φ(t) e LM(— oo, oo), £foβπ /(#) is dίfferentiable infinitely often
in (7, oo) and
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(4.2) sup Σ — i l f [/.(» - λ,)] = if < ~ .
< < o #

J-oo

Proof. By (4.1) and [2], p. 129, Th. 5. 2a, /(a) isΓdifferentiable
infinitely often in (7, oo) and

Λ(s) = Γ Gn(x - t)φ(t)dt , 7 < x < - .
J-oo

Thus by Jensen's inequality (see [8], p. 23 (10.8))

M[fn(x - λj]

since

[° Gn(t)dt = 1 , w ^ 0

Consequently by (3.10),

Σ —M[fn(x - λj] ^ Γ Σ ~^-Gn{x -Xn- t)M[φ(t)]dt

^ Γ Jlf [9>(ί)]dί < oo .
J-oo

This proves (4.2) and also that

H ^ (~ M[φ(t)]dt .
J-oo

A partial converse of Theorem 2 is the following

THEOREM 3. If f(x) possesses the representation (3.1) and ij
(4.2) holds, then f(x) possesses the representation (4.1) where φ(t) e

S oo

M[φ(t)]dt <£ iί.
_ o o

REMARK. Theorem 3 is not a satisfactory converse of Theorem
2 since not every function in LM(— oo, oo) is also integrable. One
would conjecture that (4.2) with the fact that f(x) is differentiate
in (7, oo) would suffice for (4.1) as is the case with the Laplace
transform (see [4]).

Proof of Theorem 3. The functions au(t) defined in (3.6) are,
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by virtue of Theorem 1, of uniformly bounded variations. Hence, as
in the proof of Theorem 1, there exists a function a(t) such that
auj(t) —• oί(t) — o o < £ < o o , a s i —• oo a n d

f(x) = ί°° G(x - t)da(t) , 7 < x
J

(4.3)

In order to complete our proof we show that a(t) is the indefinite
integral of a function in LM{— oo, oo). To this end, let

— °° < to < ίx < < tn < co

be a fixed subdivision of (—00,00). Then by Jensen's inequality
(see [8], p. 24 (10.10))

M

i an

= M
Σ

Σ
1 -M[fjμ - λ.)]

i Cίn +

Hence by (4.2)

(4.4)

ΣΓ Σ —]M
•=1 L * i - i < « - < ί n + 1 ^ ί i α Λ + 1 J

- λj] ^ 00 .

Now limy-HK, {α«i(ί<) — oίUj{U-d} = «(*•) — «(*ί-i) and, as is readily seen,

lim Σ
So (4.4) implies

(4.5)

Since (4.5) holds for any finite subdivision of (—00, 00) it follows by
a slight modification of Medvedev's theorem [6] that

a{t) = c + I φ(v)dv , — co < ί < 00 ,
Jo

where φ(v)eLM(—oo, 00). This in turn implies, together with (4.3),
that f(x) has the representation (4.1). Also
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Γ M[φ(t)]dt ̂  H .
J-oo

This completes our proof.
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