LOCAL BEHAVIOUR OF AREA FUNCTIONS OF CONVEX BODIES

WILLIAM J. FIREY

The area function of a convex body K in Euclidean *n*-space is a particular measure over the field \mathscr{B} of Borel sets of the unit spherical surface. The value of such a function at a Borel set ω is the area of that part of the boundary of K touched by support planes whose outer normal directions fall in ω . In particular the area function of the vector sum K + tE, where t is nonnegative and E is the unit ball, is a polynomial of degree n-1 in t whose coefficients are also measures over \mathscr{B} . To within a binomial coefficient, the coefficient of t^{n-p-1} in this polynomial is called the area function of order p. For p = 1 and p = n - 1 necessary and sufficient conditions for a measure over *B* to be an area function of order p are known, but for intermediate values of ponly certain necessary conditions are known. Here a new necessary condition is established. It is a bound on those functional values of an area function of order p which correspond to special sets of \mathcal{B} . These special sets are closed, small circles of geodesic radius α less than $\pi/2$; the bound depends on α , p and the diameter of K. This necessary condition amplifies an old observation; area functions of order less than n-1 vanish at Borel sets consisting of single points.

To examine area functions in detail, we write $\Pi(u)$ for the support plane to K whose outer normal direction corresponds to the point u on the unit spherical surface Ω . For ω in \mathscr{B} set

$$B(\omega) = \bigcup_{u \in \omega} (\Pi(u) \cap K)$$
.

The area function of K at ω is the (n-1)-dimensional measure of $B(\omega)$; we denote this by $S(K, \omega)$. $S(K + tE, \omega)$ is a polynomial of degree n-1 in t; the coefficient of

$$\binom{n-1}{p}t^{n-p-1}$$
, where $\binom{n-1}{p} = rac{(n-1)!}{p!(n-p-1)!}$,

is the area function of order p at ω and is written $S_p(K,\omega).$ In particular

$$S_{n-1}(K, \omega) = S(K, \omega), S_0(K, \omega) = S(E, \omega)$$
.

If at each boundary point of K there is a unique outer normal

u and principal radii of curvature $R_1(u), \dots, R_{n-1}(u)$ and if $\{R_1, \dots, R_p\}$ signifies the p^{th} elementary symmetric function of these radii, then

$$S_p(K, \omega) = \int_{\omega} \{R_1, \cdots, R_p\} d\omega / {n-1 \choose p}$$
.

For general convex bodies the total area of order p is a special mixed volume; in detail

$$S_p(K, \Omega) = n V(\underbrace{K, \cdots, K}_{p}, \underbrace{E, \cdots, E}_{n-p})$$
.

Let v be any fixed point on Ω and let ω_{α} be the set of u on Ω for which

$$(u, v) \geq \cos lpha, 0 < lpha < \pi/2$$
 ,

where (u, v) denotes the inner product of u and v. We shall prove that

(1)
$$S_p(K, \omega_{\alpha}) \leq AD^p \sin^{n-p-1} \alpha \sec \alpha = AD^p f_p(\alpha)$$
,

for $p = 1, 2, \dots, n - 1$, where D is the diameter of K and A depends neither on α nor on K.

A. D. Aleksandrov [1] and W. Fenchel and B. Jessen [3] introduced such area functions. They showed that for a measure Φ over \mathscr{B} to be an area function of order n-1, it is necessary and sufficient that, for any u'

(2)
$$\int_{a} (u', u) \Phi(d\omega(u)) = 0, \int_{a} |(u', u)| \Phi(d\omega(u)) > 0,$$

where these are Radon integrals. Aleksandrov showed also that (2), while necessary for Φ to be a p^{th} order area function when p < n - 1, are not sufficient. In part this depended on the observation that

(3)
$$S_{p}(K, \{v\}) = 0$$

for each v on Ω and p < n - 1. By letting α tend to zero, we see that (3) is a consequence of (1).

Necessary and sufficient conditions for Φ to be an area function of order one are given in [4] and [5]. Inequality (1) for p = 1 was proved in the latter paper and plays a significant part. Items of background are in these papers and [2] and [3].

1. We first show that if (1) holds for convex polyhedra, then it is true for all convex bodies.

Given any convex body K we can find convex polyhedra K_m , m =

1, 2, \cdots , which approximate K to within 1/m in the sense of the metric

$$\delta(K, K_m) = \max_{u \in \mathcal{Q}} |H(u) - H_m(u)|,$$

where H and H_m are the support functions of K and K_m . For the diameters D and D_m of these bodies we have

$$\lim_{m\to\infty}D_m=D.$$

Let $\varepsilon > 0$ be such that $\alpha + \varepsilon < \pi/2$; denote by η_{ε} the open set of u on Ω for which

$$(u, v) > \cos (\alpha + \varepsilon)$$
.

Clearly

$$(4) \qquad \qquad \omega_{\alpha} \subset \eta_{\varepsilon} \subset \omega_{\alpha+\varepsilon} .$$

By Theorem IX of [3], $S_p(K_m, \omega)$ converges weakly to $S_p(K, \omega)$ as m tends to infinity. This implies [3, p. 8] that

(5)
$$\liminf_{m \to \infty} S_p(K_m, \eta_{\epsilon}) \ge S_p(K, \eta_{\epsilon}) \ge S_p(K, \omega_{\alpha})$$

since η_{ε} is open. We have used (4) and the monotonicity of $S_{p}(K, \omega)$ in ω for the final inequality.

Also from (4), the monotonicity of S_p , and the assumption of (1) for polyhedra, we get

(6)
$$S_p(K_m, \eta_{\varepsilon}) \leq AD_m^p f_p(\alpha + \varepsilon)$$
.

Hence, because D_m tends to D, (5) and (6) yield

$$S_p(K, \omega_{lpha}) \leq A D^p f_p(lpha + arepsilon)$$
 .

The left side does not depend on ε and so inequality (1) holds for K.

2. To prove (1) for convex polyhedra K we form, from a given K, four convex bodies K_1, K_2, K_3, K_4 for which

$$(\,7\,) \hspace{1.5cm} S_{p}(K_{j},\,\omega_{lpha}) \leq S_{p}(K_{j+1},\,\omega_{lpha}),\,j=1,\,2,\,3$$
 ,

and

(8)
$$S_p(K_1, \omega_{\alpha}) = S_p(K, \omega_{\alpha})$$
 ,

(9)
$$S_p(K_4, \omega_{\alpha}) = AD^p f_p(\alpha) .$$

As a matter of notation $\Pi_j(u)$ signifies the support plane to K_j with outer unit normal u. We write ∂P for the boundary of any set P.

The body K_1 is to be the convex closure of $B(\omega_{\alpha})$. Since

$$\bigcup_{u \in \omega_{\alpha}} (K_1 \cap \Pi_1(u)) = B(\omega_{\alpha})$$

(8) holds. Also K_1 is polyhedral.

Let $\mathfrak{H}_1(u)$ signify the half-space with outer normal u which is bounded by $\Pi_1(u)$. Of course, for u in ω_{α} , $\mathfrak{H}_1(u)$ is the half-space with outer normal u bounded by $\Pi(u)$. Since $\alpha < \pi/2$, the intersection of those $\mathfrak{H}_1(u)$ for which

$$(u, v) \leq \cos \alpha$$

is a convex polyhedron $K_2 \supseteq K_1$. Here v, as before, is the centre of ω_{α} ; we write ω'_{α} for those u on Ω which satisfy the last inequality. Clearly

$$\bigcup_{u \in \omega'_{\alpha}} (K_1 \cap \Pi_1(u)) = \bigcup_{u \in \omega'_{\alpha}} (K_2 \cap \Pi_2(u))$$

and so

(10)
$$S_p(K_1, \omega'_{\alpha}) = S_p(K_2, \omega'_{\alpha}) .$$

On the other hand $K_1 \subseteq K_2$ implies that

$${S}_p(K_{\scriptscriptstyle 1}, arOmega) \leq {S}_p(K_{\scriptscriptstyle 2}, arOmega)$$
 .

This is a consequence of the representation of these total area functions as mixed volumes and the known monotonicity of mixed volumes $V(K, \dots, K, E, \dots, E)$ in K, cf. [2]. The additinity of area functions, our last inequality and (10) yield (7) for j = 1.

The rest of the proof is treated in separate sections. In §3 we describe a plane Π_0 normal to v, which cuts K so that $B(\omega_{\alpha})$, and hence K_2 , lies in one of the half-spaces determined by Π_0 . Call this half-space \mathfrak{F}_0 . We take K_3 to be the intersection of \mathfrak{F}_0 with

$$\cap \mathfrak{H}(u) = \cap \mathfrak{H}_{1}(u)$$

where these intersections are taken over those u in the common boundary of ω_{α} and ω'_{α} , i.e., those u for which

$$(u, v) = \cos \alpha$$
.

The body K_3 contains K_2 . To determine Π_0 it is necessary to consider circular cones of the form

(11)
$$(v, x - x_0) + ||x - x_0|| \sin \alpha \leq 0$$
.

The norm is Euclidean. The vertex of such a cone is x_0 ; the axial ray within the cone has the direction -v; these cones are translates

of one another. We choose x_0 so that the resulting cone contains K and the distance from K to the plane

$$(v, x - x_0) = 0$$

is as small as possible. We call this tangent cone C.

In §4 (7) is proved for j = 2.

 K_4 is $C \cap \mathfrak{H}_0$. This intersection is clearly a convex body which contains K_3 . In §5 we prove (7) for j = 3. Finally (9) follows from a direct calculation sketched in §6.

3. Let us introduce a Cartesian coordinate system with origin at the vertex x_0 of C and such that $v = (-1, 0, \dots, 0)$. The description of C takes the form

$$x_1 \geq \tan \alpha (x_2^2 + \cdots + x_n^2)^{1/2}$$

and the distance from K, which is in C, to the plane $x_1 = 0$ is minimal. This means that each half-space

$$(12) u_2 x_2 + \cdots + u_n x_n \ge 0$$

must contain a point of $B(\omega_{\alpha}) \cap \partial C$ for the following reason. If $\partial K \cap \partial C$ had no points in (12), a small translation of K in the direction u would cause $\partial K \cap \partial C$ to be empty; a subsequent small translation in the direction v would reduce the distance from K to $x_1 = 0$. Hence (12) contains a point x of $\partial C \cap \partial K$. The tangent plane to ∂C at x is a support plane of ∂K and the outer normal to this support plane makes an angle of measure α with v, i.e., falls in ω_{α} . Thus x is also in $B(\omega_{\alpha})$ as asserted.

We define conical bodies C_1 and C_2 to be the intersection of C with the half-spaces

$$x_{\scriptscriptstyle 1} \leqq D an lpha, x_{\scriptscriptstyle 1} \leqq 2D an lpha$$

respectively.

We first prove that

(13) $B(\omega_{\alpha}) \cap \partial C \subseteq C_1.$

Suppose to the contrary that there is a y in $B(\omega_{\alpha}) \cap \partial C$ for which $y_1 > D \tan \alpha$. Since the radius of the intersection of C with

$$x_1 = D \tan \alpha$$

is D, a ball of radius D, centred at y, lies in a half-space of the form

$$(14) u_2 x_2 + \cdots + u_n x_n < 0$$

for some u. As noted in the previous paragraph, there is a point x

in the complement of (14) which is in $B(\omega_{\alpha}) \cap \partial C$. This would give two points x and y in K separated by a distance greater than the diameter D of K. The contradiction establishes (13).

Next we demonstrate

$$(15) B(\omega_{\alpha}) \subseteq C_2$$

Again the proof is by contradiction. Imagine z to be a point in $B(\omega_{\alpha})$ for which $z_1 > 2D \tan \alpha$. z cannot be on the x_1 -axis for the following reason. Let Π be a support plane to K which contains z. There must be a half-space of the form (12) in which the points of $\Pi \cap \partial C$ lie in the half-space

$$x_{\scriptscriptstyle 1}>2D anlpha$$
 .

This implies that the points of $\partial K \cap \partial C$ which lie in (12) are at a distance exceeding 2D from z which, again, contradicts the fact that D is the diameter of K.

Let z' be the point nearest to z on the x_1 -axis. Set

$$u = (z - z')/||z - z'||;$$

u is orthogonal to v and z' and so

$$0 < (u, z' - z) = -(u, z)$$
.

Thus z satisfies

$$u_2 z_2 + \cdots + u_n z_n < 0$$
.

There is also a point x of

$$B(\omega_{a})\cap\partial C_{1}=B(\omega_{a})\cap\partial C_{2}$$

in the complementary half-space. Therefore the distance ||z - x|| must exceed the distance between $(2D \tan \alpha, 0, \dots, 0)$ and the intersection of ∂C_1 with the plane

$$x_{\scriptscriptstyle 1} = D an lpha$$
 .

That is to say

$$||z - x|| > (D^2 + D^2 \tan^2 \alpha)^{1/2} > D$$
.

This is impossible for x and z in K which completes the proof of (15). The plane

$$x_1 = 2D \tan lpha$$

is the cutting plane Π_0 of §2; the conical convex body C_2 is K_4 .

4. From the definitions of K_2 and K_3 we see that their support planes $\Pi_2(u)$ and $\Pi_3(u)$ coincide whenever their outer normal directions u are in ω_{α} . Hence for such u, since $K_2 \subseteq K_3$,

$$K_2 \cap \Pi_2(u) \subseteq K_3 \cap \Pi_3(u)$$
;

there is certainly equality when u is in the interior of ω_{α} . Inequality (7) for j = 2 follows from the next lemma, to the proof of which this section is devoted.

LEMMA. Let K and K' be two convex polyhedral bodies whose support planes with outer normal direction u are denoted by $\Pi(u)$ and $\Pi'(u)$. If

(16)
$$K \cap \Pi(u) \subseteq K' \cap \Pi'(u)$$

for each u in some Borel set ω of Ω , then

$$S_p(K,\,\omega) \leqq S_p(K',\,\omega), \; for \; \; p=1,\,2,\,\cdots,\,n-1$$
 .

We first require a description of $S_p(K, \omega)$ where K is polyhedral. In this we follow work, as yet unpublished, of J. Zelver.

Consider a set of the form $K \cap \Pi(u)$; this is a *p*-face e_p when e_p lies in a *p*-dimensional flat but not in a (p-1)-dimensional flat. The outer unit normals to support planes of K which contain e_p sweep out a closed, geodesically convex set $\omega(e_p)$ on Ω which is in \mathscr{B} and is (n-p-1)-dimensional. Throughout $\omega(e_p)$ we distribute mass with constant density $\lambda_p(e_p)$ equal to the *p*-dimensional volume of e_p . Thus if ω is any subset of $\omega(e_p)$ which is in \mathscr{B} and if $\mu_{n-p-1}(\omega)$ is its (n-p-1)-dimensional volume, then the mass falling in ω is $\lambda_p(e_p)\mu_{n-p-1}(\omega)$. The representation we seek is

(18)
$$S_p(K, \omega) = \sum_{*} \lambda_p(e_p) \mu_{n-p-1}(\omega \cap \omega(e_p)) / \binom{n-1}{p},$$

where the starred summation is taken over all e_p in ∂K .

Consider the vector sum K + tE and let $\Pi^*(u)$ signify its support plane with outer normal u. If x' is a point of

$$(K + tE) \cap H^*(u)$$
,

then there is a unique point x in $K \cap H(u)$ such that

$$(19) x' - x = tu.$$

Suppose e_p to be the face of lowest dimension which contains x and let $\{\Pi(u')\}$ be the set of support planes of K which contain e_p where u' ranges over $\omega(e_p)$. We form

(20)
$$\bigcup \{(K + tE) \cap \Pi^*(u')\},\$$

where the starred union is taken over those u' in $\omega \cap \omega(e_p)$. If (20) is not empty, it is made up of points x' to each of which corresponds a unique x on

$$\bigcup_{u} (K \cap \Pi(u')) = e_p$$

for which (19) holds. Thus (20) is the Cartesian product of e_p with that part of the boundary of tE which is swept out by rays whose directions are in $\omega \cap \omega(e_p)$. Therefore, empty or not, the (n-1)-dimensional measure of (20) is

$$t^{n-p-1}\lambda_p(e_p)\mu_{n-p-1}(\omega\cap\omega(e_p))$$
 .

We add up all such contributions to $S_{n-1}(K+tE,\omega)$ and obtain the sum

$$\sum\limits_{p=1}^n t^{n-p-1} \sum\limits_* \lambda_p(e_p) \mu_{n-p-1}(oldsymbol{\omega} \cap oldsymbol{\omega}(e_p))$$
 .

On the other hand, from the generalized Steiner formula [3, p. 31], we have

$$S_{n-1}(K+tE,\,\omega)=\sum\limits_{p=1}^nt^{n-p-1}\binom{n-1}{p}S_p(K,\,\omega)\;.$$

The comparison of coefficients of like powers of t in these two representations of $S_{n-1}(K + tE, \omega)$ yields (18).

Choose u in ω ; neither set in (16) is empty and so $\Pi(u)$ and $\Pi'(u)$ share a common point, have the same normal direction and so coincide. We have

$$K' \cap \Pi(u) = e'_p$$

for some p. By (16) either $K \cap \Pi(u)$ is a face e_p of the same dimension p or this intersection is a face of lower dimension. In the latter case there is no contribution to the sum in (18), i.e., the left side of (17), whereas there would be a positive contribution to the right side of (17). In the former case, from (16) it follows that

(21)
$$\lambda_p(e'_p) \ge \lambda_p(e_p) .$$

Also

(22)
$$\mu_{n-p-1}(\omega \cap \omega(e'_p)) = \mu_{n-p-1}(\omega \cap \omega(e_p)) .$$

To see this, we prove that the two argument sets in (22) coincide by showing that, for any u in Ω , we have $K \cap \Pi(u) \supseteq e_p$ if and only if $K' \cap \Pi(u) \supseteq e'_p$.

353

If $K' \cap \Pi(u) \supseteq e'_p$, then $e_p \subseteq e'_p \subseteq \Pi(u)$ and e_p also lies in ∂K . Hence e_p lies in $K \cap \Pi(u)$. Suppose $e_p \subseteq K \cap \Pi(u)$; then e_p lies in $\Pi(u)$. Since $e_p \subseteq e'_p$ by (16) and these two sets have the same dimensionality, any point x in e'_p is a linear combination of p + 1 suitable points in e_p . But, being such a combination of points in $\Pi(u)$, x must be in $\Pi(u)$. Thus e'_p is in both $\Pi(u)$ and K' and so in their intersection.

Substitution from (21) and (22) into the representation (18) as it applies to K and K' proves (17).

5. Our next step is to prove (7) for j = 3. We first settle the simplest case: p = n - 1. It is clear from the construction of K_3 and K_4 that, for i = 3, 4:

$$egin{aligned} S_{n-1}(K_i,\,arOmega\,-\,\omega_lpha) &= \,S_{n-1}(K_i,\,\{-v\}) \;, \ S_{n-1}(K_i,\,\omega_lpha) &= \,S_{n-1}(K_i,\,\partial\omega_lpha) \;, \end{aligned}$$

and

$$S_{{n-1}}(K_i,\,\partial \omega_lpha)\coslpha\,=\,S_{{n-1}}(K_i,\,\{-v\})$$
 .

Consequently

$$S_{n-1}(K_i, arOmega) = (1 + \cos lpha) S_{n-1}(K_i, arOmega_lpha)$$
 .

Since $K_3 \subseteq K_4$ and $S_{n-1}(K, \Omega)$ is increasing in K, it follows that (7) holds for j = 3, p = n - 1. For the cases $1 \leq p < n - 1$ a more elaborate argument is needed.

We shall examine the behaviour of $S_p(K_i, \omega_a)$ in K_i by studying that of

$$Q_i = \int_{arrho_{-\omega_{lpha}}} (v, u) S_p(K_i, d\omega(u)), \, i = 3, 4$$
.

These integrals will be reduced to iterated integrals. For this purpose we let Ω_{n-1} denote the set of u on Ω which are orthogonal to v and we form, for each u in Ω_{n-1} , the vectors

$$u_{\lambda} = \left[(1-\lambda)u + \lambda(-v) \right] / \left| \left| (1-\lambda)u + \lambda(-v) \right| \right|$$
 .

As before, v is the centre of ω_{α} . We have

$$(u_{\lambda}, v) = -\lambda/(\phi(\lambda))^{1/2}$$

where

$$\phi(\lambda) = 1 - 2\lambda + 2\lambda^2$$
 .

Also, if s signifies arc length along the circle through v and u,

$$ds/d\lambda = 1/\phi(\lambda)$$
 .

Define $\lambda_0 < 0$ by

$$-\lambda_{\scriptscriptstyle 0} = \cos lpha (\phi(\lambda_{\scriptscriptstyle 0}))^{\scriptscriptstyle 1/2}$$
 .

As u passes over Ω_{n-1} and λ over the interval $\lambda_0 < \lambda < 1$, u_{λ} sweeps out

$$\Omega - \omega_{\alpha} - \{-v\}$$
.

For such u and λ :

$$\Pi_i(u_{\mathfrak{d}}) \cap K_i = \Pi_i(u) \cap \Pi_{\mathfrak{d}} \cap K_i = \Pi_i(u) \cap k_i$$

where we have set

$$k_i = K_i \cap \Pi_0$$
,

and we recall that Π_0 is the support plane of K_i with outer normal -v. If we view each k_i as a nondegenerate convex body in the (n-1)-dimensional space Π_0 , then the outer normals u to k_i fall in Ω_{n-1} and k_i has area functions

$$s_1(k_i, \eta), \ldots, s_{n-2}(k_i, \eta)$$

defined over the Borel sets η of Ω_{n-1} .

We write Q_i as an iterated integral

$$\int_{\lambda_0}^1 \frac{-\lambda}{(\phi(\lambda))^{1/2}} \Big(\int_{\mathscr{Q}_{n-1}} s_p(k_i, \, d\eta(u)) \Big) \frac{d\lambda}{\phi(\lambda)} = g S_p(k_i, \, \mathcal{Q}_{n-1}) \,\,,$$

where

$$g=\int_{\lambda_0}^1 rac{-\lambda d\lambda}{(\phi(\lambda))^{3/2}} < 0$$
 .

Here we have used the fact that the point -v can be deleted from $\Omega - \omega_{\alpha}$ without affecting Q_i in virtue of (3) and the assumption that p < n - 1. Since $k_3 \subseteq k_4$

$$s_p(k_3, \mathcal{Q}_{n-1}) \leq s_p(k_4, \mathcal{Q}_{n-1})$$

and, from the negativity of g, it follows that

$$Q_{\scriptscriptstyle 3} \geqq Q_{\scriptscriptstyle 4}$$
 .

The first condition in (2), which is satisfied by any area function, shows that

$$Q_i + \int_{{}^{\omega_lpha}} (v,\,u_{\scriptscriptstyle\lambda}) S_{\scriptscriptstyle p}(K_i,\,d\omega(u_{\scriptscriptstyle\lambda})) = 0$$
 .

Hence, from our last inequality, we obtain

(23)
$$\int_{\omega_{\alpha}} (v, u_{\lambda}) S_{p}(K_{3}, d\omega(u_{\lambda})) \leq \int_{\omega_{\alpha}} (v, u_{\lambda}) S_{p}(K_{4}, d\omega(u_{\lambda})) .$$

Let x_0 signify the vertex of the cone K_4 and denote by ω_{α}^0 the interior of ω_{α} . Then for all u in ω_{α}^0

$$K_{4} \cap \Pi_{4}(u) = x_{0}$$

and, because $p \geq 1$,

$$S_p(K, \omega_{\alpha}^0) = 0$$
.

Therefore on the right side of (23) the integration needs to be extended only over $\partial \omega_{\alpha}$ throughout which (v, u_{λ}) is $\cos \alpha$. This yields for the right side of (23)

 $\cos \alpha S_p(K_4, \omega_{\alpha})$.

Consider the left side of (23). For u_{λ} in ω_{α} we have

$$(v, u_{\lambda}) \geq \cos \alpha$$

and so we may strengthen inequality (23) by replacing the left side by

$$\cos \alpha S_p(K_3, \omega_{\alpha})$$
.

After division by $\cos \alpha$ the strengthened inequality is just (7) for $j = 3, 1 \leq p < n - 1$.

6. It remains to prove (9). In the Cartesian coordinate system of section three, K_4 is the set of points x for which

$$an lpha (x_2^2 + \cdots + x_n^2)^{1/2} \leqq x_1 \leqq 2D an lpha$$
 .

Let tE^* be the convex body formed by the intersection of the ball tE with the reflected polar cone to C, i.e.,

$$x_1 \leq -ctn\alpha (x_2^2 + \cdots + x_n^2)^{1/2}$$
.

The vector sum $K_4 + tE^*$ is a convex body of revolution whose radial distance $r(\xi)$ in the plane $x_1 = \xi$ has the representation

$$r(\xi) = (t^2 - \xi^2)^{1/2}, -t \leq \xi \leq -t \cos \alpha;$$

$$(24) \qquad = \xi ctn\alpha + tcsc\alpha, -t \cos \alpha \leq \xi \leq 2D \tan \alpha - t \cos \alpha;$$

$$= 2D \sec^2 \alpha - \xi \tan \alpha, 2D \tan \alpha - t \cos \alpha \leq \xi \leq 2D \tan \alpha.$$

The volume $V(K_4 + tE^*)$ is

(25)
$$\omega_{n-1} \int_{-t}^{2D \tan \alpha} r^{n-1}(\xi) d\xi / (n-1) .$$

Here ω_{n-1} is the area of the unit spherical surface in Euclidean (n-1)-dimensional space and is given by

$$\omega_{n-1} = 2\pi^{(n-1)/2}/\Gamma((n-1)/2)$$
,

where Γ is the usual gamma function.

We equate (25) with the Steiner polynomial

$$V(K_{*} + tE^{*}) = \sum_{p=0}^{n} {n \choose p} t^{n-p} V_{p}(K_{*}, E^{*})$$
 ,

where $V_{p}(K_{4}, E^{*})$ is the mixed volume

$$V(\underbrace{K_4, \cdots, K_4}_{p}, \underbrace{E^*, \cdots, E^*}_{n-p})$$
.

Substitution from (24) into (25) and a comparison of coefficients of like powers of t yields

(26)
$$V_p(K_4, E^*) = \omega_{n-1} (2D)^p (\sin \alpha)^{n-p-1} \sec \alpha / n(n-1)$$

We consider next the brush set (Bürstenmenge) $B_i(K_4, \omega_{\alpha})$ which is formed from K_4 in the following manner. At each point x of

$$\bigcup_{u \in \omega_{\alpha}} (K_{\bullet} \cap \Pi_{\bullet}(u))$$

we draw all segments $x + \theta u, 0 < \theta \leq t$, corresponding to u in ω_{α} . The union of these segments is $B_t(K_t, \omega_{\alpha})$. Clearly this is

$$(K_4 + tE^*) - K_4$$

and so the volume $V_t(K_4, \omega_{\alpha})$ of $B_t(K_4, \omega_{\alpha})$ is

$$V(K_4 + tE^*) - V(K_4) = \sum_{p=0}^{n-1} {n \choose p} t^{n-p} V_p(K_4, E^*)$$

On the other hand, cf. [3, p. 31],

$$V_t(K_4, \omega_{lpha}) = \sum_{p=0}^{n-1} {n \choose p} t^{n-p} S_p(K_4, \omega_{lpha})/n$$
.

A comparison of coefficients of like powers of t in these two representations of $V_t(K_4, \omega_a)$ yields

$$S_p(K_4,\,\omega_{\alpha}) = n \, V_p(K_4,\,E^*)$$

and this, together with (26), gives (9) with

$$A = 2^p \omega_{n-1}/(n-1)$$
.

This completes the proof of (1).

References

1. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körper III, Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf beliebige konvexe Flächen, Mat. Sbornik, N.S. 3 (1938), 27-46; (Russian with German summary).

2. H. Busemann, Convex Surfaces, New York, 1958.

3. W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Det Kgl. Danske Videnskab, Selskab, Math-fys. Medd. 16 (1938), 3.

4. W.J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika, 14 (1967), 1-13.

5. W.J. Firey, Christoffel's problem for general convex bodies, Mathematika 15 (1968), 7-21.

Received June 6, 1968, and in revised form December 30, 1969.

OREGON STATE UNIVERSITY CORVALLIS, OREGON