LOCAL BEHAVIOUR OF AREA FUNCTIONS OF CONVEX BODIES

William J. Firey

The area function of a convex body K in Euclidean n-space is a particular measure over the field \mathscr{B} of Borel sets of the unit spherical surface. The value of such a function at a Borel set ω is the area of that part of the boundary of K touched by support planes whose outer normal directions fall in ω. In particular the area function of the vector sum $K+t E$, where t is nonnegative and E is the unit ball, is a polynomial of degree $n-1$ in t whose coefficients are also measures over \mathscr{B}. To within a binomial coefficient, the coefficient of t^{n-p-1} in this polynomial is called the area function of order p. For $p=1$ and $p=n-1$ necessary and sufficient conditions for a measure over \mathscr{B} to be an area function of order p are known, but for intermediate values of p only certain necessary conditions are known. Here a new necessary condition is established. It is a bound on those functional values of an area function of order p which correspond to special sets of \mathscr{B}. These special sets are closed, small circles of geodesic radius α less than $\pi / 2$; the bound depends on α, p and the diameter of K. This necessary condition amplifies an old observation: area functions of order less than $n-1$ vanish at Borel sets consisting of single points.

To examine area functions in detail, we write $\Pi(u)$ for the support plane to K whose outer normal direction corresponds to the point u on the unit spherical surface Ω. For ω in \mathscr{B} set

$$
B(\omega)=\bigcup_{u \in \omega}(\Pi(u) \cap K)
$$

The area function of K at ω is the $(n-1)$-dimensional measure of $B(\omega)$; we denote this by $S(K, \omega) . S(K+t E, \omega)$ is a polynomial of degree $n-1$ in t; the coefficient of

$$
\binom{n-1}{p} t^{n-p-1}, \text { where }\binom{n-1}{p}=\frac{(n-1)!}{p!(n-p-1)!}
$$

is the area function of order p at ω and is written $S_{p}(K, \omega)$. In particular

$$
S_{n-1}(K, \omega)=S(K, \omega), S_{0}(K, \omega)=S(E, \omega) .
$$

If at each boundary point of K there is a unique outer normal
u and principal radii of curvature $R_{1}(u), \cdots, R_{n-1}(u)$ and if $\left\{R_{1}, \cdots, R_{p}\right\}$ signifies the $p^{\text {th }}$ elementary symmetric function of these radii, then

$$
S_{p}(K, \omega)=\int_{\omega}\left\{R_{1}, \cdots, R_{p}\right\} d \omega /\binom{n-1}{p}
$$

For general convex bodies the total area of order p is a special mixed volume; in detail

$$
S_{p}(K, \Omega)=n V(\underbrace{K, \cdots, K}_{p}, \underbrace{E, \cdots, E}_{n-p}) .
$$

Let v be any fixed point on Ω and let ω_{α} be the set of u on Ω for which

$$
(u, v) \geqq \cos \alpha, 0<\alpha<\pi / 2,
$$

where (u, v) denotes the inner product of u and v. We shall prove that

$$
\begin{equation*}
S_{p}\left(K, \omega_{\alpha}\right) \leqq A D^{p} \sin ^{n-p-1} \alpha \sec \alpha=A D^{p} f_{p}(\alpha) \tag{1}
\end{equation*}
$$

for $p=1,2, \cdots, n-1$, where D is the diameter of K and A depends neither on α nor on K.
A. D. Aleksandrov [1] and W. Fenchel and B. Jessen [3] introduced such area functions. They showed that for a measure Φ over \mathscr{B} to be an area function of order $n-1$, it is necessary and sufficient that, for any u^{\prime}

$$
\begin{equation*}
\int_{\Omega}\left(u^{\prime}, u\right) \Phi(d \omega(u))=0, \int_{\Omega}\left|\left(u^{\prime}, u\right)\right| \Phi(d \omega(u))>0 \tag{2}
\end{equation*}
$$

where these are Radon integrals. Aleksandrov showed also that (2), while necessary for Φ to be a $p^{\text {th }}$ order area function when $p<n-1$, are not sufficient. In part this depended on the observation that

$$
\begin{equation*}
S_{p}(K,\{v\})=0 \tag{3}
\end{equation*}
$$

for each v on Ω and $p<n-1$. By letting α tend to zero, we see that (3) is a consequence of (1).

Necessary and sufficient conditions for Φ to be an area function of order one are given in [4] and [5]. Inequality (1) for $p=1$ was proved in the latter paper and plays a significant part. Items of background are in these papers and [2] and [3].

1. We first show that if (1) holds for convex polyhedra, then it is true for all convex bodies.

Given any convex body K we can find convex polyhedra $K_{m}, m=$
$1,2, \cdots$, which approximate K to within $1 / m$ in the sense of the metric

$$
\delta\left(K, K_{m}\right)=\max _{u \in \Omega}\left|H(u)-H_{m}(u)\right|
$$

where H and H_{m} are the support functions of K and K_{m}. For the diameters D and D_{m} of these bodies we have

$$
\lim _{m \rightarrow \infty} D_{m}=D
$$

Let $\varepsilon>0$ be such that $\alpha+\varepsilon<\pi / 2$; denote by η_{ε} the open set of u on Ω for which

$$
(u, v)>\cos (\alpha+\varepsilon) .
$$

Clearly

$$
\begin{equation*}
\omega_{\alpha} \subset \eta_{\varepsilon} \subset \omega_{\alpha+\varepsilon} \tag{4}
\end{equation*}
$$

By Theorem IX of [3], $S_{p}\left(K_{m}, \omega\right)$ converges weakly to $S_{p}(K, \omega)$ as m tends to infinity. This implies [3, p. 8] that

$$
\begin{equation*}
\liminf _{m \rightarrow \infty} S_{p}\left(K_{m}, \eta_{\varepsilon}\right) \geqq S_{p}\left(K, \eta_{\varepsilon}\right) \geqq S_{p}\left(K, \omega_{\alpha}\right) \tag{5}
\end{equation*}
$$

since η_{ε} is open. We have used (4) and the monotonicity of $S_{p}(K, \omega)$ in ω for the final inequality.

Also from (4), the monotonicity of S_{p}, and the assumption of (1) for polyhedra, we get

$$
\begin{equation*}
S_{p}\left(K_{m}, \eta_{\varepsilon}\right) \leqq A D_{m}^{p} f_{p}(\alpha+\varepsilon) \tag{6}
\end{equation*}
$$

Hence, because D_{m} tends to D, (5) and (6) yield

$$
S_{p}\left(K, \omega_{\alpha}\right) \leqq A D^{p} f_{p}(\alpha+\varepsilon)
$$

The left side does not depend on ε and so inequality (1) holds for K.
2. To prove (1) for convex polyhedra K we form, from a given K, four convex bodies $K_{1}, K_{2}, K_{3}, K_{4}$ for which

$$
\begin{equation*}
S_{p}\left(K_{j}, \omega_{\alpha}\right) \leqq S_{p}\left(K_{j+1}, \omega_{\alpha}\right), j=1,2,3 \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
& S_{p}\left(K_{1}, \omega_{\alpha}\right)=S_{p}\left(K, \omega_{\alpha}\right) \tag{8}\\
& S_{p}\left(K_{4}, \omega_{\alpha}\right)=A D^{p} f_{p}(\alpha) \tag{9}
\end{align*}
$$

As a matter of notation $\Pi_{j}(u)$ signifies the support plane to K_{j} with outer unit normal u. We write ∂P for the boundary of any set P.

The body K_{1} is to be the convex closure of $B\left(\omega_{\alpha}\right)$. Since

$$
\bigcup_{u \in \omega_{\alpha}}\left(K_{1} \cap \Pi_{1}(u)\right)=B\left(\omega_{\alpha}\right)
$$

(8) holds. Also K_{1} is polyhedral.

Let $\mathfrak{S}_{1}(u)$ signify the half-space with outer normal u which is bounded by $\Pi_{1}(u)$. Of course, for u in $\omega_{\alpha}, \mathfrak{K}_{1}(u)$ is the half-space with outer normal u bounded by $\Pi(u)$. Since $\alpha<\pi / 2$, the intersection of those $\mathscr{K}_{1}(u)$ for which

$$
(u, v) \leqq \cos \alpha
$$

is a convex polyhedron $K_{2} \supseteq K_{1}$. Here v, as before, is the centre of ω_{α}; we write ω_{α}^{\prime} for those u on Ω which satisfy the last inequality. Clearly

$$
\bigcup_{u \in \omega_{\alpha}^{\prime}}\left(K_{1} \cap \Pi_{1}(u)\right)=\bigcup_{u \in \omega_{\alpha}^{\prime}}\left(K_{2} \cap \Pi_{2}(u)\right)
$$

and so

$$
\begin{equation*}
S_{p}\left(K_{1}, \omega_{\alpha}^{\prime}\right)=S_{p}\left(K_{2}, \omega_{\alpha}^{\prime}\right) \tag{10}
\end{equation*}
$$

On the other hand $K_{1} \subseteq K_{2}$ implies that

$$
S_{p}\left(K_{1}, \Omega\right) \leqq S_{p}\left(K_{2}, \Omega\right)
$$

This is a consequence of the representation of these total area functions as mixed volumes and the known monotonicity of mixed volumes $V(K, \cdots, K, E, \cdots, E)$ in K, cf. [2]. The additinity of area functions, our last inequality and (10) yield (7) for $j=1$.

The rest of the proof is treated in separate sections. In §3 we describe a plane Π_{0} normal to v, which cuts K so that $B\left(\omega_{\alpha}\right)$, and hence K_{2}, lies in one of the half-spaces determined by Π_{0}. Call this half-space \mathscr{S}_{0}. We take K_{3} to be the intersection of \mathfrak{S}_{0} with

$$
\cap \mathfrak{F}(u)=\cap \mathscr{S}_{1}(u)
$$

where these intersections are taken over those u in the common boundary of ω_{α} and ω_{α}^{\prime}, i.e., those u for which

$$
(u, v)=\cos \alpha
$$

The body K_{3} contains K_{2}. To determine Π_{0} it is necessary to consider circular cones of the form

$$
\begin{equation*}
\left(v, x-x_{0}\right)+\left\|x-x_{0}\right\| \sin \alpha \leqq 0 \tag{11}
\end{equation*}
$$

The norm is Euclidean. The vertex of such a cone is x_{0}; the axial ray within the cone has the direction $-v$; these cones are translates
of one another. We choose x_{0} so that the resulting cone contains K and the distance from K to the plane

$$
\left(v, x-x_{0}\right)=0
$$

is as small as possible. We call this tangent cone C.
In $\S 4$ (7) is proved for $j=2$.
K_{4} is $C \cap \mathfrak{S}_{0}$. This intersection is clearly a convex body which contains K_{3}. In §5 we prove (7) for $j=3$. Finally (9) follows from a direct calculation sketched in $\S 6$.
3. Let us introduce a Cartesian coordinate system with origin at the vertex x_{0} of C and such that $v=(-1,0, \cdots, 0)$. The description of C takes the form

$$
x_{1} \geqq \tan \alpha\left(x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

and the distance from K, which is in C, to the plane $x_{1}=0$ is minimal.
This means that each half-space

$$
\begin{equation*}
u_{2} x_{2}+\cdots+u_{n} x_{n} \geqq 0 \tag{12}
\end{equation*}
$$

must contain a point of $B\left(\omega_{\alpha}\right) \cap \partial C$ for the following reason. If $\partial K \cap \partial C$ had no points in (12), a small translation of K in the direction u would cause $\partial K \cap \partial C$ to be empty; a subsequent small translation in the direction v would reduce the distance from K to $x_{1}=0$. Hence (12) contains a point x of $\partial C \cap \partial K$. The tangent plane to ∂C at x is a support plane of ∂K and the outer normal to this support plane makes an angle of measure α with v, i.e., falls in ω_{α}. Thus x is also in $B\left(\omega_{\alpha}\right)$ as asserted.

We define conical bodies C_{1} and C_{2} to be the intersection of C with the half-spaces

$$
x_{1} \leqq D \tan \alpha, x_{1} \leqq 2 D \tan \alpha
$$

respectively.
We first prove that

$$
\begin{equation*}
B\left(\omega_{\alpha}\right) \cap \partial C \cong C_{1} \tag{13}
\end{equation*}
$$

Suppose to the contrary that there is a y in $B\left(\omega_{\alpha}\right) \cap \partial C$ for which $y_{1}>D \tan \alpha$. Since the radius of the intersection of C with

$$
x_{1}=D \tan \alpha
$$

is D, a ball of radius D, centred at y, lies in a half-space of the form

$$
\begin{equation*}
u_{2} x_{2}+\cdots+u_{n} x_{n}<0 \tag{14}
\end{equation*}
$$

for some u. As noted in the previous paragraph, there is a point x
in the complement of (14) which is in $B\left(\omega_{\alpha}\right) \cap \partial C$. This would give two points x and y in K separated by a distance greater than the diameter D of K. The contradiction establishes (13).

Next we demonstrate

$$
\begin{equation*}
B\left(\omega_{\alpha}\right) \subseteq C_{2} \tag{15}
\end{equation*}
$$

Again the proof is by contradiction. Imagine z to be a point in $B\left(\omega_{\alpha}\right)$ for which $z_{1}>2 D$ tan $\alpha, \quad z$ cannot be on the x_{1}-axis for the following reason. Let Π be a support plane to K which contains z. There must be a half-space of the form (12) in which the points of $\Pi \cap \partial C$ lie in the half-space

$$
x_{1}>2 D \tan \alpha
$$

This implies that the points of $\partial K \cap \partial C$ which lie in (12) are at a distance exceeding $2 D$ from z which, again, contradicts the fact that D is the diameter of K.

Let z^{\prime} be the point nearest to z on the x_{1}-axis. Set

$$
u=\left(z-z^{\prime}\right) /\left\|z-z^{\prime}\right\| ;
$$

u is orthogonal to v and z^{\prime} and so

$$
0<\left(u, z^{\prime}-z\right)=-(u, z) .
$$

Thus z satisfies

$$
u_{2} z_{2}+\cdots+u_{n} z_{n}<0
$$

There is also a point x of

$$
B\left(\omega_{\alpha}\right) \cap \partial C_{1}=B\left(\omega_{\alpha}\right) \cap \partial C_{2}
$$

in the complementary half-space. Therefore the distance $\|z-x\|$ must exceed the distance between $(2 D \tan \alpha, 0, \cdots, 0)$ and the intersection of ∂C_{1} with the plane

$$
x_{1}=D \tan \alpha
$$

That is to say

$$
\|z-x\|>\left(D^{2}+D^{2} \tan ^{2} \alpha\right)^{1 / 2}>D
$$

This is impossible for x and z in K which completes the proof of (15).
The plane

$$
x_{1}=2 D \tan \alpha
$$

is the cutting plane Π_{0} of $\S 2$; the conical convex body C_{2} is K_{4}.
4. From the definitions of K_{2} and K_{3} we see that their support planes $\Pi_{2}(u)$ and $\Pi_{3}(u)$ coincide whenever their outer normal directions u are in ω_{α}. Hence for such u, since $K_{2} \subseteq K_{3}$,

$$
K_{2} \cap \Pi_{2}(u) \subseteq K_{3} \cap \Pi_{3}(u) ;
$$

there is certainly equality when u is in the interior of ω_{α}. Inequality (7) for $j=2$ follows from the next lemma, to the proof of which this section is devoted.

Lemma. Let K and K^{\prime} be two convex polyhedral bodies whose support planes with outer normal direction u are denoted by $\Pi(u)$ and $\Pi^{\prime}(u)$. If

$$
\begin{equation*}
K \cap \Pi(u) \subseteq K^{\prime} \cap \Pi^{\prime}(u) \tag{16}
\end{equation*}
$$

for each u in some Borel set ω of Ω, then

$$
S_{p}(K, \omega) \leqq S_{p}\left(K^{\prime}, \omega\right), \text { for } p=1,2, \cdots, n-1
$$

We first require a description of $S_{p}(K, \omega)$ where K is polyhedral. In this we follow work, as yet unpublished, of J. Zelver.

Consider a set of the form $K \cap \Pi(u)$; this is a p-face e_{p} when e_{p} lies in a p-dimensional flat but not in a $(p-1)$-dimensional flat. The outer unit normals to support planes of K which contain e_{p} sweep out a closed, geodesically convex set $\omega\left(e_{p}\right)$ on Ω which is in \mathscr{B} and is $(n-p-1)$-dimensional. Throughout $\omega\left(e_{p}\right)$ we distribute mass with constant density $\lambda_{p}\left(e_{p}\right)$ equal to the p-dimensional volume of e_{p}. Thus if ω is any subset of $\omega\left(e_{p}\right)$ which is in \mathscr{B} and if $\mu_{n-p-1}(\omega)$ is its $(n-p-1)$-dimensional volume, then the mass falling in ω is $\lambda_{p}\left(e_{p}\right) \mu_{n-p-1}(\omega)$. The representation we seek is

$$
\begin{equation*}
S_{p}(K, \omega)=\sum_{*} \lambda_{p}\left(e_{p}\right) \mu_{n-p-1}\left(\omega \cap \omega\left(e_{p}\right)\right) /\binom{n-1}{p} \tag{18}
\end{equation*}
$$

where the starred summation is taken over all e_{p} in ∂K.
Consider the vector sum $K+t E$ and let $\Pi^{*}(u)$ signify its support plane with outer normal u. If x^{\prime} is a point of

$$
(K+t E) \cap I^{*}(u),
$$

then there is a unique point x in $K \cap I(u)$ such that

$$
\begin{equation*}
x^{\prime}-x=t u . \tag{19}
\end{equation*}
$$

Suppose e_{p} to be the face of lowest dimension which contains x and let $\left\{\Pi\left(u^{\prime}\right)\right\}$ be the set of support planes of K which contain e_{p} where u^{\prime} ranges over $\omega\left(e_{p}\right)$. We form

$$
\begin{equation*}
\bigcup_{*}\left\{(K+t E) \cap \Pi^{*}\left(u^{\prime}\right)\right\}, \tag{20}
\end{equation*}
$$

where the starred union is taken over those u^{\prime} in $\omega \cap \omega\left(e_{p}\right)$. If (20) is not empty, it is made up of points x^{\prime} to each of which corresponds a unique x on

$$
\bigcup_{*}\left(K \cap \Pi\left(u^{\prime}\right)\right)=e_{p}
$$

for which (19) holds. Thus (20) is the Cartesian product of e_{p} with that part of the boundary of $t E$ which is swept out by rays whose directions are in $\omega \cap \omega\left(e_{p}\right)$. Therefore, empty or not, the ($n-1$)dimensional measure of (20) is

$$
t^{n-p-1} \lambda_{p}\left(e_{p}\right) \mu_{n-p-1}\left(\omega \cap \omega\left(e_{p}\right)\right) .
$$

We add up all such contributions to $S_{n-1}(K+t E, \omega)$ ard obtain the sum

$$
\sum_{p=1}^{n} t^{n-p-1} \sum_{*} \lambda_{p}\left(e_{p}\right) \mu_{n-p-1}\left(\omega \cap \omega\left(e_{p}\right)\right) .
$$

On the other hand, from the generalized Steiner formula [3, p. 31], we have

$$
S_{n-1}(K+t E, \omega)=\sum_{p=1}^{n} t^{n-p-1}\binom{n-1}{p} S_{p}(K, \omega)
$$

The comparison of coefficients of like powers of t in these two representations of $S_{n-1}(K+t E, \omega)$ yields (18).

Choose u in ω; neither set in (16) is empty and so $\Pi(u)$ and $\Pi^{\prime}(u)$ share a common point, have the same normal direction and so coincide. We have

$$
K^{\prime} \cap \Pi(u)=e_{p}^{\prime}
$$

for some p. By (16) either $K \cap I(u)$ is a face e_{p} of the same dimension p or this intersection is a face of lower dimension. In the latter case there is no contribution to the sum in (18), i.e., the left side of (17), whereas there would be a positive contribution to the right side of (17). In the former case, from (16) it follows that

$$
\begin{equation*}
\lambda_{p}\left(e_{p}^{\prime}\right) \geqq \lambda_{p}\left(e_{p}\right) \tag{21}
\end{equation*}
$$

Also

$$
\begin{equation*}
\mu_{n-p-1}\left(\omega \cap \omega\left(e_{p}^{\prime}\right)\right)=\mu_{n-p-1}\left(\omega \cap \omega\left(e_{p}\right)\right) \tag{22}
\end{equation*}
$$

To see this, we prove that the two argument sets in (22) coincide by showing that, for any u in Ω, we have $K \cap \Pi(u) \supseteqq e_{p}$ if and only if $K^{\prime} \cap \Pi(u) \supseteqq e_{p}^{\prime}$.

If $K^{\prime} \cap \Pi(u) \supseteqq e_{p}^{\prime}$, then $e_{p} \subseteq e_{p}^{\prime} \subseteq \Pi(u)$ and e_{p} also lies in ∂K. Hence e_{p} lies in $K \cap \Pi(u)$. Suppose $e_{p} \subseteq K \cap \Pi(u)$; then e_{p} lies in $\Pi(u)$. Since $e_{p} \subseteq e_{p}^{\prime}$ by (16) and these two sets have the same dimensionality, any point x in e_{p}^{\prime} is a linear combination of $p+1$ suitable points in e_{p}. But, being such a combination of points in $\Pi(u), x$ must be in $\Pi(u)$. Thus e_{p}^{\prime} is in both $\Pi(u)$ and K^{\prime} and so in their intersection.

Substitution from (21) and (22) into the representation (18) as it applies to K and K^{\prime} proves (17).
5. Our next step is to prove (7) for $j=3$. We first settle the simplest case: $p=n-1$. It is clear from the construction of K_{3} and K_{4} that, for $i=3,4$:

$$
\begin{gathered}
S_{n-1}\left(K_{i}, \Omega-\omega_{\alpha}\right)=S_{n-1}\left(K_{i},\{-v\}\right) \\
S_{n-1}\left(K_{i}, \omega_{\alpha}\right)=S_{n-1}\left(K_{i}, \partial \omega_{\alpha}\right)
\end{gathered}
$$

and

$$
S_{n-1}\left(K_{i}, \partial \omega_{\alpha}\right) \cos \alpha=S_{n-1}\left(K_{i},\{-v\}\right)
$$

Consequently

$$
S_{n-1}\left(K_{i}, \Omega\right)=(1+\cos \alpha) S_{n-1}\left(K_{i}, \omega_{\alpha}\right)
$$

Since $K_{3} \cong K_{4}$ and $S_{n-1}(K, \Omega)$ is increasing in K, it follows that (7) holds for $j=3, p=n-1$. For the cases $1 \leqq p<n-1$ a more elaborate argument is needed.

We shall examine the behaviour of $S_{p}\left(K_{i}, \omega_{\alpha}\right)$ in K_{i} by studying that of

$$
Q_{i}=\int_{\Omega-\omega_{\alpha}}(v, u) S_{p}\left(K_{i}, d \omega(u)\right), i=3,4
$$

These integrals will be reduced to iterated integrals. For this purpose we let Ω_{n-1} denote the set of u on Ω which are orthogonal to v and we form, for each u in Ω_{n-1}, the vectors

$$
u_{\lambda}=[(1-\lambda) u+\lambda(-v)] /\|(1-\lambda) u+\lambda(-v)\| .
$$

As before, v is the centre of ω_{α}. We have

$$
\left(u_{\lambda}, v\right)=-\lambda /(\phi(\lambda))^{1 / 2},
$$

where

$$
\phi(\lambda)=1-2 \lambda+2 \lambda^{2}
$$

Also, if s signifies arc length along the circle through v and u,

$$
d s / d \lambda=1 / \phi(\lambda)
$$

Define $\lambda_{\jmath}<0$ by

$$
-\lambda_{0}=\cos \alpha\left(\phi\left(\lambda_{0}\right)\right)^{1 / 2}
$$

As u passes over Ω_{n-1} and λ over the interval $\lambda_{0}<\lambda<1, u_{\lambda}$ sweeps out

$$
\Omega-\omega_{\alpha}-\{-v\} .
$$

For such u and λ :

$$
\Pi_{i}\left(u_{2}\right) \cap K_{i}=\Pi_{i}(u) \cap \Pi_{0} \cap K_{i}=\Pi_{i}(u) \cap k_{i}
$$

where we have set

$$
k_{i}=K_{i} \cap \Pi_{0},
$$

and we recall that Π_{0} is the support plane of K_{i} with outer normal $-v$. If we view each k_{i} as a nondegenerate convex body in the ($n-1$)-dimensional space Π_{0}, then the outer normals u to k_{i} fall in Ω_{n-1} and k_{i} has area functions

$$
s_{1}\left(k_{i}, \eta\right), \cdots, s_{n-2}\left(k_{i}, \eta\right)
$$

defined over the Borel sets η of Ω_{n-1}.
We write Q_{i} as an iterated integral

$$
\int_{\lambda_{0}}^{1} \frac{-\lambda}{(\phi(\lambda))^{1 / 2}}\left(\int_{\Omega_{n-1}} s_{p}\left(k_{i}, d \eta(u)\right)\right) \frac{d \lambda}{\phi(\lambda)}=g S_{p}\left(k_{i}, \Omega_{n-1}\right),
$$

where

$$
g=\int_{\lambda_{0}}^{1} \frac{-\lambda d \lambda}{(\phi(\lambda))^{3 / 2}}<0 .
$$

Here we have used the fact that the point $-v$ can be deleted from $\Omega-\omega_{\alpha}$ without affecting Q_{i} in virtue of (3) and the assumption that $p<n-1$. Since $k_{3} \cong k_{4}$

$$
s_{p}\left(k_{3}, \Omega_{n-1}\right) \leqq s_{p}\left(k_{4}, \Omega_{n-1}\right)
$$

and, from the negativity of g, it follows that

$$
Q_{3} \geqq Q_{!} .
$$

The first condition in (2), which is satisfied by any area function, shows that

$$
Q_{i}+\int_{\omega_{\alpha}}\left(v, u_{\lambda}\right) S_{p}\left(K_{i}, d \omega\left(u_{2}\right)\right)=0
$$

Hence, from our last inequality, we obtain

$$
\begin{equation*}
\int_{\omega_{\alpha}}\left(v, u_{\lambda}\right) S_{p}\left(K_{3}, d \omega\left(u_{\lambda}\right)\right) \leqq \int_{\omega_{\alpha}}\left(v, u_{\lambda}\right) S_{p}\left(K_{4}, d \omega\left(u_{\lambda}\right)\right) \tag{23}
\end{equation*}
$$

Let x_{0} signify the vertex of the cone K_{4} and denote by ω_{α}^{0} the interior of ω_{α}. Then for all u in ω_{α}^{0}

$$
K_{4} \cap \Pi_{4}(u)=x_{0}
$$

and, because $p \geqq 1$,

$$
S_{p}\left(K, \omega_{\alpha}^{0}\right)=0
$$

Therefore on the right side of (23) the integration needs to be extended only over $\partial \omega_{\alpha}$ throughout which $\left(v, u_{k}\right)$ is $\cos \alpha$. This yields for the right side of (23)

$$
\cos \alpha S_{p}\left(K_{4}, \omega_{\alpha}\right)
$$

Consider the left side of (23). For u_{λ} in ω_{α} we have

$$
\left(v, u_{\lambda}\right) \geqq \cos \alpha
$$

and so we may strengthen inequality (23) by replacing the left side by

$$
\cos \alpha S_{p}\left(K_{3}, \omega_{\alpha}\right)
$$

After division by $\cos \alpha$ the strengthened inequality is just (7) for $j=3,1 \leqq p<n-1$.
6. It remains to prove (9). In the Cartesian coordinate system of section three, K_{4} is the set of points x for which

$$
\tan \alpha\left(x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} \leqq x_{1} \leqq 2 D \tan \alpha
$$

Let $t E^{*}$ be the convex body formed by the intersection of the wall $t E$ with the reflected polar cone to C, i.e.,

$$
x_{1} \leqq-\operatorname{ctn} \alpha\left(x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

The vector sum $K_{4}+t E^{*}$ is a convex body of revolution whose radial distance $r(\xi)$ in the plane $x_{1}=\xi$ has the representation

$$
\begin{align*}
r(\xi) & =\left(t^{2}-\xi^{2}\right)^{1 / 2},-t \leqq \xi \leqq-t \cos \alpha ; \\
& =\xi \operatorname{ctn} \alpha+t c s c \alpha,-t \cos \alpha \leqq \xi \leqq 2 D \tan \alpha-t \cos ^{-} \alpha ; \tag{24}\\
& =2 D \sec ^{2} \alpha-\xi \tan \alpha, 2 D \tan \alpha-t \cos \alpha \leqq \xi \leqq 2 D \tan \alpha
\end{align*}
$$

The volume $V\left(K_{4}+t E^{*}\right)$ is

$$
\begin{equation*}
\omega_{n-1} \int_{-t}^{2 D \tan \alpha} r^{n-1}(\xi) d \xi /(n-1) \tag{25}
\end{equation*}
$$

Here ω_{n-1} is the area of the unit spherical surface in Euclidean ($n-1$)-dimensional space and is given by

$$
\omega_{n-1}=2 \pi^{(n-1) / 2} / \Gamma((n-1) / 2),
$$

where Γ is the usual gamma function.
We equate (25) with the Steiner polynomial

$$
V\left(K_{4}+t E^{*}\right)=\sum_{p=0}^{n}\binom{n}{p} t^{n-p} V_{p}\left(K_{4}, E^{*}\right)
$$

where $V_{p}\left(K_{4}, E^{*}\right)$ is the mixed volume

$$
V(\underbrace{K_{4}, \cdots, K_{4}}_{p}, \underbrace{E^{*}, \cdots, E^{*}}_{n-p}) .
$$

Substitution from (24) into (25) and a comparison of coefficients of like powers of t yields

$$
\begin{equation*}
V_{p}\left(K_{4}, E^{*}\right)=\omega_{n-1}(2 D)^{p}(\sin \alpha)^{n-p-1} \sec \alpha / n(n-1) \tag{26}
\end{equation*}
$$

We consider next the brush set (Bürstenmenge) $B_{t}\left(K_{4}, \omega_{\alpha}\right)$ which is formed from K_{4} in the following manner. At each point x of

$$
\bigcup_{u \in \omega_{\alpha}}\left(K_{4} \cap \Pi_{4}(u)\right)
$$

we draw all segments $x+\theta u, 0<\theta \leqq t$, corresponding to u in ω_{α}. The union of these segments is $B_{t}\left(K_{4}, \omega_{\alpha}\right)$. Clearly this is

$$
\left(K_{4}+t E^{*}\right)-K_{4}
$$

and so the volume $V_{t}\left(K_{4}, \omega_{\alpha}\right)$ of $B_{t}\left(K_{4}, \omega_{\alpha}\right)$ is

$$
V\left(K_{4}+t E^{*}\right)-V\left(K_{4}\right)=\sum_{p=0}^{n-1}\binom{n}{p} t^{n-p} V_{p}\left(K_{4}, E^{*}\right)
$$

On the other hand, cf. [3, p. 31],

$$
V_{t}\left(K_{4}, \omega_{\alpha}\right)=\sum_{p=0}^{n-1}\binom{n}{p} t^{n-p} S_{p}\left(K_{4}, \omega_{\alpha}\right) / n
$$

A comparison of coefficients of like powers of t in these two representations of $V_{t}\left(K_{4}, \omega_{\alpha}\right)$ yields

$$
S_{p}\left(K_{4}, \omega_{\alpha}\right)=n V_{p}\left(K_{4}, E^{*}\right)
$$

and this, together with (26), gives (9) with

$$
A=2^{p} \omega_{n-1} /(n-1)
$$

This completes the proof of (1).

References

1. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Förper III, Die Erweiterung zweier Lehrsätze Minkowskis uber die konvexen Polyeder auf beliebige konvexe Flächen, Mat. Sbornik, N.S. 3 (1938), 27-46; (Russian with German summary).
2. H. Busemann, Convex Surfaces, New York, 1958.
3. W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Det Kgl. Danske Videnskab, Selskab, Math-fys. Medd. 16 (1938), 3.
4. W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika, 14 (1967), 1-13.
5. W. J. Firey, Christoffel's problem for general convex bodies, Mathematika 15 (1968), 7-21.

Received June 6, 1968, and in revised form December 30, 1969.
Oregon State University
Corvallis, Oregon

