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SIMILARITIES INVOLVING NORMAL
OPERATORS ON HILBERT SPACE

MARY R. EMBRY

The primary purpose of this note is to exhibit a proof
and several corollaries of the following theorem concerning
continuous linear operators on a complex Hubert space X.

THEOREM 1. If H and K are commuting normal operators
and AH = KA9 where 0 is not in the numerical range of A,
then H=K.

In the entire paper A, E, H and K represent continuous
linear operators on X, A* is the adjoint of A, W(A) is the
numerical range of A and a {A) is the spectrum of A. The
terms self-adjoint, normal and unitary are used in the standard
fashion. A is quasinormal if and only if A commutes with
A*A. A unitary operator is called cramped if and only if its
spectrum is contained in an arc of the unit circle with central
angle less than π.

In § 1 a proof of Theorem 1 will be given, as well as several
corollaries. In § 2 corollaries of Theorem 1, which are valid if either
0£ W(A) or σ(A) Π σ( — A) = 0 , are presented.

1* A proof of Theorem 1* Let h and k be the spectral resolu-
tions of H and K respectively. Since AH = KA, Ah(a) = k(a)A for
each complex Borel set a by [10]. This last equation together with
the fact that h(a) and k(a) are commuting projections implies that

(1) p(a)*Ap(ά) = q(a)*Aq{a) = 0 for each Borel set a, where

V{a) = (I - h(a))Ah(a)
( ' q(a) = h(a)A(I - h(a)).

(I denotes the identity operator on X.) Since 0 g W(A), equation (1)
implies that p(a) = q(a) = 0. Thus by (2) Ah(a) = h(a)A for each
Borel set a and consequently, AH = HA. Finally, HA = KA and
since 0$ W(A), H = K.

The following two examples show that if H and K are normal
and AH = KA, then H and K may differ if 0 e W(A) or if H and
K do not commute, even if A is unitary.

EXAMPLE 1. If

(1 0\ (0 1\ (2 0
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then H and K are normal, commute and AH — KA, but H Φ K.

EXAMPLE 2. If

then if and K are normal, A i ϊ = ίΓA and Og WF(A), but H Φ K.

COROLLARY 1. [5]. If AA* and A*A commute and 0 g TF(A),
ί/̂ ew A is normal.

Proof. Let i ϊ = A*A, if = AA* and note that AH = KA, so
that Theorem 1 is applicable.

The technique used in the proof of Theorem 1 is essentially the
same as that used in [5] to prove a slightly stronger version of
Corollary 1.

COROLLARY 2. If 0 g W(A) and there exist real numbers r and
s such that r2 + s2 Φ 0 and A commutes with rAA* + sA*A, then A
is normal.

Proof. In this case AA* commutes with A*A and Corollary 1
may be applied.

Several special cases of Corollary 2 are known. If A is quasi-
normal and 0 0 W(A), then A is normal [4]. If A commutes with
AA* — A*A, then A is normal [11]. This last follows from Corollary
2 by applying the corollary to A — zl (which commutes with

(A - zI){A - zl)* - (A - zI)*(A - zl))

for zί W(A).
In [12] C. R. Putnam proved a stronger version of the next

corollary.

COROLLARY 3. [12]. // A2 is normal and Og W(A), then A is
normal.

Proof. By [7], [8], or [10] A*A2 = A2A* if A2 is normal. Thus
AA* and A*A must commute and Corollary 1 is applicable.

We note that the condition Ogo (A) is not sufficiently strong to
guarantee that A is normal when A2 is normal. (For example take
any nonnormal square root of the identity operator /.) However,
we recall that if A2 is normal and σ(A) Π σ(—A) = 0 , then A is
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normal [6]. This suggests that perhaps Theorem 1 and Corollary 1
remain valid if the hypothesis σ(A) o σ(—A) = 0 is substituted for
the hypothesis 0 g W(A). Example 3 provides a counterexample to
this proposition.

/0 2 0\
EXAMPLE 3. Let A = [ 0 0 11. Direct computation shows that

\3 0 0/
AA* and A*A commute and differ from one another. Moreover,
σ(A) n o(-A) == 0 since seσ(A) if and only if 23 = 6. If we take
H = A*A and iΓ = AA*, then AiJ = iL4, H and Z" are normal and
commute, but H Φ K.

2* The condition 0 & W(A) or σ(A) Π o(-A) = 0 . Although
the two conditions 0<£ W(A) and #(A) Π σ(—A) = 0 do not yield the
same results, as seen by Example 3, several corollaries of Theorem
1 remain valid if the hypothesis 0 g W(A) is replaced by

σ(A)nσ(-A) = 0 .

In the remainder of the paper we let D be the set of all operators
A for which either Og W(A) or σ(A) n σ(-A) = 0.

Because of the importance of Theorem 2 in the following corol-
laries, we restate it here.

THEOREM 2. [6]. If σ(A) n σ(—A) = 0 , then A and A2 commute
with exactly the same operators.

COROLLARY 4. If AeD and AE = — £M, where either A or E
is normal, then E = 0.

Proo/. If σ(A) ί l^(-A) = 0 , then by Theorem 2 ^ = EA
since Al£ = EA2. Therefore E = 0. Assume now that 0 g TF(A). If
j? is normal, we apply Theorem 1 and have E = — jδ/ or E = 0. If
A is normal, then A*E = -EA* by [10] and thus 4(2? - E*) =
~{E - E*)A. Since E - E* is normal, E = E* by Theorem 1.
Consequently, i£ is normal and a second application of Theorem 1
yields E = -E= 0.

COROLLARY 5. If A is a normal element of D, then A and A2

commute ivith exactly the same operators.

Proof. Assume that A2E = EA2 and let H = AE - EA. Then
AH= -HA and by Corollary 4, H= 0.

COROLLARY 6. If AE = E*A and AE* = EA, where AeD, then
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E is self-adjoint.

Proof. Under these hypotheses A(E - E*) = -{E - E*)A and
Corollary 4 can be applied to the normal operator E — E*, resulting
in E = E*.

COROLLARY 7. If AE = E*A, where Ae D and either A is uni-
tary or E is normal, then E is self-adjoint.

Proof. If I? is normal, then AE* = EA by [10]; if A is unitary,
then EA* = A*E* and consequently, AE* = EA. Thus in either
case Corollary 6 may be applied.

Corollary 7 includes a slight improvement of a result of J. P.
Williams. In [13] Williams proved that σ(E) is real if AE = E*A,
where 0 is not in the closure of W(A). Thus if E is normal, E is
self-adjoint. In particular, Williams noted that if E is normal and
AE = E*A, where A is a cramped unitary operator, then E is self-
adjoint. More generally, in [1] W. A. Beck and C. R. Putnam and
in [2] S. K. Berberian proved this same result without the hypothe-
sis that A is normal. Finally, in [9] C. A. McCarthy obtained a
generalization from which it follows that if AE — E*A, A unitary
and σ(A) Π σ( — A) = 0 , then E is self-adjoint. All of these results
are included in Corollary 7.

For completeness we include the following special case of
Theorem 1.

COROLLARY 8. If H and K are commuting normal operators
and H = A*KA, where A is a cramped unitary operator, then H =
K.

Proof. AH = KA since A is unitary and 0 g W(A) since A is
cramped [3]. Thus Theorem 1 is applicable.

In Corollary 9, we have a result similar to that of Theorem 1.
The hypothesis that H and K commute is replaced by A*H = KA*.

COROLLARY 9. Let AH = KA and A*H=KA*f where AeD.
If A is unitary or H and K are normal, then H — K.

Proof. If H and K are normal, we also have AH* = K*A and
A*H* = K*A* by [10]; if A is unitary, these equations also hold
since HA* = A*K and HA = AK. If we now define
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A 0\ /0 H
and if =

0 A/ \iΓ* 0

direct computation shows that jyg? = g?*J^ and
Since W(J^) = TΓ(A) and σ(j^) = α (A), Corollary 6 may be applied
to show & = <??*. Thus JBΓ = if.

A rather curious result can be obtained by using the technique
of proof in Corollary 9. Note that g* (as defined in the proof of
Corollary 9) is normal if and only if HH* = KK* and H*H = K*K.
But by Corollary 7 if g7 is normal, Jzf e D and J ^ g 7 = <£*Sf, then
ί? is self-ad joint and H = K. Thus we have:

COROLLARY 10. Let Hand Kbe operators such that HH* = KK*
and H*H= K*K. If there exists an element A of D such that
AH= KA and A*H = KA*, then H = K.

To Professor S. K. Berberian, I express my sincere gratitude
for suggesting Corollaries 9 and 10, the method of proof used in
these corollaries, and the reference to C. A. McCarthy's paper. I
also wish to thank Professor P. R. Halmos for his helpful comments
on this paper.
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