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GELFAND AND WALLMAN-TYPE COMPACTIFICATIONS

CHARLES M. BILES

In this paper we compare the Gelf and and Wallman methods
of constructing a compactification for a Tychonoff space X from
a suitable ring of continuous real-valued functions on X. Every
Hausdorff compactification T of X is Gelf and constructable;
in particular, T is equivalent, as a compactification of X, to
the structure space of all maximal ideals of the ring of all
continuously extendable functions from X to T. However,
Wallman's method applied to this ring may not yield T. We
thus inquire into some relationships that exist between the
Wallman and Gelfand compactification of X constructed from
a suitable ring of functions on X.

0* Topological preliminaries* All topologicaί spaces in this
paper are assumed to be completely regular and Hausdorff. We shall
be concerned with methods of constructing compactifications for such
spaces.

Let X be a topological space. The space T is an extension of
X means there exists a homeomorphism h from X into T such that
h[X] is dense in T. The function h is called an embedding. Occasion-
ally the necessary embedding maps will be explicitly mentioned, but
usually they will be tacitly assumed. In fact, when T is given as
an extension of X, we may take X as a subspace of T. The space
T is a compactification of X (denoted TecX) means that T is a
compact extension of X. The compactifications T and if of a space
X are equivalent as compactifications of X (denoted T = K) means
there exists a homeomorphism between T and K such that h(x) = x
for each x e X.

We shall use the standard notations [4] regarding C(X), the ring
of continuous real-valued functions. For any fe C(X),

Z(f) = {xeX\f(x) = 0}

is called the zero-set of /. If S/ is a subring of C(X), we define
Z[s*f] = {Z{f)\f es^Y, however, Z[C(X)] is customarily denoted by
Z(X). We shall only refer to subrings of C(X) with unity.

Let s>/ be a subring of C(X). We shall denote the space of
maximal ideals of J ^ with the Stone topology [4, 7M], also called
the structure space of S>/, by H[s^]. The space of ultrafilters of
Z\S^\ is denoted by wZ[J^f], This space of ultrafilters is constructed
by Wallman's method [1] [2], We shall be primarily concerned with
those subrings Szf of C(X) for which wZ[j^] e cX and how these
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subrings relate to a certain type of "structure space" for
Let £f be a collection of subsets of X. Then ^f is a lattice on X

means
(1) 0 , X e ^ ;
(2) if i , ΰ e ^ , then i n ΰ e ^ and A\jBe^f.

A set in ^ is referred to as an JZf-aet.
The lattice £? on X is a Wallman base on X means
(1) Sf is a base for the closed subsets of X;
(2) ^ is a disjunctive lattice on X (i.e., if AeJϊf and xe

X — A, then there exists Be £? such that a? e B and A ί l 5 = 0);
(3) £f is a normal lattice on X (i.e., for each A, BeSf, if A

and B are disjoint, then there exists C, De J*f such that X— AaC,
X- BdD and C U D = X).

For any lattice £f on X, an .^-filter is a nonvoid subset ^ of
JS^ such that

(1) 0£J^~;
(2 ) if A, J5 e Ĵ Γ then An Be J ^ ;
(3) if AeJ^Be^f and 4 c B , then ΰ e ^

An -Sf-ultrafilter is a maximal (with respect to inclusion) ^-filter.
The set of all .S^-ultrafilters is denoted by w^fί

Let £f be a lattice on X. In order to topologize wif, define
A* = {^r e wS?\Ae ^} for each i e ^ Then {A*\Ae JS^J is a base
for the closed sets of some (necessarily unique) topology for wJίf.
We shall only consider w^f with this topology. Now w^f e cX if
and only if £? is a Wallman base on X (with respect to the embedd-
ing m a p φ : X->w£f defined by <p(x) = {Ae Sf \xe A}). If TecX,

then Γ is a Wallman-type compactification of X means there exists
a Wallman base ^ o n l such that T = wJϊf. It is unknown wheth-
er or not every compactification is Wallman-type. If TecX, then
T is a ^-compactification of X means there exists a Wallman base
£f c ^(X) such that T =

l Filter ideals. Let X be a topological space and Sf a sub-
ring of C(X).

DEFINITION 1.1. The ideal I of s/ is a filter ideal of s^ means
Z[I] is a ii[j^]-filter. The set of all maximal filter ideals is denoted
by ^ [ j ^ ] .

DEFINITION 1.2. Szf is a wallman subring of C(X) means that
Z\s/\ is a Wallman base on X.

We first give some elementary facts about filter ideals, the
proofs of which are straight forward.
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PROPOSITION 1.3. The ideal I is a filter ideal of s$f if and only
[if Z(f) Φ 0 for each fe I.

Thus an ideal of J%? need not be a filter ideal. Further, every
ideal of J ^ is a filter ideal if and only if s^ is inverse closed (if

and Z(f) = 0, then 1/fejf).

PROPOSITION 1.4. If F is a Z[Ssf]-filter, then

is a filter ideal of

A filter ideal I of J^ is a s-filter ideal means if fe Jϊf and
Z(f)eZ[I], then fel. Then there is a one-to-one correspondence
between the Z[j^]-filters and the ^-filter ideals of Szf. The next
two propositions show that there is also a one-to-one correspondence
between Z[jy]-ultrafilters and maximal filter ideals.

PROPOSITION 1.5. If I is a maximal filter ideal in j*f, then

Proof. Now Z[I] is a ^[j^]-filter. Suppose F is a Z\s*f\-
filter such that Z[I] c F. Then Z*~[F] is a filter ideal of J ^ and
I<^Z*-[Z[I]]aZ~[F]. Since /is a maximal filter ideal, then I=Z~[F\.
Thus Z[I] = F; hence,

PROPOSITION 1.6. If %r e WZ[J^], then Z*-[%S] is a maximal
filter ideal.

Proof. Since ^ G W Z [ J / ] , then Z~\^f\ is a filter ideal by 1.4.
Suppose I is an ideal of J ^ such that Z*-\%S\ c I. Then ^/ c Z[I]
where Z[Z] is a Z[*W]-filteγ by 1.3. Since ^ is maximal, then
fir = Z[J]. So / c Z~[Z[I]] - ^ [ ^ ] ; thus I = ^ [ ^ ] . Hence, Z-[%T]
is a maximal filter ideal.

PROPOSITION 1.7. Every maximal filter ideal of Szf is a prime
ideal of

Proof. Let / b e a maximal filter ideal of Ssf and suppose / is
not prime. We select /, ge e s/ such that fg e 7, but fίl and g £ I.
So / is properly contained in the ideals Iι = I + J ^ / a n d J2 = I + J ^ # .
Since I1912 are not filter ideals, by 1.1 we select h19 h2e land k19 k2e
S^f such that Z(h, - kj) = 0 and Z(h2 - k2g) = 0 . Clearly ht -
kj e I, and h2 - k2g e I2. Since (Z^,) n Z{kλ)) U (Z^) n Z(f)) = 0 and
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(Z(h2) n Z(k2)) U (Z(h2) n Z(g)) = 0 , then Z(/O n Z(h2) Π Z(/flr) - 0 so,
Z(fe? + ^ + (/g)2) = 0 . But fe* + h\ + (fg)2el, contradicting / is a
filter ideal by 1.1. Hence, I must be a prime ideal of

The following easily proved characterization of maximal filter
ideals we state without proof:

PROPOSITION 1.8. Let M be a filter ideal of s/. Then Me
if and only if for every fe S^f — M there exists ge M such that
Z(f)f]Z(g) = 0 .

2* Maximal filter ideal spaces* Let X be a topological space.
Let S?f be a subring of C(X) (we shall only refer to subrings of
S>f with unity). We denote the structure space of sf by
(see [4, 7M]) and the set of maximal filter ideals of s^ by
We seek to define a "structure space" topology for F[jV] and to
examine the relationships between the spaces F[j%f] and wZ\sf\.
In particular, we show F\Ssf\ = wZ[<Ssf] equivalent as compactifica-
tions of X) if and only if Z[Ssf] is a Wallman base on X. Further-
more, F\Stf\ is a compactification of X if and only if Z[j^] is a
Wallman base on X. Accordingly, we shall refer to Szf as a Wallman
ring on X if Z\S/\ is a Wallman base on X.

THEOREM 2.1. Lei X be a topological space and Szf a subring
of C(X). For each xeX define Mx = {fej*f\f(x) = 0 } . Then

(a) Mze F[S$f] for each xeX if and only if Z[j^f] is a dis-
junctive lattice on X;

(b) If Z\sf\ is a disjunctive lattice on X, then the mapping
x —> Mx is one-to-one if and only if Sf strongly separates points in
X (i.e., if x, yeX, x Φ y, then there exists fe Szf such that f(x) = 0
and fyy) Φ 0).

Proof (a) Suppose Mx e F{sf\ for each x e X. Let A e Z
and x e X - A. Select fe S^f such that A = Z{f). Since fe S>f - Mx,
then by 1.8 we may choose ge Mx such that Z(f) Π Z(g) = 0 . Then
Z(g) e Z[Ssf\, x e Z{g) and Z(g) Π A= 0 . Hence, Z[j*f] is a disjunc-
tive lattice on X. Conversely, suppose Z{J>f) is disjunctive. By 1.3,
Mx is a filter ideal of s/ for each x e X. Suppose x e X. Let / be
a filter ideal of Ssf properly containing Mx and select fe I — Mx.
Since Z[s$f] is disjunctive, select Z(g) e Z[Ssf] such that x e Z(g) and
Z(g)ΠZ(f)= 0. Then geMx, so gel, and thus p + g2el, con-
tradicting 1.3. Hence, MxeF[S*f].

(b) Since Z[Sϊf] is a disjunctive lattice on X, then Mz e F[Ssf]
for each xeX. Suppose the mapping x—> Mx is one-to-one. Let
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x, y e X such that x Φ y. Then Mx Φ My. So there exists fe
such that fix) Φ 0 and f(y) = 0. So J ^ strongly separates points in
X. The converse is obvious. This completes the proof.

We now put a structure space topology on F[s^]. For each
/ e j / , define /* = {Ie F[j*]\fel}. Easily 0* = F[j*] and /* =
0 whenever Z(f) = 0 . Since every maximal filter ideal is prime, then
(fg)* = /* U g*. Hence, {f*\fe S^} defines a base for some topology
(necessarily unique) on F[J^]. We shall only consider this topology
on F[J^]. Easily {/} = Γi{f*\fel} for each IeF[j^]; hence,
F[j^f] is a 2\-space.

THEOREM 2.2. F[j*f] is compact.

Proof. Let J&T be a nonvoid collection of nonvoid basic closed
subsets of F[j^] with the finite intersection property. Let 3ίΓ' =
{Z(f)\fes*f, f*e^Γ}. Then JίTf is a nonempty collection of zero
sets of Szf with the finite intersection property. So we may select
^ e wZ{s$f\ such that 3ίΓ' c ^ . For each fe J^ where
we have Z{f) e 3Tf a^ => fe Z*~[^]e F[j*f] (by 1.6) —
thus, Z-l'Zr] e Π %̂T Hence, F[Ssf] is compact.

We now seek conditions under which F[jzf] is a compactification
of X with respect to the mapping x-^Mx ( = {fej^\f(x) = 0}). By
2.1, we must have a subring όzf of C(X) such that Ss? strongly
separates points of X and Z\S/\ is a disjunctive lattice on X.

THEOREM 2.3. F[jtf] is Hausdorff if and only if Fίf F2 e
Fx Φ F2-> there exists fgejz? such that {fg)* = F[J^]9 fί F} and

Proof. Suppose F[j^] is Hausdorff. Let F19 F2e F[j^]9 FλΦ
F2. Select f,gej*f such that Fι e F[jzf] -f*,F2e F[j^] - g* and

- /*) n (F[JV] - g*) = 0 . Then fί F19 g g F2 and /* (j ^* =
* = F[s>f]. Suppose the converse hypothesis holds. Let F19 F2e

F\SZ\9 Fλ Φ F2. Select f9ge^f such that f$ F19 g ί F2 and (fg)* =
F[Stf]. Then F, e F[s^} - /*, F2 e F\sf\ - g* and (F[j*f] - /*) Π
(F[j<f] - g*) = 0 . This completes the proof.

COROLLARY 2.4. Suppose Z[j%f] is a base for the closed subsets
of X. Then F[j^] is Hausdorff if and only if F19 F2e F[J^]9 Fι Φ
F2—•> there exists f, ge J^f such that f&Fί,g£F2 and fg = 0.

THEOREM 2.5. Let Jzf be a subring of C(X) such that Z[s*r] is
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a disjunctive lattice on X. Let φ denote the making x—*Mx from
X into F[J^]. Then

(a) φ:X—>jP[jy] is continuous,
(b) φ[X] is dense in F\sf\, and
(c) φ is a homeomorphism between X and φ[X] if and only if

S*f strongly separates points from the closed sets in X (i.e., if F is
a closed subset of X and xe X — F, then there exists feJ^ such
that FczZ(f) and f(x) Φ 0).

Proof. By 2.1 (a), MxeF[j^] for every xeX.
(a) Since <P*~[f*] = Z(f) for each fej^, it becomes straight-

forward to show φ:X—> F[j%?] is continuous.
(b) Let fe Szf. Then F[J*f] - / * is a basic open set in F[j*f].

Suppose (F[J^] - /*) ΓΊ φ[X] = 0. Let x e X. Then φ{x) = Mx£
F[j*f]-f*, so Mxef*. Thus feMx for every xeX; i.e., / = 0.
So /* = F\s^f\. Hence, every nonvoid basic open set of F[.szf] in-
tersects <p[X]; i.e., φ[X] is dense in F[s$f].

(c) First, suppose S$? strongly separates points and closed sets
in X. Then Z[J^f] is a base for the closed sets in X. Since

<p"[f* Π φ[X]] = Z(f)

for each fe Stf, then ψ and φ*~ are continuous. By 2.1 (b), ψ is
one-to-one. Hence, φ is a homeomorphism between X and <p[X].
Let F be a closed subset of X. Then φ[F] is a closed subset of
φ[X]. So we may select J Γ c i / such that

φ[F]= n{f*

Thus F = n{φΛΓ n ̂ [X]] i/e^r} = n{Z(f)\fe jry, so z\s*\ is a
base for the closed subsets of X. Hence, J ^ strongly separates
points from closed sets in X.

Let j y be a subring of C(X) which strongly separates points
from closed sets in X and for which Z[Jϊf] is disjunctive. Then the
mapping φ:X-+F[jzf] defined by φ(x) = Mx embeds X into the
compact TΓspace F[J%f]. Define h: X-^wZ[j^f] by h(x) = ̂  ( =
{AeZ[^f]\xeA}). By [2, Th. 2.7], fe embeds X into the compact
TV-space wZ[jf]. Define H: wZ\Sf\ — F[ J ^ ] by H(<Zf) =
for each <Zf ewZ\£f\.

THEOREM 2.6. Γfeβ mapping H is a homeomorphism between
and

Proof. By 1.5 and 1.6, H is a bijection. Now {Z(f)*\fe J^},
where Z(/)* = {^ G wZ[J^]\Z(f) e %S}, is a base for the closed sets
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of wZ[Ssf] (see [1] or [2]). Since H[Z(f)*] = f* for each fe
then both H and H*~ are continuous. Hence, H is a homeomorphism.

THEOREM 2.7. F\sf\ecX if and only if J^f is a Wallman
ring.

Proof. By 2.6, H defines a homeomorphism between F[St?] and
wZ\Sf\. But wZ[j*f]ecX if and only if Z[J*f] is a Wallman base
on X. Hence, F[Jϊf] e cX if and only if J ^ is a Wallman ring.

Hence, the structure space F\S/\ of the maximal filter ideals
of a subring Szf of C(X) is a (Hausdorff) compactification if and only
if j y is a Wallman ring. Moreover, F[jzf] is a Wallman-type com-
pactification of X.

3* Maximal ideal spaces and maximal filter ideal spaces* In
this section jzf is a subring of C(X) containing &, the constant
real-valued functions on X. For xeX, define Mx = {fe Szf\f{%) = 0}.
The mapping f+Mx-+f(x) is a ring isomorphism between Jϊf/Mx

and ^ ? ; so, MxeH[S^] for each xeX. Similarly, Mxe F[J^f] for
each # e X (1.3). We topologize H[S*f\ by taking the set of all
/* = {Me H[j^]\fe M}, fej&Ί as a base for the closed sets; i.e.,

is the structure space of Jϊf [4> 7M]. Similarly we topologize

9 where a basic closed set is denoted /* = {Fe F[Ssf] \fe F},
fe jzf. Define the mapping φ: X-+F[<S^] by φ(x) = Mx and ψ: X—>
H[JV] by Ψ(x) = Mx. We obtain φ[Z(f)] = /» Π ̂ [XJ and f [Z(/)] =
/* Π Ψ[X]- Hence, H\Sf\ is an extension of X (via ψ), F[s$f] is
an extension of X (via φ) if and only if Z[J^] is a base for the
closed sets in X. Now F[J^] and H[S*f] are both compact ^-spaces
[see 2.2 and 4, 7M]. From §2, F[J^]ecX if and only if J ^ is a
Wallman ring on X. From [4, 7M], f ί [ j^] e cX if and only if Z[JZf]
is a base for the closed subsets of X and H[Jzf\ is Hausdorff.

We remark that even if both H[J&] and F[J*f\ e cX, they need
not yield equivalent compactifications of X. For example, let X = &
(reals with the usual topology) and ^ * be the one-point compacti-
fication of &. Let Sf be the ring of all functions in C ( ^ ) having
continuous extensions to ^?* . Then S^ is a Wallman ring and
F\SZ\ = wZ[j^r] = β&, but H[J^] = &*. This situation gener-
alizes to arbitrary locally compact Lindelof spaces [1] [5]. However,
F[C*(X)] = wZ{X) = βX= H[C*(X)]. Thus, we inquire into possi-
ble relationships between F[Jzf] and

We first present the following analogue of the Gelfand-Komolgoroff
Theorem [4, 7.3] which yields a representation theorem for the
maximal filter ideals of J ^ when wZ[J%f] e cX.
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THEOREM 3.1. Let Jzf be a, Wallman ring on the space X and
T = wZ[j^]. The maximal filter ideals in S*f are then given by

clτZ(f)} (teT).

Proof. Let t e T. Easily F* is an ideal. From 1.3, F% is a
filter ideal. We now show F% e F\s*f\. Suppose Fe F[j*f] such that
F c F a n d F* Φ F. Select fe F such that t £ clτZ(f). Since T =
wZ[j*f], select g e j / such that teclτZ(g) and Z(f)Γ)Z(g)=0.
But then f,geF and Z(f) n Z(g) = 0 , contradicting Fe F[Jf]. So
i*7* is maximal. It remains to show that if FeF[s$f], then F = F*
for some te T. Let FeF[j^]. Then Z[F]ewZ[Jtf], so

for some ί e ϊ 7 [1], [6]. Hence, F = i*7'. This completes the proof.

The above theorem also yields an explicit one-to-one correspond-
ence between the points of T and the maximal filter ideals in j^f.

Since C(X) is inverse closed and wZ{X) = βX, we have the

COROLLARY 3.2. (Gelfand-Komolgoroff theorem). For any space
X, H[C(X)] - F[C(X)] = wZ(X) = βX and the maximal ideals of
C(X) are given by Mι - {fe C(X) \t e o!βxZ{f)}.

Now, since Z(X) = Z[C*(X)], then C*(X) is also a Wallman ring
on X and F[C*(X)] = wZ{X) = βX. Since H[C(X)] = H[C*(X)] [4,
7.11], then H[C*(X)] = F[C*(X)] (i.e., equivalent as compactifications
of X).

We now inquire into relationships between maximal ideals and
maximal filter ideals.

THEOREM 3.3. Suppose H[J^f\ e cX. Then every maximal filter
ideal is contained in a unique maximal ideal.

Proof. Let .Fe F{sf\. Suppose M, Ne H[J^] where FaM, N
and MΦ N. Select fge^f such t h a t fg - 0, / g M and g$N [4,

7M]. But then fg = 0eF so / e ί 7 or ^ G F (1.7); hence, fe M or

^ G Λ Γ . From this contradiction, we conclude M — N.

COROLLARY 3.4. Suppose H[Jϊf] e cX. If each maximal ideal,
which contains a maximal filter ideal, contains a unique maximal
filter ideal, then F[J^f] e cX.
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Proof. Since H\s/\ e cX, then Z\sf\ is a base for the closed
subsets of X. It then suffices to show that F[J^f] is Hausdorff.
Let F, GeF[j^l FΦ G. There exist unique M, Ne H[J^] such
that F(zM,G(zN (3.3). Since MφN by hypothesis, we select
f,gej* such that fg = 0,/g Λf and <7£ JV. So f,gej*,fg = 0 , / ί ί 7

and 0 ί <?. By 2.4, F\stf\ is Hausdorίf.
Suppose now that TecX and J ^ is a subring of i?(X, Γ) (the

ring of all functions on X continuously extendable to T) such that
Jzf contains <% (the constant real-valued functions on X) and Z[J^f]
is a base for the closed subsets of X. Then ψ: X—• H[J^f] and
φ: X—» F[S$f] embed X as a dense subspace of the compact TΊ-spaces
H[Stf] and F[jϊf], respectively.

For fe E(X, T), denote the continuous extension by fτ. For
teT, define M< = {fe J^\fτ(t) = 0}. Then M f e i ϊ [ j r ] for each
ί e Γ since the mapping / + If* —> /Γ(ί) is a ring isomorphism between
J//Jlί* and ^ . Thus the mapping ^: X-> H[J^] defined by ^(a) =
ik^ is extendable from I to Γ by ^(0 = M\ Note that M3' = Mx

for each a e l .

LEMMA 3.5. φ*~[f*] = ^(/Γ)

Proo/. teZ(fτ) if and only if /Γ(ί) = 0 if and only if fe Mι if
and only if M% e p if and only if Ψ(t)ep if and only if ί e f *"[/*].

Hence, ^: T—> H[j*f] is continuous. So ^[ϊ 7] is a compact sub-
space of H\sf\. We then obtain the

THEOREM 3.6. If H[Ssf] is Hausdorff, then
(1) H[J^] G cX (via ψ: T~> H[J*]);
(2) H[j^f] = ψ[T] = {Af'lίe T};
( 3 ) H[ JV] ^ T; and
(4) H[JV] = T if and only if ψ is injective if and only if

{fτ\fε ^} separates points in T if and only if {Z(fτ)\fe S>/} is a
base for the closed subsets of T.

Proof. (1) and (2). Now Ψ[T] = elm^Ψ[T] since a compact
subspace of a Hausdorff space is closed. Also, cl f l [ ι y ] f[Γ] = H[J^]
since ψ[X] is dense in H[Jzf].

(3). Obvious.
(4). A continuous Injection from a compact space to a Hausdorff

space is a homeomorphism.

THEOREM 3.7. Suppose T = F[j*f]. Then T = H[J^] if and
only if each maximal ideal contains a unique maximal filter ideal
and H\S/\ is Hausdorff.
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Proof. Suppose H[J^] = T. Let MιeH[J^]. Then F c F ,
so every maximal ideal contains a maximal filter ideal (3.6 (2)). Since
T=H[J#'], then ψ: T — H[JV] is injective (3.6 (4)). Hence, if
F*, Fs c M* where t, s, pe T (3.1), then t = s = p. So each maximal
ideal contains a unique maximal filter ideal. The Hausdorff condition
is obvious.

Now assume the converse hypothesis and suppose H[J^f] < T
(3.6 (3)). Then ψ is not injective (3.6 (4)). Select t,seT such that
tΦ s, but M* = Ms. Since T = wZ[A] = F[A], then F* Φ Fs (3.1).
Clearly Fι c Mι and Fs c Λfs. So F\ Fs c Λf * and Ft Φ F8, contra-
dicting our assumption that each maximal ideal contains a unique
maximal filter ideal. This completes the proof.

THEOREM 3.8. Suppose T = H\sf\. Then T = F[j*f] if and
only if c\τZ(f) Π c\τZ(g) = 0 whenever Z(f) Π Z(g) = 0 cmd f g e

Proof. Since {/Γ|/e J/} is a base for the closed subsets of T
(3.6 (4)), then so is {clτZ(f)\fe J^}. By [1, 3.3], T = wZ[j^] if and
only if clΓZ(/) Π clΓZ(flr) - 0 whenever Z(/) Π Z{g) = 0 and/, ^e J^:
This completes the proof since F[j%f] — wZ[j%f] (2.6).

Hence, if TecX is "constructable" as a maximal ideal space of
j^f, where Jϊf is a subring of E(X, T) containing ^ , then T is also
constructable as the ultrafilter space from the zero-sets of Jzf if and
only if disjoint zero-sets of Jzf have disjoint closures in T. Con-
versely, if T is "constructable" as the ultrafilter space from the
zero-sets of jy , then T is constructable as the maximal ideal space
of Sf if and only if each maximal ideal contains a unique maximal
filter ideal and the maximal ideal space is Hausdorff.

THEOREM 3.9. Suppose H[j*f\ = T and F[J&] e cX. Then T
*].

Proof. Let FeF[j^]. Since T is compact and

is a nonvoid set of nonvoid closed subsets of T with the fip, then
ς\^r φ 0 . Since {c\τZ(f)\feJ^} is a base for the closed subsets
of T, then Γ\^~ is a singleton (denote F—+t). Thus, for each Fe
F\S/\ there exists a unique te Tsuch that F—*t. Define h: F\J*f\ —•
Γ by Λ(-F) = t where F- +t. Then h is a surjection and h(Fx) = x
for each xeX. Since h^[c\τZ(f)] - Π {#* | clΓZ(/) c mtτZ(gτ), geJtf]
for each fejzf, then /*, is continuous. Hence, T ^ F\Sf\ (via &).

COROLLARY 3.10. Suppose H{sf\ = T. Then T = F[Jtf\ if and
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only if each maximal ideal contains a unique maximal filter ideal.

Proof. Suppose each maximal filter ideal contains a unique
maximal filter ideal. Then F[J^] e cXby 3.4. The mapping h:
T defined in the proof of 3.9 is then injective. Hence, T =
The converse follows from 3.7. This completes the proof.

4- An application to E(X, T). Let TecX. Easily Z[E(X, T)]
is a base for the closed subsets of X. In 1964 Frink [3] mentioned
that Z[E(X, T)] was a Wallman base on X. However, Brooks, in a
paper published in 1967 [2], mentioned he could not prove this. Sub-
sequently Hager, in a 1969 paper, provided a "constructive" proof.
We offer here a proof that Z[E{X, T)] is a Wallman base on X based
on 2.4 and 2.7. We first observe

LEMMA 4.1. Suppose J& is a suhring of C(X) such that if fe
j ^ , then I /1 e j&l Let I be a z-filter ideal of J^f. Then the follow-
ing are equivalent:

(1) I is a prime ideal of Sf\
(2) I contains a prime ideal of J%f;
(3) if /, ge Ssf and fg — 0, then fe I or gel; and
(4) for each fe J^f there exists gel such that f does not change

sign on Z{g).

Proof. The techniques of [4, 2.9] apply verbatim.

THEOREM 4.2. Let Jzf be subring of C(X) such that Z\sf\ is a
base for the closed subsets of X and if fe <s$f, then \f\e sf. Then

is a Wallman ring on X.

Proof. It suffices to show that F\S$?\ is Hausdorff (2.7). To
show this we apply 2.4. Let F, GeF[J*f], F Φ G. Then Ff]G is
a ^-filter ideal of Jϊf which is not prime. Using 4.1(3), we select
f,geJϊf such that fg = 0, but /£ F n G and g£Ff) G. But F and
G are prime ideals of sf (1.7); hence, either feFoτgeF. Suppose
feF. Then g<£F and f$G. Also, if geFy then f$F and gίG.
By 2.4, then, F[J^] is Hausdorff. Hence, Sf is a Wallman ring
on X.

COROLLARY 4.3. Let TecX. Then Z[E(X, T)] is a Wallman
base for X.
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