CHARACTERIZATIONS OF RADON PARTITIONS

William R. Hare and John W. Kenelly

A Radon partition of a subset P of R^{d} is a pair $\{A, B\}$ satisfying (i) $A \cup B=P$, (ii) $A \cap B=\varnothing$ and (iii) conv $A \cap$ $\operatorname{conv} B \neq \varnothing$. The sets A and B are called components of the partition. The theorem of Radon says that for any $P \subset R^{d}$ having at least $d+2$ elements, there exists a Radon partition. When P is in general position with exactly $d+2$ elements, the Radon partition is unique; furthermore, a pair of points of P lie in the same component if and only if they are separated by the hyperplane through the remaining d points. A generalization of this result is

Theorem 1. Let P be a set of $n \geqq d+2$ points of R^{d} in general position, and let $S \subset P$ have k elements. Then S is contained in a component of some Radon partition of P if and only if (i) $k \leqq n-d-1$; or, (ii) if $k \geqq n-d$, then $\operatorname{conv} S \cap$ aff $(P \sim S) \neq \varnothing$.

With the notion of a primitive partition, a useful "reduction" is obtained.

Theorem 2. Every Radon partition of P extends a primitive partition.

Finally, a new characterization of the unique Radon partition mentioned above is given by

Theorem 3. Let P be a set of $d+2$ points in general position in R^{d} which do not lie on a common sphere. Then a pair of points in P lie in the same component of the unique Radon partition if and only if both of them are inside (or both outside) the respective ($d-1$)-spheres determined by the other $d+1$ points.
2. A generalization of the theorem of Proskuryakov and Kosmak. In [1] and [3] it is proved that, if P is a subset of R^{d} having $d+2$ points in general position, then two points will lie in the same component of the (unique) Radon partition of P if and only if they are separated by the hyperplane through the remaining d points. A direct generalization of this result is the first theorem of this paper. Throughout, $|S|$ indicates the cardinality of S.

Theorem 1. Let P be a set of $n \geqq d+2$ points in general position in R^{d}; let $S \subset P$ with $|S|=k$. Then S is contained in one component of some Radon partition for P if and only if
(i) $k \leqq n-d-1$; or
(ii) if $k \geqq n-d$, then $\operatorname{conv} S \cap \operatorname{aff}(P \sim S) \neq \varnothing$.

Proof. If $k \leqq n-d-1$, let $x \in S$. Let $\left\{A^{\prime}, B^{\prime}\right\}$ be a Radon partition for $(P \sim S) \cup\{x\}$; such a partition exists, by Radon's theorem, since $|(P \sim S) \cup\{x\}|=|P \sim S|+1 \geqq d+2$. Assuming $x \in A^{\prime}$, let $A=A^{\prime} \cup S$ and $B=B^{\prime}$ for the desired Radon partition $\{A, B\}$ of P having S in one component.

Suppose now that $k \geqq n-d$ and conv $S \cap$ aff $(P \sim S) \neq \varnothing$. There exist $\left\{\alpha_{s} \mid s \in S\right\}$ and $\left\{\beta_{t} \mid t \in P \sim S\right\}$ such that each $\alpha_{s} \geqq 0, \sum_{s \in S} \alpha_{s}=$ $\sum_{t \in P \sim S} \beta_{t}=1$, and $\sum_{s \in S} \alpha_{s} s=\sum_{t \in P \sim S} \beta_{t} t$. Let $R=\left\{t \in P \sim S \mid \beta_{t}<0\right\}$ and $\sum_{s \in S} \alpha_{s}-\sum_{r \in R} \beta_{r}=\sum_{t \in(P \sim S) \sim R} \beta_{t}=\alpha \neq 0$. Then

$$
\sum_{s \in S}\left(\alpha_{s} / \alpha\right) s-\sum_{r \in R}\left(\beta_{r} / \alpha\right) r=\sum_{t \in(P \sim S) \sim R}\left(\beta_{t} / \alpha\right) t
$$

which is a point in conv $(S \cup R) \cap \operatorname{conv}((P \sim S) \sim R)$. That is, S is in one component of a Radon partition of P.

Conversely, suppose $\{T, P \sim T\}$ is a Radon partition of P with $S \subset T$. In case $k \leqq n-d-1$, the proof is complete, so assume $k \geqq n-d$. Let $R=T \sim S$, so that $T=R \cup S$. Then there exist α 's and β 's such that

$$
\sum_{s \in S} \alpha_{s} s+\sum_{r \in R} \beta_{r} r=\sum_{t \in P \sim T} \beta_{t} t
$$

where each coefficient is nonnegative and

$$
\sum_{s \in S} \alpha_{s}+\sum_{r \in R} \beta_{r}=\sum_{t \in P \sim T} \beta_{t}=1
$$

Rearrange to give

$$
\sum_{s \in S} \alpha_{s} s=-\sum_{r \in R} \beta_{r} r+\sum_{t \in P \sim T} \beta_{t} t
$$

If $\sum_{s \in S} \alpha_{s}=0$, each α_{s} is 0 , so

$$
-\sum_{r \in R} \beta_{r} r+\sum_{t \in P \sim T} \beta_{t} t=0 \text { and }-\sum_{r \in R} \beta_{r}+\sum_{t \in P \sim T} \beta_{t}=0 .
$$

However, since $|P \sim T|=n-k \leqq d$, this is a contradiction to the fact $P \sim T$ is affinely independent. Thus, let $\sum_{s \in S} \alpha_{s}=\alpha>0$. Then

$$
\sum_{s \in S}\left(\alpha_{s} / \alpha\right) s=\sum_{r \in R}\left(-\beta_{r} / \alpha\right) r+\sum_{t \in P \sim T}\left(\beta_{t} / \alpha\right) t,
$$

giving a point in conv $S \cap$ aff $(P \sim S)$, which completes the proof.
The Proskuryakov and Kosmak Theorem is the case of $n=d+2$ and $k=2$.
3. Primitive partitions. In case $P \subset R^{d}$ has a Radon partition, it may happen that certain subsets of P also have this property. We say that $\{A, B\}$ is a Radon partition in P provided $\{A, B\}$ is a Radon partition of $A \cup B$ and $A \cup B \subset P$. We say that the Radon
partition $\left\{A^{\prime}, B^{\prime}\right\}$ extends the Radon partition $\{A, B\}$ provided $A \subset A^{\prime}$ and $B \subset B^{\prime}$. Finally, $\{A, B\}$ is called a primitive partition in P provided it is a Radon partition in P and $\{A, B\}$ extends the Radon partition $\left\{A^{\prime}, B^{\prime}\right\}$ only if $\{A, B\}=\left\{A^{\prime}, B^{\prime}\right\}$. It should be observed that for P in general position, any primitive partition $\{A, B\}$ in P will have $|A \cup B|=d+2$.

Theorem 2. Let $P \subset R^{d}$ with $|P|=n$, and let $\left\{A^{\prime}, B^{\prime}\right\}$ be a Radon partition of P. Then there exists a primitive partition $\{A, B\}$ in P such that $\left\{A^{\prime}, B^{\prime}\right\}$ extends $\{A, B\}$. Furthermore, $|A \cup B| \leqq d+2$.

Proof. Let $\{A, B\}$ be a minimal Radon partition in $\left\{A^{\prime}, B^{\prime}\right\}$ in the sense that: $A \subset A^{\prime}, B \subset B^{\prime}$ and if $\{A, B\}$ extends the Radon partition $\left\{A^{\prime \prime}, B^{\prime \prime}\right\}$ in P, then $\{A, B\}=\left\{A^{\prime \prime}, B^{\prime \prime}\right\}$. Let us suppose, to the contrary, that $|A|=k,|B|=m$ and $k+m \geqq d+3$. The minimality assumption tells us that $\sigma_{A}=\operatorname{conv} A$ and $\sigma_{B}=\operatorname{conv} B$ are both simplices and that the point in their intersection is relatively interior to each. Without loss of generality, suppose this point is the origin 0 . Thus, we have the existence of positive numbers $\left\{\alpha_{a} \mid a \in A\right\}$ and $\left\{\beta_{b} \mid b \in B\right\}$ such that $\sum_{a \in A} \alpha_{a}=\sum_{b \in B} \beta_{b}$ and $\sum_{a \in A} \alpha_{a} a=\sum_{b \in B} \beta_{b} b$.

Now

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{aff} \sigma_{A} \cap \operatorname{aff} \sigma_{B}\right)= & \operatorname{dim}\left(\operatorname{aff} \sigma_{A}\right)+\operatorname{dim}\left(\operatorname{aff} \sigma_{B}\right) \\
& -\operatorname{dim}\left(\operatorname{aff} \sigma_{A}+\operatorname{aff} \sigma_{B}\right) \\
= & (k-1)+(m-1)-d \\
= & k+m-(d+2) \\
\equiv & N \geqq 1
\end{aligned}
$$

Let $\left\{x_{1}, \cdots, x_{N+1}\right\} \equiv C$ be an affine basis for this intersection. Then we can write

$$
x_{i}=\sum_{a \in A} \gamma_{i a} a=\sum_{b \in B} \delta_{i b} b
$$

where $\sum_{a \in A} \gamma_{i a}=\sum_{b \in B} \delta_{i b}=1$, for each $1 \leqq i \leqq N+1$. Furthermore, since $0 \in$ rel. int. $\left(\sigma_{A} \cap \sigma_{B}\right)$, we may as well assume each coefficient to be nonnegative. For some i, suppose (say) $\beta_{b^{\prime}} / \delta_{i b^{\prime}}$ is the smallest of all positive ratios $\beta_{b} / \delta_{i b}$ and $\alpha_{a} / \gamma_{i a}$.

Now solve $x_{i}=\sum_{b \in B} \delta_{i b} b$ for b^{\prime} and substitute the resulting expression into $\sum_{a \in A} \alpha_{a} a=\sum_{b \in B} \beta_{b} b$. Next, replace x_{i} in this new equation by $\sum_{a \in A} \gamma_{i a} a$ and regroup A-terms on one side, B-terms on the other. This yields

$$
\left(^{*}\right) \quad \sum_{a \in A}\left(\alpha_{a}-\left(\beta_{b^{\prime}} / \delta_{i b^{\prime}}\right) \gamma_{i a}\right) a=\sum_{b \in B \sim\left\{b^{\prime}\right\}}\left(\beta_{b}-\left(\beta_{b^{\prime}} / \delta_{i b^{\prime}}\right) \delta_{i b}\right) b
$$

Routine calculations show that all coefficients are nonnegative and that those on each side add up to $1-\left(\beta_{b^{\prime}} / \delta_{i b^{\prime}}\right)$. Provided this common sum is positive, simply divide both sides of $\left(^{*}\right.$) by this number to obtain a convex combination of points in A equal to a convex combination of points in $B \sim\left\{b^{\prime}\right\}$. This is a contradiction to the minimality assumption, so $|A \cup B| \leqq d+2$.

Thus, it remains to show that, for some $i, 1-\left(\beta_{b^{\prime}} / \delta_{i b^{\prime}}\right)>0$. A straight-forward computation shows that, if it is 0 , then necessarily $x_{i}=0$. But since there are at least two points in C, and these points are affinely independent, some $x_{j} \neq 0$. Thus, an appropriate choice of i is possible. The proof is complete.

This leads directly to another characterization of Radon partitions:

Corollary. Let $P \subset R^{d}$ with $|P|=n \geqq d+2$. Then a subset S of P is one component of a Radon partition of P if and only if there exists a primitive partition $\{A, B\}$ in P with (say) $S \cap A=\varnothing$ and $B \subset S$. The set S is contained in a component of a Radon partition of P if and only if there exists a primitive partition $\{A, B\}$ in P with $S \cap A=\varnothing$.
4. Another characterization of Radon partitions of $d+2$ points in general position. Here we seek a condition for determining whether two points are in the same, or opposite, component of a Radon partition in case $n=d+2$. While the theorem is stated and proved for the case of general position in R^{d}, it is easily applied to any primitive partition in some set P. The criterion given here is in the spirit of that of Proskuryakov and Kosmak except that a type of spherical "separation" is used in place of their hyperplane.

Theorem 3. Let $P \subset R^{d}$ be a set of $d+2$ points in general position and not all points lying on a common d-sphere. Suppose that $\{A, B\}$ is the unique Radon partition of P. Then two points of P lie in the same component if and only if they are each inside (or each outside) the respective ($d-1$)-spheres determined by the remaining $d+1$ points.

Proof. Let u and v be two points of P. The remaining d points determine a hyperplane H and some $(d-2)$-sphere in H. Let us suppose that the center of this sphere is the origin and the d-th coordinate axis is normal to H. Thus, the $(d-2)$-sphere is $\left\{\left(\xi_{1}, \cdots, \xi_{d}\right) \in R^{d} \mid \sum_{i \neq d} \xi_{i}^{2}=\rho^{2}, \xi_{d}=0\right\}$, for some number $\rho>0$. Now the point u, along with the points of P lying in H give a sphere

$$
S_{u}=\left\{\left(\xi_{1}, \cdots, \xi_{d}\right) \in R^{d} \mid \sum_{i \neq d} \xi_{i}^{2}+\left(\xi_{d}-\psi\right)^{2}=\rho^{2}+\psi^{2}\right\}
$$

for some number $\psi>0$. Similarly v and the d points of P in H give a ($d-1$)-sphere

$$
S_{v}=\left\{\left(\xi_{1}, \cdots, \xi_{d}\right) \in R^{d} \mid \sum_{i \neq d} \xi_{i}^{2}+\left(\xi_{d}-\omega\right)^{2}=\rho^{2}+\omega^{2}\right\}
$$

for some ω.
In case $u=\left(\mu_{1}, \cdots, \mu_{d}\right)$ is inside S_{v}, we have

$$
\sum_{i \neq d} \mu_{i}^{2}+\left(\mu_{d}-\omega\right)^{2}<\rho^{2}+\omega^{2}
$$

Since u is on S_{u}, we have

$$
\sum_{i \neq d} \mu_{i}^{2}+\left(\mu_{d}-\psi\right)^{2}=\rho^{2}+\omega^{2}
$$

Thus, $2 \mu_{d}(\psi-\omega)<0$ if and only if u is inside S_{v}. The condition $2 \mu_{d}(\psi-\omega)>0$ characterizes the case that u is outsider S_{v}. Similarly, $v=\left(\nu_{1}, \cdots, \nu_{d}\right)$ is inside S_{u} if and only if $2 \nu_{d}(\omega-\psi)<0$, and outside if and only if $2 \nu_{d}(\omega-\psi)>0$.

Now apply the characterization in [1] and [3] to the preceding: Points u and v are in the same component A or B if and only if they are separated by $H=\left\{\left(\xi_{1}, \cdots, \xi_{d}\right) \in R^{d} \mid \xi_{d}=0\right\}$, using the previous coordinatization. Thus, μ_{d} and ν_{d} carry opposite signs, and

$$
2 \mu_{d}(\psi-\omega)<0 \quad \text { and } \quad 2 \nu_{d}(\omega-\psi)<0
$$

(or, else, $2 \mu_{d}(\psi-\omega)>0$ and $2 \nu_{d}(\omega-\psi)>0$). That is, the points u and v are both inside (or outside) the respective ($d-1$)-spheres determined by the other $d+1$ points of P.

In case u and v are not in the same component A or B, they are not separated by H and consequently μ_{d}, ν_{d} have the same signs and opposite inside-outside classifications.

This theorem yields a nice generalization of a problem stated and proved in [2].

Corollary. Given a set P of $d+2$ points in general position in R^{d} and not all the points on a common $(d-1)$-sphere, then (i) at most $d+1$ of these points can each be outside the sphere through the other $d+1$, and (ii) at most d of the points can each be inside the sphere through the other $d+1$ points.

Proof. Let $\{A, B\}$ be the unique Radon partition of P. Then, in particular, we have $A \neq \varnothing$ and $B \neq \varnothing$ so (i) is valid. Part (ii) follows, since an assumption to the contrary would result in an
outside class of one point and an inside class of $d+1$ points. This type of partition is only possible when one point is in the convex hull of the other $d+1$ points. But we have an obvious contradiction, namely an interior point of a simplex outside the circumsphere of the simplex.

References

1. L. Kosmak, A remark on Helly's Theorem, Spisy Prirod Fak Univ. Brno (1963), 223-225; (see Math. Rev. 29).
2. Norman Miller, Elementary Problem E 2019, Amer. Math. Monthly 74 (1967), 1005-1006; 75 (1968), 1115-1116.
3. I. V. Proskuryakov, A property of n-dimensional affine space connected with Helly's Theorem, Usp. Math. Nauk, 14 (1959), 215-222; (see Math. Rev. 20).
4. J. Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921), 113-115.

Received January 29, 1970.
Clemson University

