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A CRITERION FOR rc-CONVEXITY

P. S. BULLEN

The development of the Pn-integral of R. D. James and
W. H. Gage is based on certain properties of π-convex functions.
In order to develop this integral systematically a more detailed
study of w-convex functions is needed. In the second section
of this paper various derivatives are defined and some of their
properties given; in the third and last sections properties of
%-convex functions are developed.

2* Definitions and some simple properties of generalized de-
rivatives* Suppose F is a real-valued function defined on the bounded
closed interval [α, b] then if it is true that for x0 e ]a, b[

(1) *^±*>±*?*^ = ±βa"l- + o(h»)t asΛ-,0
2 k=o (2k)ϊ

where β0, β2 •••, β2r depend on xQ only, and not on h, then β2k, 0 <£

k ^ r, is called t h e de la Vallee Poussin derivative of order 2k of F

at x0, and we wri te β2k = D2kF(x0).

If F possesses derivatives D2kF{x^, 0 <Ξ k ^ r — 1, wr i te

(2) h2r θ(F-χ h)- F(xo + h) + F(xo-h) _ψ h2k

 D F ( )

and define

D2rF(x0) = lim sup θ2r(F; x0, h),

D2rF(xQ) - lim inf θ2r(F; xQ, h) .
h-+Q

F will be said to satisfy Condition C2r in [a, b] if and only if

(a) F is continuous in ]α, 6[,

(b) D2kF exists, is finite, and has no simple

( 4 ) discontinuities in ]α, b[ 0 <£ k ^ r — 1,

(c) lim hθ2r(F; x, h) = 0, x e ]α, b[ — E, where
h-*0

E is countable.

In particular C2 requires F to be continuous in ]α, b[ and smooth in

]α, b[ - E.

In a similar way £fce dβ la Vallee Poussin derivatives of odd order

can be defined by replacing (1) by

(1) g^ + 1
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as h—+0, with similar changes in (2), (3) and (4).
If it is true that

( 5 ) F(x0 + h) - F(xQ) = Σ <xh ̂ - + o(h% as h — 0

where α1? , ar depend on x0 only, and not on h, then ak, 1 ^ A; ̂  r,
is called £&e Peano derivative of order k of F at xOf and we write
ak = jP(fc,(a?o). If ^ possesses derivatives F(fc)(x0), 1 ^ & ̂  r — 1, write

( 6 ) ^-Ύr(F; x0, h) = F(x0 + h)- F(x0) - Σ ^Fw(x0) ,
r ! fc=i k\

then proceeding as in (3) we define Fir)(x0) and F{r)(x0). Further by-
restricting h to be positive, or negative, in (5), or (6) we can define
one-sided Peano derivatives, written F(k),+(x0), F{k)}_(x0), Fik)>+(x0), etc.
It is easily seen, [3], that if F{k)(xQ), 1 ^ k ^ r, exists then

( 7) F{r)(xQ) - lim - L Σ (- l) f c ( !" ) ^ + (r - k)h).

It is shown in [7] that the condition Cn, n = 2r or 2r + 1, holds
automatically for the Peano derivatives. If we say F(k)i 1^ k ^ r,
exists in an (α, b) we will mean that F{k) exists in ]α, δ[ and that the
appropriate one sided derivates exists at those of the points a and b
that are in (α, 6).

Let x0, --•, xr be (r + 1) distinct points from [α, 6] then the r th
divided difference of F at these (r + 1) points is defined by

(8) F r (F) = FrCF; xr) = F r ( F

= ^ F(xk)
^=o w'(α; Λ )

where

( 9 ) w{x) — wr(x) = wr(x; xk), etc.

= Π (x - xk) .
k = 0

This r th divided difference has the following properties, which we
collect for reference in

LEMMA 1. (a) Vr(F; xk) = 0 for all choices of points x0, , xr if
and only if F is a polynomial of degree at most r — 1.

(b) If F is a polynomial of degree r then for all x0, * ,xry

Vr(F; xk) = coefficient of xr.
(c) Vr(F; xQ, •• ,£cr) is independent of the order of the points

Xo, , Xr*
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(d) There is a simple relation between successive divided differ-
ences given by

(x0 - xr) Vr(F; x0, , xr)

= Vr^iF; xQ9 , xr_,) - Vr^iF; xί9 , xr).

(e) For any F we have the Newton Interpolation Formula,

(11) F(x) = Fix,) + Σ Vk(F; α?lf , xh+1)wh^{x; xt)
k=i

+ Vr(F; x9xl9 , xr)wr^(x; xk).

This last formula can be written differently as follows. Given the
(r + 1) points Pk, 0 < k ^ r, with coordinates (xk, F(xk))9 0 ^ k ^ r,
respectively, there is a unique polynomial of degree at most r passing
through these points given by

πr(F; x; Pk) = πr(x; Pk) = ττr(α;; ajo> ^o, , ^r), etc.

' ' (x-x)
fc0 5ί fe ^ )

This formula (12) is known as the Lagrange Interpolation Formula.
It is easily seen that for all (r + 1) distinct yQ9 , yr

(13) Vr(πr; yk) = Vr(F; xk) .

Then (11) can be written

(14) F(x) = πr_x{F; x; xk) + Vr(F; x, xlf 5 xr)wr^(x; xk) .

Using the divided difference we now define another derivative.
Suppose all of xf x0, •••, xr are in [α, b] and

xk = x + hkf 0 ^ k ^ r, with

0 ^ |

then the r th Riemann derivative of F at x is defined by

(16) DrF(x) = Km lim r! F r (F; xk)
hr-+0 ho->Q

if this iterated limit exists independently of the manner in which the
hk tend to zero, subject only to (15). In a similar manner we define
the upper and lower derivatives; and if the hk all have the same sign
the one-sided derivatives; these will be written DrF(x), Dr

+F(x), etc. If
we say DrF exists in (α, b) we make the same gloss as for Fir).

Since we can let h09 •••,/&, very first and then h8+19 « -, hr the above
definition and (10) imply that if DrF{x) exists then so does DkF(x),
1 <; k ^ r; or more generally if Dr

+F(x) is finite then D\F{x) is finite,
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1 <̂  k ^ r. Remark however that even if Dr

+F(x) and DLF(x) exist,
are finite and equal, this does not imply that DrF(x) exists, [15, p. 26].

If instead of (15) and (16) we have

(15)' hk= (r - 2k)h, 0 ̂  k ^ r ,

(16)' W ( x ) = lim r! F r(F; xk) ,

(with obvious modifications for the upper and lower derivatives), this
is called the rth symmetric Riemann derivative. In particular the
cases r = 1, 2 coincide with definitions of DJ?, ΌJF respectively. In
general if Dr

sF < oo in ]α, b[ then F{r) exists and equals Dr

sF almost
everywhere, [12].

The usual rth order derivative of F at x, x e (a, b), will be written
Flr)(x).

THEOREM 2. If xe [α, b[ then D\F(x) — F{r)t+(x), provided one side
exists.

Proof. Suppose first that F(r)>+(x) exists; then taking the rth di-
vided difference of F(x + h), (considered as a function of h) at the
points ho,hly , fcr, 0 <^ h0 < < hr, using (5) and Lemma 1 (a), (b)
we see that

r! Vr(F; x + hk) = F(rU+(x) + Vr(o(hr); hk) .

Letting fe0, , hr tend to 0 successively we get that D+F(x) exists
and equals F{r)t+{x).

If now we suppose that D\F(x) exists then the rest of the theorem
follows using Lemma l(e).

A similar result obviously holds for lefthanded and two-sided de-
rivatives; the latter is due to Den joy [6] and Corominas [4], who
give different proofs.

COROLLARY 3. (a) If xe [α, b] and F{ku+(x) exists H K r - 1
then F{r)+(x) = Dr

+F(x), and Fir)}+(x) = D+F(x).
(b) If x e ]α, b[ and DkF(x) exists l^k^r-1 and Dr

+F{x), DLF(x)
exist and are equal then DrF(x) exists, and is equal to this common
rule.

Proof, (a) is proved by a simple adaption of the proof of Theorem
2. (b) holds since the similar result holds for Peano derivatives.

The following results due to Bur kill [3], Corominas [4], and Olivier
[14] should be noted.
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THEOREM 4. (a) / / F(r_v exists, in [α, b] and if

mf[F{r)t+,F{r),_] > A> - c o ,

then jF(r_i) is continuous.
(b) If F{r) is continuous in [a, b] then F[r) exists, and F{r) — Fir).
(c) If Fir) exists at all points of [a,b] then Fir), possesses both

the Darboux property and the mean-value property.

The definitions of the terms used in (c) can be found in [14].

3* ^convex functions* A real-valued function F defined on the
closed bounded interval [a, 6] is said to be n-convex on [α, 6] if and
only if for all choices of (n + 1) distinct points, xQ, •••, xn, in [α, 6],
Vn(F; xk) ^ 0, [4, 7,15]. If — F is ^-convex then F is said to be n-
concave. The only functions that are both π-convex and %-coneave
are polynomials of degree at most n — 1, (Lemma 1).

If n — l this is just the class of monotonic increasing functions
and n = 2 is the class of convex functions; (the class n = 0 is just
the class of nonnegative functions, but we will usually only be in-
terested in % ̂  1).

THEOREM 5. Let

Pk = (%k, Vk), I ^k^n,n^2,a<>x1< < xn ^ b ,

be any n distinct points on the graph of the function F. Then F is
n-convex if and only if for all such sets of n distinct points, the
graph lies alternately above and below the curve y = πn_γ(F\ x; Pk),
lying below if xn^ ^ x ^ xn. Further πn__γ(x\ Pk) ^ F(x), xn ^ x ^ 6;
and πn_γ(x\ Pk) ^ F(x)(}tF(x)) if a ^ x < xlf n being even (odd).

Proof. Let x0 Φ xk, 1 ^ k g n, xx < x0 < xn and suppose in fact
Xj < x0 < %j+i. If F is π-convex then Vn(F; x0, , xn) ^ 0; i.e.,

^ F(xk) ^ F(xQ)

* = i W'n(xk) W'n(xo)

or F(xQ) ^ -ΣAΪ=I F(xk)[wf

n(xQ)/w'n(xk)\ = πn^(x01 Pk), if (n - j) is even,

but F(x0) ^ πn-ι(%oi Pk) if (n — j) is odd. This proves the necessity;
the sufficiently is immediate by reversing the argument. The last
remark follows in a similar way by considering xn < xQ < b, and a ^
XQ \ Xχ

This theorem generalizes the property that a convex function always
lies below its chord.
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THEOREM 6. If F is an n-convex function on [α, 6] and

a ^ xι < <Xn^b9a^zί< <zn^b,zk^xk,l^k^n,

then Vn^(F; zk) ̂  V^(F; xk).

Proof. The following particular case suffices to prove this result.

% = zkJ k Φ j + 1, Xj < z i f l < xj+1 .

Then, as in Theorem 5,

sign [F(zj+1) - πn_y(zά+1] xk)\ = (-l)n~j .

Hence, with this πn_γ,

V (TΓ ? \ — V (TΓ ' V \ — -^W + l) "~ πn-l\Z3+l> Xk) < Λ
V n-l\ F > Zk) * n-n\πn-U Zk) — ^ U .

Π fo+i - Xu)

That is

= Vn^(F; xr), by (13) .

THEOREM 7. If F is n-convex in [α, b] then
(a) F{r) exists and is continuous in [α, 6], 1 ^ r ^ n — 2,
(b) δoίft -F(w_υ,_, F{n_1)t+ are monotonic increasing and if

a <£^~ Ύ <^" <^~ /y* "̂ C /γ* '̂ "C! 7/ < ^ <^~ oj <^ h

then

(18) (n - 1)! Vn^(F; xk) ̂  F(w-1)f-(a?)

^ ί7

{w_1),+W ^ (w - 1)! Tn^ίF; m) ,

(d) iT7^-1) exists at all except a countable set of points.

Proof. Using Theorem 2, it is an immediate consequence of The-
orem 6 that F{r)t+ exists in [α, b[, F{r)f_ exists in ]α, 6], 1 <̂  r ^ n — 1
and that (b) holds.

From (b) we get that both F(n-1)f+, F{n^ί)t_ are continuous except
on a countable set. Then, again from (b), we have that F{n_ι)t+ =
Fln-.1)t- except on a countable set.

Then if we prove (a) and (c), (d) is immediate.
Suppose a ^ xι < < xn ^ b then repeated application of (10)

gives
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rn-i(F; xl9 , xn)

V.jF; xί9 x2) - V^F; x2, xs) v (w. ^λ

(Xi ~ XA)

Now let x1 —* x2, then by Theorem 6 the left-hand side of this ex-
pression tends to a finite limit, K, say: i.e.,

DιF(x2) - V^F; x2, x9) V ( F . r r r\
(X2 - X3)

(x2 - xn)

If now x3 —> x2 we get a finite limit on l.h.s. of this last expression:
hence Dι_F(x2) = D+F(x2); that is DF(x2) exists. A similar argument
shows DF is continuous in ]α, δ[.

In a similar way, expressing V ^ in terms of V2, F3, we show
that D2

+F(x3) = DlF(x3) and so by Corollary 3(b), D2F(xz) exists then
as above DIP exists and is continuous in ]α, 6[.

In this way we show DrF exists and is continuous in ]α, 6[, 1 g
r ^ ^ — 2. Hence, by Theorem 2, i^(r) exists and is continuous in
]a, b[, 1 tί r tί n — 2 and so finally, by Theorem 4(b), the same is true
of Fia). This proves (a).

For the proof of (c) let x0 < < x2n-3 then repeated application
of (10) gives

£ (&* - Xk+n-ύV^iF; xk,...f xk+n^)

k=0

I = : V n—2\" ) ^ 0 , , %n—2/ * n—2\-f f %n—0, , %2n—3/

Let ^ —»• x0,1 ^ fc ^ n ~ 2, ^ —> xn_19 n ^ fc ^ 2n — 3 then by Theorem
6 the limit on the left hand side exists, and the value limit on the
right hand side follows from (a). Thus we get an expression of the
form

(n - l)(x0 - xn^
 1

9 αvΛ {F[^ F^)} .

(n -— Δ)\

Now dividing and letting xn_v —> ̂ 0 we get

(n - 1)! lim iffe, x%_,) = (^~ 2 ) ) ' + W

a simple application of (11) shows that the left hand side of this last
expression is equal to F{n_ί)>+(x0). This completes the proof of the first
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part of (c), the rest follows using a similar argument.
Formula (18) is due to James [7, Lemma 10.4], who however

assumes the existence of Fin_1} in ]α, δ[.

COROLLARY 8. (a) F is n-convex on [a, b] if and only if F differs

by a polynomial of degree at most (n — 1) from 1 (x — t)n~ιμ{dt), for

some Lebesgue-Stieltjes measure μ. In particular if and only if F
is the (n — l)st integral of a monotonic function.

(b) If F is n-convex in [a,b],\F\^ k, then \Fik)(x)\ ^ AST sup
{1/(6 — x)k, l/(x — a)k}, 0 ^ k ^ n — 1 where A is a constant independ-
ent of k, F and x, and where if k = n — 1 the derivative is to be
interpreted as sup (|F(n_1)f+(α;)|, \F{n_1)}_(x)\).

(c) If F is n-convex on [a9 6], a ^ x ^ y ^ b, a ̂  x + h ^ y, and
x ^ y + k ^ b then

Ύn^(F; x; h) ̂  Fln_lU4y) and F^1)t+(x) ^ 7n^(F; y; k) .

Proof, (a) This is immediate from Theorem 7 (b).
(b) From (18) we have that

v ^ sup {F^Ux), Fin_ιU4x)} S, , u ^ ^ Γ ^ sup {F^Ux), Fin_ιU4x)} S 7 Λ p τ r Σ ^ r
(n — 1)1 k=o w (xk) (n — 1)1 *=o w (yk)

from which (b) in the case k = n — 1 is easily deduced. The rest
follows by integration, using, (a).

(c) Immediate using (18), (11), (6) Theorems 2 and 4.
The definition, (12), of πr(x; Pk) can be extended to cover the case

when not all of the Pk are distinct. Thus if only s of these points
are distinct then besides giving the values at the s points, a total of
r + 1 — s derivatives must also be given—either r + 1 — s derivatives
all at one point, or r + 1 — s first derivatives at r + 1 — s distinct
points, (when r + 1 — s ^ s), etc. Theorem 5 can be extended, using
Theorems 6, 7 and taking limits; thus as an example of many possible
extensions we state

THEOREM 9. Let Pk = (xk, yk), 1 ^ k ^ r, a <̂  xι < < xr ^ 6, be

r distinct points on the graph of the function F. Suppose that F{s)t+(x^)
exists, 1 ^ s ^ n — r. Then Theorem 5 holds if πn^{x\ Pk) is taken
to have πn^(xs; Pk) = F(xs), 1 £ s ^ r, Tr^Λfe Pk) = F^^x,), 1 ^ s ^
n — r, and if P1 is considered as n — r + 1 points at and to the right
of P, but to the left of P2.

THEOREM 10. (a) // F is n-convex on [a, b] and Pk = (xk, yk),
1 rg k ^ n are n distinct points on the graph of F, a ^ x1 < 6, let



A CRITERION FOR %-CONVEXITY 89

xk = χ1 + ekh, 0 < ε2 < < εn; then as h —* 0 + , πn_x(x; Pk) converges
uniformly to the right tangent polynomial at xlf

τn,+(F; χ; xy) = τ+(x) = F(xJ + Σ
* l

(n - 1)!

Further on the right of xlfτ+ ^ F.
(b) A similar result holds for the left tangent polynomial at

xly τ_(x; α?i), a ^ x ^ α?x, α < xλ ^ δ. However in this case if n is even
(odd) then on the left of xlf r_ ^ F(^F).

(c) Aί αW 6^ί a countable set of points x19 a similar result holds
for the tangent polynomial at xlf τ(x1; x),a<x<b,a<x1<b. How-
ever if n is even the graph of r lies below that of F, whereas if n is
odd the graphs cross, r being above on the left of xly and below on the
right of xr.

Proof. It suffices to consider (a). But (a) is a simple consequence
of Theorems 5, 7, (11), and (14).

COROLLARY 11. (a) / / F is n-convex in [a, b] then

(b) / / F is n-convex in [α, b] and Fin_ι} exists in [a, b] then it
is continuous.

(c) If F is n-convex in [α, b] then Fin_1)>+ is upper-semi conti-
nuous (u.s.c), F{n_1)t^ is lower semi-continuous (l.s.c.)

Proof, (a) Suppose in Theorem 10, for simplicity, that xL = 0.
Then F lies above the right tangent polynomial at x = 0, i.e.,

F(x) - τ+(x) ^ 0

xn ~~ '

in some interval [0, h\. Hence F{nU+(0) ;> 0: in a similar way F(n),_(0) ^ 0.
(b) Immediate from (a), Theorem 4(a), Theorem 7(a).
(a) This is just Theorem 3.2 [3], adapted to one sided derivatives.
The following theorem generalizes a result well known when

n = l, [13, Corollary 32.3] and n = 2 [7, Th. 4].

THEOREM 12. / / F is n-convex on [α, 6], a < a < β < 6, Ek =
{x; a ^ x ^ β and F(n)(x) ^ k} then

(20) km*(Ek) ^



90 P. S. BULLEN

(where m* denotes the outer Lebesgue measure).

Proof. For simplicity we will ignore the countable set where
-P(n-D may not exist and suppose that k > 0. Further let Ei be as
Ek but with F{n))+ instead of F{n) and suppose m*Eϊ > 0; with a
similar definition for Ek.

If then ε> 0,xeEϊ there is an h > 0 such that

Ύn(F; x; h) ^ F(nU+(x) - e ^ k - e .

So, by [20], there is a finite family of nonoverlapping intervals
[xif Xi + hi], i = 1, , p such that xp + hp ^ β,

Ύn(F; xiy hi) ^ k - ε, i = 1, ., p ,

and

Σ ^ ^ m * ^ - ε .

Thus

Σ ^ 7 , ( F ; xif hi) >(k- ε)(m*Ei - e)
i — ί

but since

(21) hΎn(F; x, h) - n{Ύn^(F: x, h) - F{n^(x)}

we have that

Σ Pn-aF; Xi, h) - F{n^(Xi)} ^ Jί—L(m*Et - e) .
*=i n

However by Corollary 8(c)

ΣVe-υte+i) - ^ - i ( ^ ; »o λ*)} ^ o ,
i= i

Adding the last four inequalities we get that

IVnGβ) - ^c-υία) ^ l^-ί-{m*Ei - ε) .

This together with a similar inequality for Eϊ, implies (20).

A function that is the difference of two ^-convex functions will
be called δ-n-convex; as in the cases n = 1 and n — 2, [16], such
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functions can be characterized by their variational properties.
If F is defined on [α, b] as well as F{k), 1 ̂  k <£ n — 1, let us write

ω%(F; α, 6) = α>w(α, 6)

= max { sup | (x — ά)Ύn(F; a; x — α) |,
α<»<6

sup I (6 - a ̂ O F ; α; b - x) |}
α<*<6

this quantity was introduced by Sargent [19].

THEOREM 13. A function F defined on [α, b] is d-n-convex if and
only if either of the following conditions is satisfied.

(a) Σ ϊ U a)n(F\ ak, bk) < K for all finite sets of nonoverlapping
intervals, [ak, bk], 1 ̂  k ^ m.

(b) Σ ? = o I (xk ~ Xk+n) Vn(F; x k , , x k + n ) \<K for all finite sets of
distinct points x0J , x m + n .

Proof. The discussion of (b) is similar to the case n = 2 in [16]
but using Corollary 8(a).

If (a) is satisfied then F{n_x) is of bounded-variation [19, Lemma
1], and so by Corollary 8(a) F is <5-w-eonvex.

If F is ^-convex then by (21) and Corollary 8(c)y

(x - a)Ύn(F; a x - a) = n{Ύn^(F; a; x - a) - F{n_»(a)} ^ 0

and so by Corollary 8(c)

(22) ωn(F; a, b) rg n{Fn^(b) - *V υ (a)} .

From this it easily follows that if F is <5-w-convex then (a) holds.

4* Sufficient conditions for ^-convexity. In this section we
obtain some sufficient conditions for a function to be ^-convex. First
we prove the following generalization of a well-known property of
convex functions.

THEOREM 14. (a) If F is n-convex in [α, b] then F{n~2) has no
proper maximum in ]α, b[.

(b) A function F with continuous derivative of order (n — 2) is
n-convex if and only if no function of the form F(x) + Σ£=i a>kXh has
its derivative of order (n — 2) attaining a maximum in ]α, b[.

Proof, (a) Suppose F{n~2) has a proper maximum at x0, then
consider G(x) = F(x) — πn_2(x; Pk), where the polynomial πn_2 is deter-
mined uniquely by the conditions
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G(x0) = G'(x0) = . . . . = G^2)(x0) = 0 .

Now consider πn__2(x; Qk) where Qk = (xk, G(xk)),'O'^ k ^ n - 2,
α0 < < ^-2 Then by Theorem III [4], (13), and Lemma 1(6), the
coefficient of xn~2 in πn_2(x; Qk) is G(n~2)(x0 + δ),xo + δ being some point
in ]x0, xn-2[. Hence, using Theorem 7(a), since xQ is a proper maximum
of G{n~2) and G{n~2)(x0) = 0, if #0, •• ,ccn_2 are close enough together
this coefficient is not positive.

Let xk-+x0,l ^k^n — 3 then ττ%_2(x; QΛ) becomes a polynomial
of degree n — 2 with its value and that of its first (n — 3) derivatives
at x0 being zero; it's (n — 2)nd derivative is nonpositive. Hence, by
Theorem 9, G ^ 0 in [xQ, #Λ_2].

In a similar way G ^ 0.(^0) in some interval to the left of xQ

when n is odd (even). Further in every such interval around x0 there
are points where these inequalities are strict.

Now consider the (n + 1) points z0, , zn where

<VQ ^ ^ Λ/^ \ ^ "ln/2] '• ^0 ^ ^ **n

Then

Vn(F; zk) = Vn(G; zk) =

If then #!, ^w_1 tend to x0 then iΓ—> 0 and we get

G(z0) , G(z.)
(Zo Xo) [Zo Zn) \Zn XQ) (Zn ZQ)

But whether n is even, or odd both terms on the l.h.s. of this ex-
pression can be chosen to be negative-which contradiction completes the
proof of (a).

(b) The necessity is evident. Suppose then that F is not ^-convex.
Then by Theorem 5 there exists a polynomial πn_γ{x; Pk) such that the
two curves y = F(x), y = τrΛ_L(£c; Pk) do not intertwine correctly.

Consider G(x) = F(x) - π^x; Pk); then G{xx) = . . . = G(xn) = 0
and G changes sign at most (n — 2) times. Hence (?(%-2) has three
zeros and so has a local maximum. This completes the proof.

COROLLARY 15. (a) / / F is n-convex then Fίr) is (n — r)-convex,
1 ^ r £ n - 2.

(b) / / F is n-convex then F{n) exist a.e.

Proof, (a) The case r = n — 2 is just Theorem 14(b). In gen-
eral Fik), 1 ^ k ^ n — 3, has a continuous derivative of order n — k — 2
satisfying the hypotheses of Theorem 14(b), and hence F{k) is (n — k)-
convex.
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(b) Since Fin~2) is convex this follows immediately from well
known properties of convex functions.

Note that the case r = n — 1 of Corollary 15(a) is just the last
part of Theorem 7(b).

We now wish to prove a converse of Corollary ll(a). Because of
applications to symmetric Perron integral, [7], this converse will be
obtained in terms of de la Vallee Poussin derivatives and the results
in terms of Peano derivatives will be simple corollaries. A direct
proof could be constructed from the proof of the more general results.

THEOREM 16. / / F satisfies C2m, m ^ 1, in ]α, b[ and
(a) DimF(x) ^ 0, x e ]α, b[ ~ E, \E\ = 0,
(b) D2mF(x) > - o o , χ e ] α , ί ) [ - < S , S a scattered set,
(c) lim sup/^o hθ2m(F; x; h) ^ 0 ^ lim mίh^Q hθ2m(F; x; h), xe S then

F is 2wι-convex. (A set is said to be scattered if it contains no sub-
sets that are dense in themselves.)

Proof. If E = S then by Theorem 6.1, [9], (a), (b), (c) imply
D2mF ^ 0 in ]α, b[ and so the result follows from Theorem 4.2, [8].

Given ε > 0, Γ, | T\ = 0, Te Gδ, T Φ 0 let χe,Γ - χ be a function
on [α, b] such that

( i ) χ is absolutely continuous,
(ii) χ is differentiate,
(iii) χ'(x) = C O , ^ G T ,

(iv) 0^χ '( .τ) < co,^g Γ,
(v) χ(α) = 0, 0 £ χ(b) g ε/(b - a)2m-1. That such a function exists

is well known, [21]. Then define

(23)
(2m - 2)1

the (2m - l)sί integral of χ. Then Ψ{2m~ι)(x) = χ(x) and, using (2),
we have on integrating by parts that

(24) - £ ^ U * ; X; k) = ^ _ g ) | \ (Λ - «)-{*(* + t) - χ(, - ί ) } d ί

^ 1

- 2(2m - 1)1 Λ w

so

,D2mr(x) ^ mχ'(x) ^ 0 .

If now E czT then we easily see that (i) Ψ is C2m, and 2m-convex, (ii)
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DJF(x) ^ 0, (iii) DJP(x) = oo, x e E, (iv) 0 ^ Ψ ^ ε.
Hence if we write Ψn= Ψε, with ε = 1/n, and put Gn = F + Ψn

then G« satisfies the conditions of the theorem with E = S, and so
by the above is 2m-convex. Letting n —> co we then get that J 7 is
2m-convex.

The case of m = l , j B = 0,iS countable is a classic result about
convex functions, [22].

COROLLARY 17. If F, G are defined in [a, b] and (a) F — G is
C2m, (b) S 2 W (F - G){x) ^ 0 ^ A m ( F - G){x) for xe ]a, b[ ~ # , | # | = 0,
(c) A f f l (F - G)(^) < oo, J52W(F - G){x) > - oo, x e ]α, 6[ - S, S scattered,
(d) lim sup^o fe^^ί7 - G; a?; Λ) ^ 0 ^ lim inf^0 hθ2m(F - G; a?; h) forxeS
then for all sets x l f •••, x 2 m of 2 m distinct points in [a, b], if Pk —
(xk, F(xk)), Qk = (χk, G(xk)), l^k

(25) F(x) - τr2m_1(x; Pk) = G(x) - ^ ^ ( α ; Qk) .

Proof. If ί1!, G,, denote the l.h.s., r.h.s., of (25) respectively then
i^ — Gλ is both 2m-convex and 2m-concave, by Theorem 16. So being
a polynomial of degree at most 2m — 1 and vanishing at xk, 1 ^ k g 2m,
is identically zero.

This result is well known in the case m = 1 when it implies that
if F — G is continuous, D2(F — G) = 0 then F, G differ by a linear
function, [10]. Kassimatis [11] pointed out that the requirement F — G
continuous is not sufficient in the general case; the condition required
is that of Corollary 17.

COROLLARY 18. (a) If n ^ 2 (i) F{n){x) ^ 0, x e ]a, b[ - E, | E \ =
0, (ii) F{n)(x) > — oo, x e ]α, b[ — S, S a scattered set, then F is n-convex.

(b) If n^2 (i) (F-G){n)(x)^0^ (F - G)w(x), x e ]α, 6[ - ^ ,

\E\ = 0, (ii) ( F - G)(>)(a?) < oo,(F-G){n)(x)> -oo,xe]a,b[~ S, S

scattered, then (25) holds.

Proof. This is an immediate corollary of Theorem 16, Corollary
17, the analogous results for the odd-ordered derivatives and the re-
mark made earlier that Cn is satisfied.

This result generalizes the classic case, when n = 1, see for in-
stance, [17, p. 203]. But this can be still further extended as follows.

THEOREM 19. Ifn^2, and (i) Fin^ exists in [α, 6], (ii) F{nU+(x) ^ 0,
x e [a, b] — Ey \E\ = 0, (iii) F(nU+(x) > — oo, x e [a, b] — C, C countable,
then F is n-convex.
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Proof. As in the proof of Theorem 16 we can assume that E = C
and so suppose F{nU+(x) ^ 0 except when x = xo,xlf •••. We may as-
sume that for all keN, xkφb.

Adopting a procedure due to Bosanquet [1] and Sargent [18] we
exhibit for each he N a monotonic ^-convex function Zk with the
following properties

( i ) Zΐ\a) = 0, Zΐ\b) ^ [{b - aγ-r-ιl(n - r - l ) ! ] 2 - ( / c + 1 ) ε , 0 ^ r £
n — 1,

(ii) (F+Zk)(n)

(iii) Vn(Zk; yr) ^ K2~{k+1)ε, for all (n + 1) distinct points y0, , yn.
Then if we define G(x) = F(x) + ^kQNZk(x), G{n)t+{x) ^ 0 everywhere

and so is π-convex, by usual arguments; but

Vn(G; yr) = Vn(F; yr) + Σ Vn(Zh; yr)
keN

and so Vn(F; yr) ^ — Kε, which implies F is w-convex.
It remains to define the function Zk. Since Cn is satisfied, we

have, by (4) and (6), Umn^ohΎn(F; xk; h) = 0 so we can find a sequence
ylf y2, in [xk, b[ such that 0 < ys+1 - xk = h8+1 < i(V» ~ χk) = K/2,
and hsΎn(F; xk; hs) > — ε 2~ik+s). Now define the function zk in such
a way as to be continuous and

zk(x) = 0, a ^ x S %k,

= 2-{k+1)ε, y,<x ^ 6 ,

= 2- ( fc+s)ε, a? = τ/s, s = 1,2, . . . ,

= linear in [y8+1, y8], s = 1, 2, .

Then ^ is continuous, increasing on [α, 6], ̂ A(α) = 0, zkφ) — 2~{k+1)ε,
Zk{Xk) = 0, 2fc(a?)/a; - ^Λ decreases in ]xk, b[. I t is then easily checked
t h a t

hs

(h. - ty-%(χk + t)dt s>
n(n — 1) n(n — 1)

Define then,

1 Γ ~ ty-*zk(t)dt,
(w — 2)!

the (w — l)st integral of zk. Then Ziw~υ = ^ and using Theorem 7,
and Corollary 8, Zk clearly has all properties wanted except possibly
(ii). This we now check. First note that by (21)

hsΎn(Zk; xky h8) = nΊn_x{Zk\ xky hs) .

So as in the proof of (23),
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h.7n(Zk; xk, h.) = n ( n r ^ P ' (hs - t)*~%(xk + t)dt ̂  2~^s)ε .
hn

s~
ι Jo

Hence,

h8Ύn(Zk + F; xk, hs) ^ 0

which completes the proof.

A theorem of a slightly different form can be obtained using the
symmetric Riemann derivatives.

Let us say a real valued function F on [α, 6] is of type Dr if for
all sets of (r + 1) distinct points xQ, , xr in [a, b]

(26) inf D;F(x) ^ r! Vr(F; xk) ̂  sup D;F(x) .
α<z<& a<x<b

The following simple lemmas will be useful.

LEMMA 20. If Fir~2] exists and is continuous in [α, b] then for
sets of (r + 1) distinct points x0, , xr in [a,b]

inf DlF«-2)(x) ^ rlVr(F; xk) ^ sup D2

sF^2)(x) .
a<x<b a<x<b

In particular if F{r) exists in [α, b] then F is of type Dr.

Proof. Let G(x) = F(x) - π ^ ^ F ; χ0, . . , x^O - λP(a?) where P is
a polynomial of degree r, λ a constant determined by requiring that
G(xk) - 0, 0 < k ^ r and F r (F; α?fc) = λ.

Then since G has at least (r + 1) zeros G(r~2) has at least 3 zeros
and so has a nonnegative maximum; that is for some y V2{G{r~2);ylJ

y, y2) <g 0 for all τ/1? 2/2 near enough to y; that is

2 F 2 (G ( ί - 2 ) ; 2/lf y, y2) = 2V2(F^~2); Vι, y, y2,) - rl λ ^ 0 .

The proof now follows that in [6].

LEMMA 21. If F is of type Dn then

inf Dn

sF{x) = inf Dn

sF{x), sup J D ^ O ) = sup Dn

sF{x) .
α<*<& α<»<6 α<x<6 α<a;<δ

Proof The case w = 2 and more is proved in [6, p. 9]. The proof
of the general case is the same.

THEOREM 22. / / F is of type Dn and (a) Dn

sF{x) ^ 0, x e ]α, b[ - E,
IJE71 = 0, (b) Dn

sF > - o o , then F is n-convex.

Proof. Since the 2m-convex function Ψ of Theorem 16 is, using
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Lemma 20, of type D2m we can, as in Theorem 16, assume E — 0 .
The result is then a trivial consequence of (26).

COROLLARY 23. / / F, G are such that (a) F - G is of type Dn,
(b) D:(F -G)(X)^0^ D{F - G)(x), xe]a,b[~E,\E\ = 0, (c) D:(F - G)
> - c o , £>:(F - G) < oo, then (24) holds.

It would be of interest to produce some reasonable conditions on
F that ensure it is of type Dr. It is known, [15], that if F is con-
tinuous then F is of type D2J but Kassimatis, [10], has pointed out
that if r > 2 this is false. One would expect the existence and con-
tinuity of F{r~2) to imply F is of type Dr but this has not been proved.
Let us say F is of type dr when

inf Dr

8F(x) ^ r! Vr(F; xk) ^ sup Dr

sF(x) .
a<x<b a<x<b

If in Theorem 22 and Corollary 23 we weaken our hypothesis to
F being of type dn, obvious modifications of the other conditions will
produce analogous theorems. It has been proved in [2] that if F{r~2)

exists and is continuous, r = 2, 3, 4, then F is dr; unfortunately the
method fails if r > 4.

BIBLIOGRAPHY

1. L. S. Bosanquet, A property of Cesάro-Perron integrals, Proc. Edinburgh Math.
Soc. (2) 6 (1940), 160-165.
2. P. S. Bullen, Construction of primitives of generalized derivatives with applications
to trigonometric series, Canad. J. Math. 13 (1961), 48-58.
3. J. C. Burkill, The Cesάro-Perron scale of integration, Proc. London Math. Soc. (2)
39 (1935), 541-552.
4. E. Corominas, Contribution a la theorie de la derivation d'ordre superieur, Bull.
Soc. Math. France 8 1 (1953), 177-222.
5. A. Denjoy, Sur Vintegration des coefficients dijferentiels d'ordre superieur, Fund.
Math. 25 (1935), 273-326.
6. , Lecons sur le calcul des coefficients d'une serie trigonometrique, Paris,
1941.
7. R. D. James, Generalized nίh primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176.
8. , Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
9. R. D. James and W. H. Gage, A generalized integral, Trans. Roy. Soc. Canad., (3)
40 (1946), 25-35.
10. R. L. Jeffrey, Trigonometric Series, Toronto, 1956.
11. C. Kassimatis, Functions which have generalized Riemann derivative, Cand. J.
Math. 10 (1958), 413-420.
12. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and
summability of trigonometric series, Fund. Math. 26 (1936), 1-43.
13. E. J. McShane, Integration, Princeton, 1944.
14. H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954),
444-456.
15. T. Popoviciu, Les functions convexes, Paris, 1944.



98 P. S. BULLEN

16. F. Riesz, Sur certains systems singuliers d* equations integrates, Ann. Ec. Norm.
(3) 28 (1911), 33-62.
17. S. Saks, Theory of the Integral, Warsaw, 1937.
18. W. L. C. Sargent, On sufficient conditions for a function integrable in the Cesaro-
Perron sense to be monotonic, Quarterly J. Math. Oxford 12 (1941), 148-153.
19. , On generalized derivatives and Cesaro-Denjoy integrals, Proc. London
Math. Soc. (2) 52 (1951), 365-376.
20. W. Sierpinski, Un lemma metrique, Fund. Math. 4 (1923), 201-203.
21. Z. Zahorski, Ueber die Menge der Punkte in welchen die dbleitung unendlichist,
Tohoku Math. J. 48 (1941), 321-330.
22. A. Zygmund, Trigonometric Series, second edition, Cambridge, 1959.

Received January 19, 1970.

UNIVERSITY OF BRITISH COLUMBIA




