A CRITERION FOR n-CONVEXITY

P. S. Bullen

The development of the P^{n}-integral of R. D. James and W. H. Gage is based on certain properties of n-convex functions. In order to develop this integral systematically a more detailed study of n-convex functions is needed. In the second section of this paper various derivatives are defined and some of their properties given; in the third and last sections properties of n-convex functions are developed.
2. Definitions and some simple properties of generalized derivatives. Suppose F is a real-valued function defined on the bounded closed interval $[a, b]$ then if it is true that for $\left.x_{0} \in\right] a, b[$

$$
\begin{equation*}
\frac{F\left(x_{0}+h\right)+F\left(x_{0}-h\right)}{2}=\sum_{k=0}^{r} \beta_{2 k} \frac{h^{2 k}}{(2 k)!}+o\left(h^{2 r}\right), \quad \text { as } h \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\beta_{0}, \beta_{2} \cdots, \beta_{2 r}$ depend on x_{0} only, and not on h, then $\beta_{2 k}, 0 \leqq$ $k \leqq r$, is called the de la Vallée Poussin derivative of order $2 k$ of F at x_{0}, and we write $\beta_{2 k}=D_{2 k} F\left(x_{0}\right)$.

If F possesses derivatives $D_{2 k} F\left(x_{0}\right), 0 \leqq k \leqq r-1$, write
(2) $\frac{h^{2 r}}{(2 r)!} \theta_{2 r}\left(F ; x_{0}, h\right)=\frac{F\left(x_{0}+h\right)+F\left(x_{0}-h\right)}{2}-\sum_{k=0}^{r-1} \frac{h^{2 k}}{(2 k)!} D_{2 k} F\left(x_{0}\right)$
and define

$$
\begin{align*}
& \bar{D}_{2 r} F\left(x_{0}\right)=\lim _{h \rightarrow 0} \sup _{h \rightarrow 0}\left(F ; x_{0}, h\right), \\
& D_{2 r} F\left(x_{0}\right)=\underset{h \rightarrow 0}{\lim \inf _{2 r}} \theta_{2 r}\left(F ; x_{0}, h\right) . \tag{3}
\end{align*}
$$

F will be said to satisfy Condition $C_{2 r}$ in $[a, b]$ if and only if
(a) F is continuous in $] a, b[$,
(b) $D_{2 k} F$ exists, is finite, and has no simple

$$
\begin{equation*}
\text { discontinuities in }] a, b[0 \leqq k \leqq r-1 \text {, } \tag{4}
\end{equation*}
$$

(c) $\left.\lim _{h \rightarrow 0} h \theta_{2 r}(F ; x, h)=0, x \in\right] a, b[\sim E$, where E is countable.

In particular C_{2} requires F to be continuous in $] a, b[$ and smooth in] $a, b[\sim E$.

In a similar way the de la Vallée Poussin derivatives of odd order can be defined by replacing (1) by
$(1)^{\prime} \quad \frac{F\left(x_{0}+h\right)-F\left(x_{0}-h\right)}{2}=\sum_{k=0}^{r} \beta_{2 k+1} \frac{h^{2 k+1}}{(2 k+1)!}+o\left(h^{2 r+1}\right)$,
as $h \rightarrow 0$, with similar changes in (2), (3) and (4).
If it is true that

$$
\begin{equation*}
F\left(x_{0}+h\right)-F\left(x_{0}\right)=\sum_{k=1}^{r} \alpha_{k} \frac{h^{k}}{k!}+o\left(h^{r}\right), \quad \text { as } \quad h \rightarrow 0 \tag{5}
\end{equation*}
$$

where $\alpha_{1}, \cdots, \alpha_{r}$ depend on x_{0} only, and not on h, then $\alpha_{k}, 1 \leqq k \leqq r$, is called the Peano derivative of order k of F at x_{0}, and we write $\alpha_{k}=F_{(k)}\left(x_{0}\right)$. If F possesses derivatives $F_{(k)}\left(x_{0}\right), 1 \leqq k \leqq r-1$, write

$$
\begin{equation*}
\frac{h^{r}}{r!} \gamma_{r}\left(F ; x_{0}, h\right)=F\left(x_{0}+h\right)-F\left(x_{0}\right)-\sum_{k=1}^{r-1} \frac{h^{k}}{k!} F_{(k)}\left(x_{0}\right), \tag{6}
\end{equation*}
$$

then proceeding as in (3) we define $\bar{F}_{(r)}\left(x_{0}\right)$ and $\underline{F_{(r)}}\left(x_{0}\right)$. Further by restricting h to be positive, or negative, in (5), or (6) we can define one-sided Peano derivatives, written $F_{(k),+}\left(x_{0}\right), F_{(k),-}\left(x_{0}\right), \bar{F}_{(k),+}\left(x_{0}\right)$, etc. It is easily seen, [3], that if $F_{(k)}\left(x_{0}\right), 1 \leqq k \leqq r$, exists then

$$
\begin{equation*}
F_{(r)}\left(x_{0}\right)=\lim _{k \rightarrow 0} \frac{1}{h^{r}} \sum_{k=0}^{r}(-1)^{k}\binom{r}{k} F(x+(r-k) h) . \tag{7}
\end{equation*}
$$

It is shown in [7] that the condition $C_{n}, n=2 r$ or $2 r+1$, holds automatically for the Peano derivatives. If we say $F_{(k)}, 1 \leqq k \leqq r$, exists in an (a, b) we will mean that $F_{(k)}$ exists in $] a, b[$ and that the appropriate one sided derivates exists at those of the points a and b that are in (a, b).

Let x_{0}, \cdots, x_{r} be $(r+1)$ distinct points from $[a, b]$ then the r th divided difference of F at these $(r+1)$ points is defined by

$$
\begin{align*}
V_{r}(F) & =V_{r}\left(F ; x_{r}\right)=V_{r}\left(F ;\left\{x_{k}\right\}\right)=V_{r}\left(F ; x_{0}, \cdots, x_{r}\right) \tag{8}\\
& =\sum_{k=0}^{r} \frac{F\left(x_{k}\right)}{w^{\prime}\left(x_{k}\right)}
\end{align*}
$$

where

$$
\begin{align*}
w(x) & =w_{r}(x)=w_{r}\left(x ; x_{k}\right), \quad \text { etc. } \tag{9}\\
& =\prod_{k=0}^{r}\left(x-x_{k}\right)
\end{align*}
$$

This r th divided difference has the following properties, which we collect for reference in

Lemma 1. (a) $\quad V_{r}\left(F ; x_{k}\right)=0$ for all choices of points x_{0}, \cdots, x_{r} if and only if F is a polynomial of degree at most $r-1$.
(b) If F is a polynomial of degree r then for all x_{0}, \cdots, x_{r}, $V_{r}\left(F ; x_{k}\right)=$ coefficient of x^{r}.
(c) $V_{r}\left(F ; x_{0}, \cdots, x_{r}\right)$ is independent of the order of the points x_{0}, \cdots, x_{r}.
(d) There is a simple relation between successive divided differences given by

$$
\begin{align*}
& \left(x_{0}-x_{r}\right) V_{r}\left(F ; x_{0}, \cdots, x_{r}\right) \\
= & V_{r-1}\left(F ; x_{0}, \cdots, x_{r-1}\right)-V_{r-1}\left(F ; x_{1}, \cdots, x_{r}\right) . \tag{10}
\end{align*}
$$

(e) For any F we have the Newton Interpolation Formula,

$$
\begin{align*}
F(x)=F\left(x_{1}\right) & +\sum_{k=1}^{r-1} V_{k}\left(F ; x_{1}, \cdots, x_{k+1}\right) w_{k-1}\left(x ; x_{i}\right) \tag{11}\\
& +V_{r}\left(F ; x, x_{1}, \cdots, x_{r}\right) w_{r-1}\left(x ; x_{k}\right)
\end{align*}
$$

This last formula can be written differently as follows. Given the $(r+1)$ points $P_{k}, 0 \leqq k \leqq r$, with coordinates $\left(x_{k}, F\left(x_{k}\right)\right), 0 \leqq k \leqq r$, respectively, there is a unique polynomial of degree at most r passing through these points given by

$$
\begin{align*}
\pi_{r}\left(F ; x ; P_{k}\right) & =\pi_{r}\left(x ; P_{k}\right)=\pi_{r}\left(x ; x_{0}, x_{0}, \cdots, x_{r}\right), \quad \text { etc. } \\
& =\sum_{k=0}^{r} F\left(x_{k}\right) \prod_{\substack{j=0 \\
j \neq k}}^{r} \frac{\left(x-x_{j}\right)}{\left(x_{k}-x_{j}\right)} . \tag{12}
\end{align*}
$$

This formula (12) is known as the Lagrange Interpolation Formula. It is easily seen that for all $(r+1)$ distinct y_{0}, \cdots, y_{r}

$$
\begin{equation*}
V_{r}\left(\pi_{r} ; y_{k}\right)=V_{r}\left(F ; x_{k}\right) \tag{13}
\end{equation*}
$$

Then (11) can be written

$$
\begin{equation*}
F(x)=\pi_{r-1}\left(F ; x ; x_{k}\right)+V_{r}\left(F ; x, x_{1}, \cdots, x_{r}\right) w_{r-1}\left(x ; x_{k}\right) . \tag{14}
\end{equation*}
$$

Using the divided difference we now define another derivative. Suppose all of x, x_{0}, \cdots, x_{r} are in $[a, b]$ and

$$
\begin{align*}
& x_{k}=x+h_{k}, 0 \leqq k \leqq r, \quad \text { with } \\
& 0 \leqq\left|h_{0}\right|<\cdots<\left|h_{r}\right| \tag{15}
\end{align*}
$$

then the r th Riemann derivative of F at x is defined by

$$
\begin{equation*}
D^{r} F(x)=\lim _{h_{r} \rightarrow 0} \cdots \lim _{h_{0} \rightarrow 0} r!V_{r}\left(F ; x_{k}\right) \tag{16}
\end{equation*}
$$

if this iterated limit exists independently of the manner in which the h_{k} tend to zero, subject only to (15). In a similar manner we define the upper and lower derivatives; and if the h_{k} all have the same sign the one-sided derivatives; these will be written $\bar{D}^{r} F(x), \bar{D}_{+}^{r} F(x)$, etc. If we say $D^{r} F$ exists in (a, b) we make the same gloss as for $F_{(r)}$.

Since we can let h_{0}, \cdots, h_{s} very first and then h_{s+1}, \cdots, h_{r} the above definition and (10) imply that if $D^{r} F(x)$ exists then so does $D^{k} F(x)$, $1 \leqq k \leqq r$; or more generally if $\bar{D}_{+}^{r} F(x)$ is finite then $\bar{D}_{+}^{k} F(x)$ is finite,
$1 \leqq k \leqq r$. Remark however that even if $D_{+}^{r} F(x)$ and $D_{-}^{r} F(x)$ exist, are finite and equal, this does not imply that $D^{r} F(x)$ exists, [15, p. 26]. If instead of (15) and (16) we have

$$
\begin{align*}
& h_{k}=(r-2 k) h, 0 \leqq k \leqq r, \tag{15}\\
& D_{s}^{r} F(x)=\lim r!V_{r}\left(F ; x_{k}\right), \tag{16}
\end{align*}
$$

(with obvious modifications for the upper and lower derivatives), this is called the $r^{\text {th }}$ symmetric Riemann derivative. In particular the cases $r=1,2$ coincide with definitions of $D_{1} F, D_{2} F$ respectively. In general if $\bar{D}_{s}^{r} F<\infty$ in $] a, b\left[\right.$ then $F_{(r)}$ exists and equals $\bar{D}_{s}^{r} F$ almost everywhere, [12].

The usual r th order derivative of F at $x, x \in(a, b)$, will be written $F^{(r)}(x)$.

Theorem 2. If $x \in\left[a, b\left[\right.\right.$ then $D_{+}^{r} F(x)=F_{(r),+}(x)$, provided one side exists.

Proof. Suppose first that $F_{(r),+}(x)$ exists; then taking the r th divided difference of $F(x+h)$, (considered as a function of h) at the points $h_{0}, h_{1}, \cdots, h_{r}, 0 \leqq h_{0}<\cdots<h_{r}$, using (5) and Lemma 1 (a), (b) we see that

$$
r!V_{r}\left(F ; x+h_{k}\right)=F_{(r),+}(x)+V_{r}\left(o\left(h^{r}\right) ; h_{k}\right)
$$

Letting h_{0}, \cdots, h_{r} tend to 0 successively we get that $D_{+}^{r} F(x)$ exists and equals $F_{(r),+}(x)$.

If now we suppose that $D_{+}^{r} F(x)$ exists then the rest of the theorem follows using Lemma 1(e).

A similar result obviously holds for lefthanded and two-sided derivatives; the latter is due to Denjoy [6] and Corominas [4], who give different proofs.

Corollary 3. (a) If $x \in[a, b]$ and $F_{(k),+}(x)$ exists $1 \leqq k \leqq r-1$ then $\bar{F}_{(r)+}(x)=\bar{D}_{+}^{r} F(x)$, and $\underline{F}_{(r),+}(x)=\underline{D}_{+}^{r} F(x)$.
(b) If $x \in] a, b\left[\right.$ and $D^{k} F(x)$ exists $1 \leqq k \leqq r-1$ and $D_{+}^{r} F(x), D_{-}^{r} F(x)$ exist and are equal then $D^{r} F(x)$ exists, and is equal to this common rule.

Proof. (a) is proved by a simple adaption of the proof of Theorem 2. (b) holds since the similar result holds for Peano derivatives.

The following results due to Burkill [3], Corominas [4], and Olivier [14] should be noted.

Theorem 4. (a) If $F_{(r-1)}$ exists, in $[a, b]$ and if

$$
\inf \left[\underline{F}_{(r),+}, \underline{F}_{(r),-}\right]>A>-\infty,
$$

then $F_{(r-1)}$ is continuous.
(b) If $F_{(r)}$ is continuous in $[a, b]$ then $F^{(r)}$ exists, and $F^{(r)}=F_{(r)}$.
(c) If $F_{(r)}$ exists at all points of $[a, b]$ then $F_{(r)}$, possesses both the Darboux property and the mean-value property.

The definitions of the terms used in (c) can be found in [14].
3. n-convex functions. A real-valued function F defined on the closed bounded interval $[a, b]$ is said to be n-convex on $[a, b]$ if and only if for all choices of $(n+1)$ distinct points, x_{0}, \cdots, x_{n}, in $[a, b]$, $V_{n}\left(F ; x_{k}\right) \geqq 0,[4,7,15]$. If $-F$ is n-convex then F is said to be n concave. The only functions that are both n-convex and n-concave are polynomials of degree at most $n-1$, (Lemma 1).

If $n=1$ this is just the class of monotonic increasing functions and $n=2$ is the class of convex functions; (the class $n=0$ is just the class of nonnegative functions, but we will usually only be interested in $n \geqq 1$).

Theorem 5. Let

$$
P_{k}=\left(x_{k}, y_{k}\right), 1 \leqq k \leqq n, n \geqq 2, a \leqq x_{1}<\cdots<x_{n} \leqq b,
$$

be any n distinct points on the graph of the function F. Then F is n-convex if and only if for all such sets of n distinct points, the graph lies alternately above and below the curve $y=\pi_{n-1}\left(F ; x ; P_{k}\right)$, lying below if $x_{n-1} \leqq x \leqq x_{n}$. Further $\pi_{n-1}\left(x ; P_{k}\right) \leqq F(x), x_{n} \leqq x \leqq b$; and $\pi_{n-1}\left(x ; P_{k}\right) \leqq F(x)(\geqq F(x))$ if $a \leqq x<x_{1}, n$ being even (odd).

Proof. Let $x_{0} \neq x_{k}, 1 \leqq k \leqq n, x_{1}<x_{0}<x_{n}$ and suppose in fact $x_{j}<x_{0}<x_{j+1}$. If F is n-convex then $V_{n}\left(F ; x_{0}, \cdots, x_{n}\right) \geqq 0$; i.e.,

$$
\sum_{k=1}^{n} \frac{F\left(x_{k}\right)}{w_{n}^{\prime}\left(x_{k}\right)} \geqq-\frac{F\left(x_{0}\right)}{w_{n}^{\prime}\left(x_{0}\right)},
$$

or $F\left(x_{0}\right) \geqq-\sum_{k=1}^{n} F\left(x_{k}\right)\left[w_{n}^{\prime}\left(x_{0}\right) / w_{n}^{\prime}\left(x_{k}\right)\right]=\pi_{n-1}\left(x_{0}, P_{k}\right)$, if $(n-j)$ is even, but $F\left(x_{0}\right) \leqq \pi_{n-1}\left(x_{0}, P_{k}\right)$ if $(n-j)$ is odd. This proves the necessity; the sufficiently is immediate by reversing the argument. The last remark follows in a similar way by considering $x_{n}<x_{0}<b$, and $a \leqq$ $x_{0}<x_{1}$.

This theorem generalizes the property that a convex function always lies below its chord.

Theorem 6. If F is an n-convex function on $[a, b]$ and

$$
a \leqq x_{1}<\cdots<x_{n} \leqq b, a \leqq z_{1}<\cdots<z_{n} \leqq b, z_{k} \leqq x_{k}, 1 \leqq k \leqq n
$$

then $V_{n-1}\left(F ; z_{k}\right) \leqq V_{n-1}\left(F ; x_{k}\right)$.
Proof. The following particular case suffices to prove this result.

$$
x_{k}=z_{k}, k \neq j+1, x_{j}<z_{j+1}<x_{j+1}
$$

Then, as in Theorem 5,

$$
\operatorname{sign}\left[F\left(z_{j+1}\right)-\pi_{n-1}\left(z_{j+1} ; x_{k}\right)\right]=(-1)^{n-j}
$$

Hence, with this π_{n-1},

$$
V_{n-1}\left(F ; z_{k}\right)-V_{n-n}\left(\pi_{n-1} ; z_{k}\right)=\frac{F\left(z_{j+1}\right)-\pi_{n-1}\left(z_{j+1} ; x_{k}\right)}{\prod_{\substack{k=1 \\ k \neq j+1}}^{n}\left(z_{j+1}-x_{k}\right)} \leqq 0
$$

That is

$$
\begin{aligned}
V_{n-1}\left(F ; z_{k}\right) & \leqq V_{n-1}\left(\pi_{n-1} ; z_{k}\right) \\
& =V_{n-1}\left(F ; x_{r}\right), \quad \text { by }(13) .
\end{aligned}
$$

Theorem 7. If F is n-convex in $[a, b]$ then
(a) $F^{(r)}$ exists and is continuous in $[a, b], 1 \leqq r \leqq n-2$,
(b) both $F_{(n-1),-}, F_{(n-1),+}$ are monotonic increasing and if

$$
a \leqq x_{1}<\cdots<x_{n} \leqq x \leqq y_{1}<\cdots<y_{n} \leqq b
$$

then

$$
\begin{align*}
(n-1)!V_{n-1}\left(F ; x_{k}\right) & \leqq F_{(n-1),-}(x) \tag{18}\\
& \leqq F_{(n-1),+}(x) \leqq(n-1)!V_{n-1}\left(F ; y_{k}\right)
\end{align*}
$$

(c) $F_{(n-1),+}=\left(F^{(n-2}\right)_{+}^{\prime}, F_{(n-1),--}=\left(F^{(n-2)}\right)_{-}^{\prime}$,
(d) $F^{(n-1)}$ exists at all except a countable set of points.

Proof. Using Theorem 2, it is an immediate consequence of Theorem 6 that $F_{(r),+}$ exists in $\left[a, b\left[, F_{(r),-}\right.\right.$ exists in $\left.] a, b\right], 1 \leqq r \leqq n-1$ and that (b) holds.

From (b) we get that both $F_{(n-1),+}, F_{(n-1),-}$ are continuous except on a countable set. Then, again from (b), we have that $F_{(n-1),+}=$ $F_{(n-1),-}$ except on a countable set.

Then if we prove (a) and (c), (d) is immediate.
Suppose $a \leqq x_{1}<\cdots<x_{n} \leqq b$ then repeated application of (10) gives

$$
\begin{aligned}
& V_{n-1}\left(F ; x_{1}, \cdots, x_{n}\right) \\
& =\frac{\frac{V_{1}\left(F ; x_{1}, x_{2}\right)-V_{1}\left(F ; x_{2}, x_{3}\right)}{x_{1}-x_{3}}-V_{2}\left(F ; x_{2}, x_{3}, x_{4}\right)}{\left(x_{1}-x_{4}\right)} \cdots \ldots . \\
& \frac{\ldots \ldots \ldots \ldots \ldots \ldots}{\left(x_{1}-x_{n}\right)}
\end{aligned} .
$$

Now let $x_{1} \rightarrow x_{2}$, then by Theorem 6 the left-hand side of this expression tends to a finite limit, K_{1} say: i.e.,

$$
K_{1}\left(x_{2}, \cdots, x_{n}\right)=\frac{\frac{D^{1} F\left(x_{2}\right)-V_{1}\left(F ; x_{2}, x_{3}\right)}{\left(x_{2}-x_{3}\right)}-V_{2}\left(F ; x_{2}, x_{3}, x_{4}\right)}{\frac{\left(x_{2}-x_{4}\right)}{\ldots \ldots \ldots \ldots \ldots \ldots}} \cdots .
$$

If now $x_{3} \rightarrow x_{2}$ we get a finite limit on l.h.s. of this last expression: hence $D_{-}^{1} F\left(x_{2}\right)=D_{+}^{1} F\left(x_{2}\right)$; that is $D F\left(x_{2}\right)$ exists. A similar argument shows $D F$ is continuous in] a, b.

In a similar way, expressing V_{n-1} in terms of V_{2}, V_{3}, \cdots we show that $D_{+}^{2} F\left(x_{3}\right)=D_{-}^{2} F\left(x_{3}\right)$ and so by Corollary $3(\mathrm{~b}), D^{2} F\left(x_{3}\right)$ exists then as above $D^{2} F$ exists and is continuous in $] a, b[$.

In this way we show $D^{r} F$ exists and is continuous in $] a, b[, 1 \leqq$ $r \leqq n-2$. Hence, by Theorem 2, $F_{(r)}$ exists and is continuous in $\mid a, b[, 1 \leqq r \leqq n-2$ and so finally, by Theorem 4(b), the same is true of $F^{(a)}$. This proves (a).

For the proof of (c) let $x_{0}<\cdots<x_{2 n-3}$ then repeated application of (10) gives

$$
\begin{aligned}
& \sum_{k=0}^{n-2}\left(x_{k}-x_{k+n-1}\right) V_{n-1}\left(F ; x_{k}, \ldots, x_{k+n-1}\right) \\
= & V_{n-2}\left(F ; x_{0, \ldots}, x_{n-2}\right)-V_{n-2}\left(F ; x_{n-0, \ldots,} x_{2 n-3}\right) .
\end{aligned}
$$

Let $x_{k} \rightarrow x_{0}, 1 \leqq k \leqq n-2, x_{k} \rightarrow x_{n-1}, n \leqq k \leqq 2 n-3$ then by Theorem 6 the limit on the left hand side exists, and the value limit on the right hand side follows from (a). Thus we get an expression of the form

$$
\left.(n-1)\left(x_{0}-x_{n-1}\right) K\left(x_{0}, x_{n-1}\right)=\frac{1}{(n-2)!}\left\{F_{\left(x_{0}\right)}^{(n-2)}-F_{\left(x_{n-1}\right)}^{(n-2)}\right)\right\} .
$$

Now dividing and letting $x_{n-1} \rightarrow x_{0}$ we get

$$
(n-1)!\lim _{x_{n-1} \rightarrow x_{0}+} K\left(x_{0}, x_{n-1}\right)=\left(F^{(n-2)}\right)_{+}^{\prime}\left(x_{0}\right) ;
$$

a simple application of (11) shows that the left hand side of this last expression is equal to $F_{(n-1),+}\left(x_{0}\right)$. This completes the proof of the first
part of (c), the rest follows using a similar argument.
Formula (18) is due to James [7, Lemma 10.4], who however assumes the existence of $F_{(n-1)}$ in $] a, b[$.

Corollary 8. (a) F is n-convex on $[a, b]$ if and only if F differs by a polynomial of degree at most $(n-1)$ from $\int_{a}^{x}(x-t)^{n-1} \mu(d t)$, for some Lebesgue-Stieltjes measure μ. In particular if and only if F is the $(n-1)$ st integral of a monotonic function.
(b) If F is n-convex in $[a, b],|F| \leqq k$, then $\left|F_{(k)}(x)\right| \leqq A K$ sup $\left\{1 /(b-x)^{k}, 1 /(x-a)^{k}\right\}, 0 \leqq k \leqq n-1$ where A is a constant independent of k, F and x, and where if $k=n-1$ the derivative is to be interpreted as $\sup \left(\left|F_{(n-1),+}(x)\right|,\left|F_{(n-1),-}(x)\right|\right)$.
(c) If F is n-convex on $[a, b], a \leqq x \leqq y \leqq b, a \leqq x+h \leqq y$, and $x \leqq y+k \leqq b$ then

$$
\gamma_{n-1}(F ; x ; h) \leqq F_{(n-1),--}(y) \quad \text { and } \quad F_{(n-1),+}(x) \leqq \gamma_{n-1}(F ; y ; k)
$$

Proof. (a) This is immediate from Theorem 7 (b).
(b) From (18) we have that

$$
\frac{1}{(n-1)!} \sum_{k=0}^{n-1} \frac{F\left(x_{k}\right)}{w^{\prime}\left(x_{k}\right)} \leqq \sup \left\{F_{(n-1),+}(x), F_{(n-1),-}(x)\right\} \leqq \frac{1}{(n-1)!} \sum_{k=0}^{n-1} \frac{F\left(y_{k}\right)}{w^{\prime}\left(y_{k}\right)}
$$

from which (b) in the case $k=n-1$ is easily deduced. The rest follows by integration, using, (a).
(c) Immediate using (18), (11), (6) Theorems 2 and 4.

The definition, (12), of $\pi_{r}\left(x ; P_{k}\right)$ can be extended to cover the case when not all of the P_{k} are distinct. Thus if only s of these points are distinct then besides giving the values at the s points, a total of $r+1-s$ derivatives must also be given-either $r+1-s$ derivatives all at one point, or $r+1-s$ first derivatives at $r+1-s$ distinct points, (when $r+1-s \leqq s$), etc. Theorem 5 can be extended, using Theorems 6, 7 and taking limits; thus as an example of many possible extensions we state

Theorem 9. Let $P_{k}=\left(x_{k}, y_{k}\right), 1 \leqq k \leqq r, a \leqq x_{1}<\cdots<x_{r} \leqq b$, be r distinct points on the graph of the function F. Suppose that $F_{(s),++}\left(x_{1}\right)$ exists, $1 \leqq s \leqq n-r$. Then Theore: 5 holds if $\pi_{n-1}\left(x ; P_{k}\right)$ is taken to have $\pi_{n-1}\left(x_{s} ; P_{k}\right)=F^{\prime}\left(x_{s}\right), 1 \leqq s \leqq r, \pi_{n-1}^{(r)}\left(x_{1} ; P_{k}\right)=F_{(s),+(}\left(x_{1}\right), 1 \leqq s \leqq$ $n-r$, and if P_{1} is considered as $n-r+1$ points at and to the right of P_{1} but to the left of P_{2}.

Theorem 10. (a) If F is n-convex on $[a, b]$ and $P_{k}=\left(x_{k}, y_{k}\right)$, $1 \leqq k \leqq n$ are n distinct points on the graph of $F, a \leqq x_{1}<b$, let
$x_{k}=x_{1}+\varepsilon_{k} h, 0<\varepsilon_{2}<\cdots<\varepsilon_{n} ;$ then as $h \rightarrow 0+, \pi_{n-1}\left(x ; P_{k}\right)$ converges uniformly to the right tangent polynomial at x_{1},

$$
\begin{align*}
\tau_{n,+}\left(F ; x ; x_{1}\right)= & \tau_{+}(x)=F\left(x_{1}\right)+\sum_{k=1}^{n-2} \frac{\left(x-x_{1}\right)^{k}}{k!} F^{(k)}\left(x_{1}\right) \\
& +\frac{\left(x-x_{1}\right)^{n-1}}{(n-1)!} F_{(n-1),+}\left(x_{1}\right), x_{1} \leqq x \leqq b . \tag{19}
\end{align*}
$$

Further on the right of $x_{1}, \tau_{+} \leqq F$.
(b) A similar result holds for the left tangent polynomial at $x_{1}, \tau_{-}\left(x ; x_{1}\right), a \leqq x \leqq x_{1}, a<x_{1} \leqq b$. However in this case if n is even (odd) then on the left of $x_{1}, \tau_{-} \leqq F(\geqq F)$.
(c) At all but a countable set of points x_{1}, a similar result holds for the tangent polynomial at $x_{1}, \tau\left(x_{1} ; x\right), a<x<b, a<x_{1}<b$. However if n is even the graph of τ lies below that of F, whereas if n is odd the graphs cross, τ being above on the left of x_{1}, and below on the right of x_{1}.

Proof. It suffices to consider (a). But (a) is a simple consequence of Theorems 5, 7, (11), and (14).

Corollary 11. (a) If F is n-convex in $[a, b]$ then

$$
\inf \left\{\underline{F}_{(n),+}, \underline{F}_{(n),--}\right\} \geqq 0
$$

(b) If F is n-convex in $[a, b]$ and $F_{(n-1)}$ exists in $[a, b]$ then it is continuous.
(c) If F is n-convex in $[a, b]$ then $F_{(n-1),+}$ is upper-semi continuous (u.s.c.), $F_{(n-1),-}$ is lower semi-continuous (l.s.c.).

Proof. (a) Suppose in Theorem 10, for simplicity, that $x_{1}=0$. Then F lies above the right tangent polynomial at $x=0$, i.e.,

$$
\frac{F(x)-\tau_{+}(x)}{x^{n}} \geqq 0
$$

in some interval $[0, h]$. Hence $\underline{F}_{(n),+}(0) \geqq 0$: in a similar way $\underline{F}_{(n),-}(0) \geqq 0$.
(b) Immediate from (a), Theorem 4(a), Theorem 7(a).
(a) This is just Theorem 3.2 [3], adapted to one sided derivatives.

The following theorem generalizes a result well known when $n=1$, [13, Corollary 32.3] and $n=2$ [7, Th. 4].

Theorem 12. If F is n-convex on $[a, b], a<\alpha<\beta<b, E_{k}=$ $\left\{x ; \alpha \leqq x \leqq \beta\right.$ and $\left.\bar{F}_{(n)}(x) \geqq k\right\}$ then

$$
\begin{equation*}
k m^{*}\left(E_{k}\right) \leqq 2 n\left\{F_{(n-1),-}(\beta)-F_{(n-1),+}(\alpha)\right\} \tag{20}
\end{equation*}
$$

(where m^{*} denotes the outer Lebesgue measure).

Proof. For simplicity we will ignore the countable set where $F_{(n-1)}$ may not exist and suppose that $k>0$. Further let E_{k}^{+}be as E_{k} but with $\bar{F}_{(n),+}$ instead of $\bar{F}_{(n)}$ and suppose $m^{*} E_{k}^{+}>0$; with a similar definition for E_{k}^{-}.

If then $\varepsilon>0, x \in E_{k}^{+}$there is an $h>0$ such that

$$
\gamma_{n}(F ; x ; h) \geqq \bar{F}_{(n),+}(x)-\varepsilon \geqq k-\varepsilon .
$$

So, by [20], there is a finite family of nonoverlapping intervals $\left[x_{i}, x_{i}+h_{i}\right], i=1, \cdots, p$ such that $x_{p}+h_{p} \leqq \beta$,

$$
\gamma_{n}\left(F ; x_{i}, h_{i}\right) \geqq k-\varepsilon, i=1, \cdots, p,
$$

and

$$
\sum_{i=1}^{p} h_{i} \geqq m^{*} E_{k}^{+}-\varepsilon
$$

Thus

$$
\sum_{i=1}^{p} h_{i} \gamma_{n}\left(F ; x_{i}, h_{i}\right) \geqq(k-\varepsilon)\left(m^{*} E_{k}^{+}-\varepsilon\right) ;
$$

but since

$$
\begin{equation*}
h \gamma_{n}(F ; x, h)=n\left\{\gamma_{n-1}(F: x, h)-F_{(n-1)}(x)\right\} \tag{21}
\end{equation*}
$$

we have that

$$
\sum_{i=1}^{p}\left\{\gamma_{n-1}\left(F ; x_{i}, h_{i}\right)-F_{(n-1)}\left(x_{i}\right)\right\} \geqq \frac{k-\varepsilon}{n}\left(m^{*} E_{k}^{+}-\varepsilon\right) .
$$

However by Corollary 8(c)

$$
\begin{gathered}
\sum_{i=1}^{p-1}\left\{F_{(n-1)}\left(x_{i+1}\right)-\gamma_{n-1}\left(F ; x_{i}, h_{i}\right)\right\} \geqq 0, \\
F_{(n-1)}\left(x_{i}\right)-F_{(n-1)}(\alpha) \geqq 0, \\
F_{(n-1)}(\beta)-\gamma_{n-1}\left(F ; x_{p}, h_{p}\right) \geqq 0 .
\end{gathered}
$$

Adding the last four inequalities we get that

$$
F_{(n-1)}(\beta)-F_{(n-1)}(\alpha) \geqq \frac{k-\varepsilon}{n}\left(m^{*} E_{k}^{+}-\varepsilon\right)
$$

This together with a similar inequality for E_{k}^{-}, implies (20).
A function that is the difference of two n-convex functions will be called δ-n-convex; as in the cases $n=1$ and $n=2$, [16], such
functions can be characterized by their variational properties.
If F is defined on $[a, b]$ as well as $F_{(k)}, 1 \leqq k \leqq n-1$, let us write

$$
\begin{aligned}
\omega_{n}(F ; a, b)= & \omega_{n}(a, b) \\
= & \max \left\{\sup _{a<x<b}\left|(x-a) \gamma_{n}(F ; a ; x-a)\right|,\right. \\
& \left.\sup _{a<x<b}\left|(b-x) \gamma_{n}(F ; a ; b-x)\right|\right\} ;
\end{aligned}
$$

this quantity was introduced by Sargent [19].
Theorem 13. A function F defined on $[a, b]$ is δ - n-convex if and only if either of the following conditions is satisfied.
(a) $\sum_{k=1}^{m} \omega_{n}\left(F ; a_{k}, b_{k}\right)<K$ for all finite sets of nonoverlapping intervals, $\left[a_{k}, b_{k}\right], 1 \leqq k \leqq m$.
(b) $\sum_{k=0}^{m}\left|\left(x_{k}-x_{k+n}\right) V_{n}\left(F ; x_{k}, \cdots, x_{k+n}\right)\right|<K$ for all finite sets of distinct points x_{0}, \cdots, x_{m+n}.

Proof. The discussion of (b) is similar to the case $n=2$ in [16] but using Corollary 8(a).

If (a) is satisfied then $F_{(n-1)}$ is of bounded-variation [19, Lemma 1], and so by Corollary 8(a) F is δ - n-convex.

If F is n-convex then by (21) and Corollary 8(c),

$$
(x-a) \gamma_{n}(F ; a ; x-a)=n\left\{\gamma_{n-1}(F ; a ; x-a)-F_{(n-1)}(a)\right\} \geqq 0
$$

and so by Corollary 8(c)

$$
\begin{equation*}
\omega_{n}(F ; a, b) \leqq n\left\{F_{n-1}(b)-F_{(n-1)}(\mathbf{a})\right\} \tag{22}
\end{equation*}
$$

From this it easily follows that if F is δ-n-convex then (a) holds.
4. Sufficient conditions for n-convexity. In this section we obtain some sufficient conditions for a function to be n-convex. First we prove the following generalization of a well-known property of convex functions.

Theorem 14. (a) If F is n-convex in $[a, b]$ then $F^{(n-2)}$ has no proper maximum in $] a, b[$.
(b) A function F with continuous derivative of order $(n-2)$ is n-convex if and only if no function of the form $F(x)+\sum_{k=0}^{n-1} a_{k} x^{k}$ has its derivative of order $(n-2)$ attaining a maximum in $] a, b[$.

Proof. (a) Suppose $F^{(n-2)}$ has a proper maximum at x_{0}, then consider $G(x)=F(x)-\pi_{n-2}\left(x ; P_{k}\right)$, where the polynomial π_{n-2} is determined uniquely by the conditions

$$
G\left(x_{0}\right)=G^{\prime}\left(x_{0}\right)=\cdots=G^{(n-2)}\left(x_{0}\right)=0 .
$$

Now consider $\pi_{n-2}\left(x ; Q_{k}\right)$ where $Q_{k}=\left(x_{k}, G\left(x_{k}\right)\right), 0 \leqq k \leqq n-2$, $x_{0}<\cdots<x_{n-2}$. Then by Theorem III [4], (13), and Lemma 1(b), the coefficient of x^{n-2} in $\pi_{n-2}\left(x ; Q_{k}\right)$ is $G\left(^{n-2}\right)\left(x_{0}+\delta\right), x_{0}+\delta$ being some point in $] x_{0}, x_{n-2}$ [. Hence, using Theorem $7(\mathrm{a})$, since x_{0} is a proper maximum of $G^{(n-2)}$ and $G^{(n-2)}\left(x_{0}\right)=0$, if x_{0}, \cdots, x_{n-2} are close enough together this coefficient is not positive.

Let $x_{k} \rightarrow x_{0}, 1 \leqq k \leqq n-3$ then $\pi_{n-2}\left(x ; Q_{k}\right)$ becomes a polynomial of degree $n-2$ with its value and that of its first ($n-3$) derivatives at x_{0} being zero; it's ($n-2$)nd derivative is nonpositive. Hence, by Theorem $9, G \leqq 0$ in $\left[x_{0}, x_{n-2}\right]$.

In a similar way $G \geqq 0(\leqq 0)$ in some interval to the left of x_{0} when n is odd (even). Further in every such interval around n_{0} there are points where these inequalities are strict.

Now consider the ($n+1$) points z_{0}, \cdots, z_{n} where

$$
z_{0}<z_{1} \cdots<z_{\lfloor n / 2]}=x_{0}<\cdots<z_{n} .
$$

Then

$$
V_{n}\left(F ; z_{k}\right)=V_{n}\left(G ; z_{k}\right)=\frac{G\left(z_{0}\right)}{w_{n}^{\prime}\left(z_{0}\right)}+F+\frac{G\left(z_{n}\right)}{w_{n}^{\prime}\left(z_{n}\right)} \geqq 0 .
$$

If then $z_{1}, \cdots z_{n-1}$ tend to x_{0} then $K \rightarrow 0$ and we get

$$
\frac{G\left(z_{0}\right)}{\left(z_{0}-x_{0}\right)^{n-1}\left(z_{0}-z_{n}\right)}+\frac{G\left(z_{n}\right)}{\left(z_{n}-x_{0}\right)^{n-1}\left(z_{n}-z_{0}\right)} \geqq 0 .
$$

But whether n is even, or odd both terms on the l.h.s. of this expression can be chosen to be negative-which contradiction completes the proof of (a).
(b) The necessity is evident. Suppose then that F is not n-convex. Then by Theorem 5 there exists a polynomial $\pi_{n-1}\left(x ; P_{k}\right)$ such that the two curves $y=F(x), y=\pi_{n-1}\left(x ; P_{k}\right)$ do not intertwine correctly.

Consider $G(x)=F(x)-\pi_{n-1}\left(x ; P_{k}\right)$; then $G\left(x_{1}\right)=\cdots=G\left(x_{n}\right)=0$ and G changes sign at most $(n-2)$ times. Hence $G^{(n-2)}$ has three zeros and so has a local maximum. This completes the proof.

Corollary 15. (a) If F is n-convex then $F^{(r)}$ is $(n-r)$-convex, $1 \leqq r \leqq n-2$.
(b) If F is n-convex then $F^{(n)}$ exist a.e.

Proof. (a) The case $r=n-2$ is just Theorem 14(b). In general $F^{(k)}, 1 \leqq k \leqq n-3$, has a continuous derivative of order $n-k-2$ satisfying the hypotheses of Theorem $14(\mathrm{~b})$, and hence $F^{(k)}$ is $(n-k)$ convex.
(b) Since $F^{(n-2)}$ is convex this follows immediately from well known properties of convex functions.

Note that the case $r=n-1$ of Corollary 15(a) is just the last part of Theorem 7(b).

We now wish to prove a converse of Corollary 11(a). Because of applications to symmetric Perron integral, [7], this converse will be obtained in terms of de la Vallée Poussin derivatives and the results in terms of Peano derivatives will be simple corollaries. A direct proof could be constructed from the proof of the more general results.

Theorem 16. If F satisfies $C_{2 m}, m \geqq 1$, in $] a, b[$ and
(a) $\left.\bar{D}_{2 m} F(x) \geqq 0, x \in\right] a, b[\sim E,|E|=0$,
(b) $\left.\bar{D}_{2 m} F(x)>-\infty, x \in\right] a, b[\sim S$, S a scattered set,
(c) $\lim \sup _{h \rightarrow 0} h \theta_{2 m}(F ; x ; h) \geqq 0 \geqq \lim _{\inf }^{h \rightarrow 0} 0$ $h \theta_{2 m}(F ; x ; h), x \in S$ then F is $2 m$-convex. (A set is said to be scattered if it contains no subsets that are dense in themselves.)

Proof. If $E=S$ then by Theorem 6.1, [9], (a), (b), (c) imply $\bar{D}_{2 m} F \geqq 0$ in] $a, b[$ and so the result follows from Theorem 4.2, [8].

Given $\varepsilon>0, T,|T|=0, T \in G_{\dot{\delta}}, T \neq \varnothing$ let $\chi_{\varepsilon, T}=\chi$ be a function on $[a, b]$ such that
(i) χ is absolutely continuous,
(ii) χ is differentiable,
(iii) $\chi^{\prime}(x)=\infty, x \in T$,
(iv) $0 \leqq \chi^{\prime}(x)<\infty, x \notin T$,
(v) $\chi(a)=0,0 \leqq \chi(b) \leqq \varepsilon /(b-a)^{2 m-1}$. That such a function exists is well known, [21]. Then define

$$
\begin{equation*}
\Psi_{\varepsilon, T, 2 m}(x)=\Psi(x)=\frac{1}{(2 m-2)!} \int_{a}^{x}(x-t)^{2 m-2} \chi(t) d t \tag{23}
\end{equation*}
$$

the $(2 m-1)$ st integral of χ. Then $\Psi^{(2 m-1)}(x)=\chi(x)$ and, using (2), we have on integrating by parts that

$$
\begin{align*}
\frac{h^{2 m}}{2 m!} \theta_{2 m}(\Psi ; x ; h) & =\frac{1}{2(2 m-2)!} \int_{0}^{h}(h-t)^{2 m-2}\{\chi(x+t)-\chi(x-t)\} d t \tag{24}\\
& \geqq \frac{1}{2(2 m-1)]} \chi^{\prime}(x) \cdot h^{2 m},
\end{align*}
$$

so

$$
\underline{D}_{2 m} \Psi(x) \geqq m \chi^{\prime}(x) \geqq 0 .
$$

If now $E \subset T$ then we easily see that (i) Ψ is $C_{2 m}$, and $2 m$-convex, (ii)
$\underline{D}_{2 m} \Psi(x) \geqq 0$, (iii) $\underline{D}_{2 m} \Psi(x)=\infty, x \in E$, (iv) $0 \leqq \Psi \leqq \varepsilon$.
Hence if we write $\Psi_{n}=\Psi_{\varepsilon}$, with $\varepsilon=1 / n$, and put $G_{n}=F+\Psi_{n}$ then G_{n} satisfies the conditions of the theorem with $E=S$, and so by the above is $2 m$-convex. Letting $n \rightarrow \infty$ we then get that F is $2 m$-convex.

The case of $m=1, E=\varnothing, S$ countable is a classic result about convex functions, [22].

Corollary 17. If F, G are defined in $[a, b]$ and (a) $F-G$ is $C_{2 m}$, (b) $\bar{D}_{2 m}(F-G)(x) \geqq 0 \geqq \underline{D}_{2 m}(F-G)(x)$ for $\left.x \in\right] a, b[\sim E,|E|=0$, (c) $\left.D_{2 m}(F-G)(x)<\infty, \bar{D}_{2 m}(F-G)(x)>-\infty, x \in\right] a, b[\sim S$, S scattered, (d) $\lim \sup _{h \rightarrow 0} h \theta_{2 m}(F-G ; x ; h) \geqq 0 \geqq \liminf _{h \rightarrow 0} h \theta_{2 m}(F-G ; x ; h)$ for $x \in S$ then for all sets $x_{1}, \cdots, x_{2 m}$ of $2 m$ distinct points in $[a, b]$, if $P_{k}=$ $\left(x_{k}, F\left(x_{k}\right)\right), Q_{k}=\left(x_{k}, G\left(x_{k}\right)\right), 1 \leqq k \leqq 2 m$

$$
\begin{equation*}
F(x)-\pi_{2 m-1}\left(x ; P_{k}\right)=G(x)-\pi_{2 m-1}\left(x ; Q_{k}\right) . \tag{25}
\end{equation*}
$$

Proof. If F_{1}, G_{1}, denote the l.h.s., r.h.s., of (25) respectively then $F_{1}-G_{1}$ is both $2 m$-convex and $2 m$-concave, by Theorem 16 . So being a polynomial of degree at most $2 m-1$ and vanishing at $x_{k}, 1 \leqq k \leqq 2 m$, is identically zero.

This result is well known in the case $m=1$ when it implies that if $F-G$ is continuous, $D_{2}(F-G)=0$ then F, G differ by a linear function, [10]. Kassimatis [11] pointed out that the requirement $F-G$ continuous is not sufficient in the general case; the condition required is that of Corollary 17.

Corollary 18. (a) If $n \geqq 2$ (i) $\left.\bar{F}_{(n)}(x) \geqq 0, x \in\right] a, b[\sim E,|E|=$ 0 , (ii) $\left.\bar{F}_{(n)}(x)>-\infty, x \in\right] a, b[\sim S, S$ a scattered set, then F is n-convex.
(b) If $n \geqq 2$ (i) $\left.\overline{(F-G)}_{(n)}(x) \geqq 0 \geqq(F-G)_{(n)}(x), x \in\right] a, b[\sim E$, $|E|=0, \quad$ (ii) $\quad\left(\underline{F-G)_{(n)}}(x)<\infty, \overline{\left.(F-G)_{(n)}(x)>-\infty, x \in\right] a, b[\sim S, S}\right.$ scattered, then (25) holds.

Proof. This is an immediate corollary of Theorem 16, Corollary 17, the analogous results for the odd-ordered derivatives and the remark made earlier that C_{n} is satisfied.

This result generalizes the classic case, when $n=1$, see for instance, [17, p. 203]. But this can be still further extended as follows.

ThEOREM 19. If $n \geqq 2$, and (i) $F_{(n-1)}$ exists in $[a, b]$, (ii) $\bar{F}_{(n),+}(x) \geqq 0$, $x \in[a, b] \sim E,|E|=0$, (iii) $\bar{F}_{(n),+}(x)>-\infty, x \in[a, b] \sim C, C$ countable, then F is n-convex.

Proof. As in the proof of Theorem 16 we can assume that $E=C$ and so suppose $\bar{F}_{(n),+}(x) \geqq 0$ except when $x=x_{0}, x_{1}, \cdots$. We may assume that for all $k \in N, x_{k} \neq b$.

Adopting a procedure due to Bosanquet [1] and Sargent [18] we exhibit for each $k \in N$ a monotonic n-convex function Z_{k} with the following properties
(i) $Z_{k}^{(r)}(a)=0, Z_{k}^{(r)}(b) \leqq\left[(b-a)^{n-r-1} /(n-r-1)!\right] 2^{-(k+1)} \varepsilon, 0 \leqq r \leqq$ $n-1$,
(ii) $\overline{\left(F+Z_{k}\right)_{(n),+}}\left(x_{k}\right) \geqq 0$,
(iii) $\quad V_{n}\left(Z_{k} ; y_{r}\right) \leqq K 2^{-(k+1)} \varepsilon$, for all $(n+1)$ distinct points y_{0}, \cdots, y_{n}.

Then if we define $G(x)=F(x)+\sum_{k \in N} Z_{k}(x), G_{(n),+}(x) \geqq 0$ everywhere and so is n-convex, by usual arguments; but

$$
V_{n}\left(G ; y_{r}\right)=V_{n}\left(F ; y_{r}\right)+\sum_{k \in N} V_{n}\left(Z_{k} ; y_{r}\right)
$$

and so $V_{n}\left(F ; y_{r}\right) \geqq-K \varepsilon$, which implies F is n-convex.
It remains to define the function Z_{k}. Since C_{n} is satisfied, we have, by (4) and (6), $\lim _{n \rightarrow 0} h \gamma_{n}\left(F ; x_{k} ; h\right)=0$ so we can find a sequence y_{1}, y_{2}, \cdots in $\left[x_{k}, b\left[\right.\right.$ such that $0<y_{s+1}-x_{k}=h_{s+1}<\frac{1}{2}\left(y_{s}-x_{k}\right)=h_{s} / 2$, and $h_{s} \gamma_{n}\left(F ; x_{k} ; h_{s}\right)>-\varepsilon \cdot 2^{-(k+s)}$. Now define the function z_{k} in such a way as to be continuous and

$$
\begin{aligned}
z_{k}(x) & =0, a \leqq x \leqq x_{k} \\
& =2^{-(k+1)} \varepsilon, y_{1}<x \leqq b \\
& =2^{-(k+s)} \varepsilon, x=y_{s}, s=1,2, \cdots \\
& =\text { linear in }\left[y_{s+1}, y_{s}\right], s=1,2, \cdots .
\end{aligned}
$$

Then z_{k} is continuous, increasing on $[a, b], z_{k}(a)=0, z_{k}(b)=2^{-(k+1)} \varepsilon$, $z_{k}\left(x_{k}\right)=0, z_{k}(x) / x-x_{k}$ decreases in $] x_{k}, b[$. It is then easily checked that

$$
\int_{0}^{h_{s}}\left(h_{s}-t\right)^{n-2} z_{k}\left(x_{k}+t\right) d t \geqq \frac{z_{k}\left(y_{s}\right) h_{s}^{n-1}}{n(n-1)}=\frac{2^{-(k+s)} h_{s}^{n-1} \varepsilon}{n(n-1)}
$$

Define then,

$$
Z_{k}(x)=\frac{1}{(n-2)!} \int_{a}^{x}(x-t)^{n-2} z_{k}(t) d t
$$

the $(n-1)$ st integral of z_{k}. Then $Z_{k}^{(n-1)}=z_{k}$ and using Theorem 7, and Corollary $8, Z_{k}$ clearly has all properties wanted except possibly (ii). This we now check. First note that by (21)

$$
h_{s} \gamma_{n}\left(Z_{k} ; x_{k}, h_{s}\right)=n \gamma_{n-1}\left(Z_{k} ; x_{k}, h_{s}\right) .
$$

So as in the proof of (23),

$$
h_{s} \gamma_{n}\left(Z_{k} ; x_{k}, h_{\mathrm{s}}\right)=n \frac{(n-1)}{h_{\mathrm{s}}^{n-1}} \int_{0}^{h_{s}}\left(h_{s}-t\right)^{n-2} z_{k}\left(x_{k}+t\right) d t \geqq 2^{-(k+s)} \varepsilon .
$$

Hence,

$$
h_{s} \gamma_{n}\left(Z_{k}+F ; x_{k}, h_{s}\right) \geqq 0
$$

which completes the proof.
A theorem of a slightly different form can be obtained using the symmetric Riemann derivatives.

Let us say a real valued function F on $[a, b]$ is of type D_{r} if for all sets of $(r+1)$ distinct points x_{0}, \cdots, x_{r} in $[a, b]$

$$
\begin{equation*}
\inf _{a<x<b} \bar{D}_{s}^{r} F(x) \leqq r!V_{r}\left(F ; x_{k}\right) \leqq \sup _{a<x<b} \underline{D}_{s}^{r} F(x) \tag{26}
\end{equation*}
$$

The following simple lemmas will be useful.
Lemma 20. If $F^{(r-2)}$ exists and is continuous in $[a, b]$ then for sets of $(r+1)$ distinct points x_{0}, \cdots, x_{r} in $[a, b]$

$$
\inf _{a<x<b} \bar{D}_{s}^{2} F^{(r-2)}(x) \leqq r!V_{r}\left(F ; x_{k}\right) \leqq \sup _{a<x<b} \underline{D}_{s}^{2} F^{(r-2)}(x)
$$

In particular if $F^{(r)}$ exists in $[a, b]$ then F is of type D_{r}.
Proof. Let $G(x)=F(x)-\pi_{r-1}\left(F ; x_{0}, \cdots, x_{r-1}\right)-\lambda P(x)$ where P is a polynomial of degree r, λ a constant determined by requiring that $G\left(x_{k}\right)=0,0 \leqq k \leqq r$ and $V_{r}\left(F ; x_{k}\right)=\lambda$.

Then since G has at least $(r+1)$ zeros $G^{(r-2)}$ has at least 3 zeros and so has a nonnegative maximum; that is for some $y V_{2}\left(G^{(r-2)} ; y_{1}\right.$, $\left.y, y_{2}\right) \leqq 0$ for all y_{1}, y_{2} near enough to y; that is

$$
2 \cdot V_{2}\left(G^{(r-2)} ; y_{1}, y, y_{2}\right)=2 V_{2}\left(F^{(r-2)} ; y_{1}, y, y_{2},\right)-r!\lambda \leqq 0
$$

The proof now follows that in [6].
Lemma 21. If F is of type D_{n} then

$$
\inf _{a<x<b} \bar{D}_{s}^{n} F(x)=\inf _{a<x<b} \underline{D}_{s}^{n} F(x), \sup _{a<x<b} \bar{D}_{s}^{n} F(x)=\sup _{a<x<b} \underline{D}_{s}^{n} F(x)
$$

Proof. The case $n=2$ and more is proved in [6, p. 9]. The proof of the general case is the same.

Theorem 22. If F is of type D_{n} and (a) $\left.\bar{D}_{s}^{n} F(x) \geqq 0, x \in\right] a, b[\sim E$, $|E|=0$, (b) $\bar{D}_{s}^{n} F>-\infty$, then F is n-convex.

Proof. Since the $2 m$-convex function Ψ of Theorem 16 is, using

Lemma 20, of type $D_{2 m}$ we can, as in Theorem 16 , assume $E=\varnothing$. The result is then a trivial consequence of (26).

Corollary 23. If F, G are such that (a) $F-G$ is of type D_{n}, (b) $\left.\bar{D}_{s}^{n}(F-G)(x) \geqq 0 \geqq \underline{D}(F-G)(x), x \in\right] a, b\left[\sim E,|E|=0\right.$, (c) $\bar{D}_{s}^{n}(F-G)$ $>-\infty, \underline{D}_{s}^{n}(F-G)<\infty$, then (24) holds.

It would be of interest to produce some reasonable conditions on F that ensure it is of type D_{r}. It is known, [15], that if F is continuous then F is of type D_{2}, but Kassimatis, [10], has pointed out that if $r>2$ this is false. One would expect the existence and continuity of $F^{(r-2)}$ to imply F is of type D_{r} but this has not been proved. Let us say F is of type d_{r} when

$$
\inf _{a<x<b} \underline{D}_{s}^{r} F(x) \leqq r!V_{r}\left(F ; x_{k}\right) \leqq \sup _{a<x<b} \bar{D}_{s}^{r} F(x) .
$$

If in Theorem 22 and Corollary 23 we weaken our hypothesis to F being of type d_{n}, obvious modifications of the other conditions will produce analogous theorems. It has been proved in [2] that if $F^{(r-2)}$ exists and is continuous, $r=2,3,4$, then F is d_{r}; unfortunately the method fails if $r>4$.

Bibliography

1. L. S. Bosanquet, A property of Cesàro-Perron integrals, Proc. Edinburgh Math. Soc. (2) 6 (1940), 160-165.
2. P.S. Bullen, Construction of primitives of generalized derivatives with applications to trigonometric series, Canad. J. Math. 13 (1961), 48-58.
3. J. C. Burkill, The Cesàro-Perron scale of integration, Proc. London Math. Soc. (2) 39 (1935), 541-552.
4. E. Corominas, Contribution à la théorie de la dérivation d'ordre supérieur, Bull. Soc. Math. France 81 (1953), 177-222.
5. A. Denjoy, Sur l'intégration des coefficients differentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326.
6. \quad Leçons sur le calcul des coefficients d'une serie trigonometrique, Paris, 1941.
7. R. D. James, Generalized $n^{\text {th }}$ primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176.
8. _ Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
9. R. D. James and W. H. Gage, A generalized integral, Trans. Roy. Soc. Canad., (3) 40 (1946), 25-35.
10. R. L. Jeffrey, Trigonometric Series, Toronto, 1956.
11. C. Kassimatis, Functions which have generalized Riemann derivative, Cand. J. Math. 10 (1958), 413-420.
12. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1-43.
13. E. J. McShane, Integration, Princeton, 1944.
14. H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456.
15. T. Popoviciu, Les fonctions convexes, Paris, 1944.
16. F. Riesz, Sur certains systems singuliers d'equations integrales, Ann. Ec. Norm. (3) 28 (1911), 33-62.
17. S. Saks, Theory of the Integral, Warsaw, 1937.
18. W. L. C. Sargent, On sufficient conditions for a function integrable in the CesaroPerron sense to be monotonic, Quarterly J. Math. Oxford 12 (1941), 148-153.
19. On generalized derivatives and Cesaro-Denjoy integrals, Proc. London Math. Soc. (2) 52 (1951), 365-376.
20. W. Sierpinski, Un lemma metrique, Fund. Math. 4 (1923), 201-203.
21. Z. Zahorski, Ueber die Menge der Punkte in welchen die ableitung unendlichist, Tohoku Math. J. 48 (1941), 321-330.
22. A. Zygmund, Trigonometric Series, second edition, Cambridge, 1959.

Received January 19, 1970.
University of British Columbia

