EMBEDDINGS IN MATRIX RINGS

S. A. AMITSUR

For a fixed integer $n \ge 1$, and a given ring R there exists a homomorphism $\rho; R \to M_n(K)$, K a commutative ring such that every homomorphism of R into an $n \times n$ matrix ring $M_n(H)$ over a commutative ring can be factored through ρ by a homomorphism induced by a mapping $\eta: K \to H$. The ring K is uniquely determined up to isomorphisms. Further properties of K are given.

1. Notations. Let R be an (associative) ring, $M_n(R)$ will denote the ring of all $n \times n$ matrices over R. If $\eta: R \to S$ is a ring homomorphism then $M_n(\eta): M_n(R) \to M_n(S)$ denotes the homomorphism induced by η on the matrix ring, i.e., $M_n(\eta)(r_{ik}) = (\eta(r_{ik}))$.

If $A \in M_n(R)$, we shall denote by $(A)_{ik}$ the entry in the matrix A standing in the (i, k) place.

Let k be a commutative ring with a unit (e.g., $k = \mathbb{Z}$ the ring of integers). All rings considered henceforth will be assumed to be k-algebras on which $1 \in k$ acts as a unit, and all homomorphisms will be k-homomorphisms, and will be into unless stated otherwise.

Let $\{x_i\}$ be a set (of high enough cardinality) of noncommutative indeterminates over k, and put $k[x] = k[\cdots, x_i, \cdots]$ the free ring generated over k with k commuting with the x_i . We shall denote by $k^0[x]$ the subring of k[x] containing all polynomials with free coefficient zero.

Denote by $X_i = (\xi_{\alpha,\beta}^i) \alpha, \beta = 1, 2, \dots, n$ the generic matrices of order *n* over *k*, i.e., the elements $\{\xi_{\alpha,\beta}^i\}$ are commutative indeterminates over *k*. Let $\Delta = k[\xi] = k[\dots, \xi_{\alpha,\beta}^i, \dots]$ denote the ring of all commutative polynomials in the ξ 's, then we have $k^0[X] \subseteq k[X] \subseteq M_n(\Delta)$ where k[X] is the *k*-algebra generated by 1 and all the $X_i; k^0[X]$ is the *k*-algebra generated by the X_i (without the unit).

There is a canonical homomorphism $\psi_0: k[x] \to k[X]$ which maps also $k^0[x]$ onto $k^0[X]$ given by $\psi_0(x_i) = X_i$.

2. Main result. The object of this note is to prove the following:

THEOREM 1. Let R be a k-algebra, then

(i) There exists a commutative k-algebra S and a homomorphism $\rho: R \to M_n(S)$ such that:

(a) The entries $\{[\rho(r)]_{\alpha\beta}; r \in R\}$ generate together with 1, the ring S.

S. A. AMITSUR

(b) For any $\sigma: R \to M_n(K)$, K a commutative k-algebra, with a unit, (but with the same n) there exists a homomorphism $\eta: S \to K$ such that for the induced map $M_n(\eta): M_n(S) \to M_n(K)$, we have the relation $M_n(\eta)\rho = \sigma$, i.e., σ is factored through ρ by a specialization $M_n(\eta)$.

(ii) S is uniquely determined up to an isomorphism by properties (a) and (b); and similarly ρ is uniquely determined up to a multiple by an isomorphism of S. Given S, ρ and σ then $M_n(\eta)$ is uniquely determined.

(iii) If R is a finitely generated k-algebra then so is S. Thus if k is noetherian, S will also be noetherian.

Proof. Before proceeding with the proof of the existence of (S, ρ) we prove the uniqueness stated in (ii).

Let (S, ρ) (S_0, ρ_0) be two rings and homomorphisms satisfying (i), then by (b) it follows that there exist $\eta: S \to S_0$ and $\eta_0: S_0 \to S$ such that $M_n(\eta)\rho = \rho_0$, $M_n(\eta_0)\rho_0 = \rho$. Hence, $M_n(\eta_0)M_n(\eta)\rho = \rho$. Clearly $M_n(\eta_0)M_n(\eta) = M_n(\eta_0\eta)$ and $\eta_0\eta: S \to S$. For every $r \in R$, it follows that $\rho(r) = M_n(\eta_0\eta)\rho(r)$ and so for every entry $\rho(r)_{\alpha\beta}$ we have

$$\rho(r)_{\alpha,\beta} = (\gamma_0 \gamma) [\rho(r)]_{\alpha\beta}$$
.

Thus, $\eta_0 \eta$ is the identity on the entries of the matrices of $\rho(R)$, and since $\eta_0 \eta$ are also k-homomorphism (by assumption stated in the introduction) and these entries generate S by (a)—we have $\eta_0 \eta$ = identity. Similarly $\eta \eta_0$ = identity on S_0 and η , η_0 are isomorphism, and in particular it follows that $\rho_0 = M_n(\eta_0)\rho$ which completes the proof of uniqueness of S and ρ .

If $\sigma: R \to M_n(K)$ is given and if there exist $\gamma, \gamma': S \to K$ satisfying (i), i.e., $M_n(\gamma)\rho = M_n(\gamma')\rho = \sigma$ then $M_n(\gamma)\rho(r) = M_n(\gamma')\rho(r)$ for every $r \in R$ and thus for every entry $\rho(r)_{\alpha\beta}$ we have $\gamma[\rho(r)_{\alpha\beta}] = \gamma'[\rho(r)_{\alpha\beta}]$, and from the previous argument that all $\rho(r)_{\alpha\beta}$ generate S we have $\gamma = \gamma'$.

Proof of (i). We define a homomorphism ρ and the ring S as follows: Let $\{r_i\}$ be a set of k-generators of R, and consider the homomorphism onto: $\varphi_0: k^0[x] \to R$ given by $\varphi_0(x_i) = r_i$, and let $\mathfrak{p} = \operatorname{Ker} \varphi$. Thus φ induces an isomorphism (denoted by φ) between $k^0[x]/\mathfrak{p}$ and R.

If $\psi_0: k^0[x] \to k^0[X]$ given by $\psi(x_i) = X_i$, then let $P = \psi_0(\mathfrak{p})$ the image of the ideal \mathfrak{p} under ψ_0 . Hence ψ_0 induces a homomorphism (denoted by ψ) $k^0[x]/\mathfrak{p} \to k^0[X]/P$.

The ring $k^{0}[X]$ is a subalgebra of $M_{n}(\varDelta)$, so let $\{P\}$ be the ideal in $M_{n}(\varDelta)$ generated by P. Then $\{P\} = M_{n}(I)$ for some ideal I in \varDelta , since \varDelta contains a unit, I is the ideal generated by all entries of the matrices of $\{P\}$. With this notation we put:

$$S = \varDelta/I$$
 and ρ be the composite map:
 $R \to k^{\circ}[x] \mathfrak{p} \to k^{\circ}[X]/P \to M_n(\varDelta)/\{P\} \to M_n(\varDelta/I) = M_n(S).$

Where the first map is φ^{-1} , the second map is ψ . The map

$$\nu: k^{\circ}[X]/P \rightarrow M_n(\varDelta)/\{P\}$$

is the one induced by the inclusion $k^{\circ}[X] \to M_n(\varDelta)$ which maps, therefore, P into $\{P\}$ and so ν is well defined. The last map is the natural isomorphism of $M_n(\varDelta)/\{P\} = M_n(\varDelta)/M_n(I) \cong M_n(\varDelta/I)$, which correspond to a matrix $(u_{ik}) + M_n(I) \mapsto (u_{ik} + I)$.

Note that \varDelta is generated by the $\xi_{\alpha\beta}^i$ and 1, thus, so $\varDelta/I = S$ is generated by 1 and $\xi_{\alpha\beta}^i + I$ but the latter are the $(\alpha\beta)$ entries of the matrices $\rho(r_i)$. Indeed, $\varphi^{-1}(r_i) = x_i + \mathfrak{p}$ so that $\psi \varphi^{-1}(r_i) = X_i + P$ so that $\rho(r_i)_{\alpha\beta} = \xi_{\alpha\beta}^i + I$, which proves (a).

To prove (b) let $\sigma: R \to M_n(K)$ a fixed homomorphism, then define η as follows:

Let $\sigma(r_i) = (k_{\alpha\beta}^i) \in M_n(K)$, then consider the specialization $\eta_0: \Delta = k[\xi] \to K$ given by $\eta_0(\xi_{\alpha\beta}^i) = k_{\alpha\beta}^i$. We have to show that the homomorphism η_0 maps I into zero and η will be the induced map $\Delta/I \to K$.

Consider the diagram:

$$\begin{array}{ccc} k^{\scriptscriptstyle 0}[x] \xrightarrow{\psi_0} k^{\scriptscriptstyle 0}[X] \\ \downarrow \\ \varphi_0 & \downarrow \\ R \xrightarrow{\tau} M_n(K) \end{array}$$

where the second column is actually the composite

$$k^{\circ}[x] \longrightarrow M_n(\varDelta) \longrightarrow M_n(K)$$
,

in which the first is the inclusion and the second is the map $M_n(\eta_0)$, we shall use the same notation $M_n(\eta_0)$ to denote also this map. This diagram is commutative since $\tau \varphi_0(x_i) = \tau(r_i) = (k_{\alpha\beta}^i)$ and also

$$M_n(\eta_0)\psi_0(x_i) = M_n(\eta_0)X_i = (\eta_0(\xi^i_{lphaeta})) = (k^i_{lphaeta})$$

by definition. Thus $\tau \varphi_0 = M_n(\eta_0) \psi_0$ on the generators and hence on all $k^0[x]$. In particular, if $p[x] \in \mathfrak{p} = \ker \varphi_0$, then

$$0= auarphi_{\scriptscriptstyle 0}(p[x])=M_{\scriptscriptstyle n}(\eta_{\scriptscriptstyle 0})\psi_{\scriptscriptstyle 0}(p[x])$$

which shows $\psi_0(p[x]) \subseteq \operatorname{Ker} M_n(\eta_0)$ and thus $P = \psi_0(\mathfrak{p}) \subseteq \operatorname{Ker} M_n(\eta_0)$. Consequently, the preceding diagram induces the commutative diagram (I):

Let $\overline{\eta}$: $k^{0}[X]/P \rightarrow M_{n}(K)$ denote the second column homomorphism which is induced by $M_{n}(\eta_{0})$. Observe that $\overline{\eta}(X_{i} + P) = \tau(r_{i})(=M_{n}(\eta)(X_{i}))$ since $\overline{\eta}(X_{i} + P) = \overline{\eta}\psi(x_{i} + \mathfrak{p}) = \tau\varphi(x_{i} + \mathfrak{p}) = \tau(r_{i}).$

To obtain the final stage of our map ρ we consider the diagram:

$$egin{aligned} k^{0}[X] & \stackrel{\lambda_{0}}{\longrightarrow} M_{n}(arDelta) \ r & igcup M_{n}(\eta_{0}) \ k^{0}[X]/P & \stackrel{\overline{\eta}}{\longrightarrow} M_{n}(K) \end{aligned}$$

where λ_0 is the injection, r is the projection. This diagram is also commutative since

$$M_{n}(\eta_{_{0}})\lambda_{_{0}}(X_{i})\,=\,M_{n}(\eta_{_{0}})X_{i}\,=\,(\eta_{_{0}}(\xi^{i}_{_{lphaeta}}))\,=\,(k^{i}_{_{lphaeta}})\,=\, au(r_{i})$$
 ,

and also $\bar{\eta}r(X_i) = \bar{\eta}(X_i + P) = \tau(r_i)$. This being true for the generators implies that $M_n(\eta_0)\lambda = \bar{\eta}r$.

Now r(P) = 0, hence $M_n(\gamma_0)\lambda_0(P) = \overline{\gamma}r(P) = 0$ and as $\lambda_0(P) = P$ (being the injection) it follows that $P \subseteq \text{Ker } M_n(\gamma_0)$. The latter is an ideal in $M_n(\varDelta)$, hence Ker $M_n(\gamma_0) \supseteq \{P\}$. Consequently $M_n(\gamma_0)$ induces a homomorphism $\widetilde{\gamma} \colon M_n(\varDelta)/\{P\} \to M_n(K)$ and we have the commutative diagram (II):

where λ is the map induced by the injection $\lambda_0: k^0[X] \to M_n(\mathcal{A})$, and λ is well defined since $\lambda(P) \subseteq \{P\}$. The diagram is commutative, since

$$\widetilde{\eta} \lambda(X_i + P) = \widetilde{\eta}(X_i + \{P\}) = M_{\scriptscriptstyle n}(\eta_{\scriptscriptstyle 0})(X_i) = (\eta_{\scriptscriptstyle 0} \xi^i_{\scriptscriptstyle lphaeta}) = (k^i_{\scriptscriptstyle lphaeta}) = au(r_i)$$

and also $\overline{\eta}(X_i + P) = \tau(r_i)$ as shown above.

Another consequence of the existence of $\tilde{\gamma}$, is the fact that $\eta_0(I) = 0$ where $\{P\} = M_n(I)$. Indeed, as was shown $\{P\} \subseteq \text{Ker } M_n(\gamma_0)$ so that $M_n(\gamma_0)(\{P\}) = M_n(\gamma_0 I) = 0$. Thus $\gamma_0: \Delta \to K$, induces a homomorphism $\gamma: \Delta/I \to K$ and hence the homomorphism

$$M_n(\gamma): M_n(\varDelta/I) \to M_n(K)$$

and we have a third commutative diagram (III):

where μ is the isomorphism $M_n(\varDelta)/P = M_n(\varDelta)/M_n(I) \cong M_n(\varDelta/I)$. This diagram is also commutative since $\tilde{\gamma}(X_i + P) = M_n(\eta_0)(X_i) = \tau(r_i)$ as before, and $M_n(\eta)\mu(X_i + P) = M_n(\eta)((\xi_{\alpha\beta}^i + I)) = (\eta_0\xi_{\alpha\beta}^i) = \tau(r_i)$.

Combining the commutative diagrams (I), (II) and (III) and noting that φ is an isomorphism, and that we have defined ρ to be $\rho = \mu \lambda \psi \varphi^{-1}$, we finally obtain

$$M_n(\eta)
ho = (M_n(\eta)\mu)\lambda\psi arphi^{-1} = (\widetilde{\eta}\lambda)\psi arphi^{-1} = (\overline{\eta}\psi)arphi^{-1} = au arphi arphi^{-1} = au$$

and this completes the proof of our theorem.

Note that for this ring $S = \Delta/I$, if R is finitely generated then we can choose the set $\{x_i\}$ to be finite and, therefore, Δ is a k-polynomial ring in a finite number of commutative indeterminate. Thus, $S = \Delta/I$ is a finitely generated ring. This will prove (iii) of (S, ρ) defined above will satisfy (i) and the uniqueness of (ii) shows that this property is independent on the definition of S and ρ .

3. Other results. The proof of Theorem 1, can be carried over by replacing $k^{0}[x], k^{0}[X]$ by the rings k[x], k[X] to the following situation.

Consider rings R with a unit, and unitary homomorphisms, i.e., homomorphisms which maps the unit onto the unit. Then

THEOREM 2. There exists a commutative k-algebra S_u with a unit and a unitary homomorphism $\rho_u: R \to M_n(S_u)$ which satisfies (i)-(iii) of Theorem 1 when restricted only to unitary homomorphisms $\sigma_u: R \to M_n(K)$.

We remark that S_u is not necessarily the same as S. Another result which follows from the proof Theorem 1:

THEOREM 3. R can be embedded in a matrix ring $M_n(K)$ over some commutative ring K, if and only if the morphism $\rho: R \to M_n(S)$ of Theorem 1 is a monomorphism.

A necessary and sufficient condition that this holds, is that there exists a homomorphism φ of $k^{\circ}[X]$ onto R, and if $P = \text{Ker } \varphi$ then $\{P\} \cap k^{\circ}[X] = P$.

If this holds for one such presentation of R then it holds for

all of them.

REMARK. It goes without changes to show that Theorem 3 can be stated and shown for unitary embeddings.

The necessary and sufficient condition given in this theorem is actually included in the proof of Theorem 2.11 (Procesi, Non-commutative affine rings, Accad. Lincei, v. VIII (1967), p. 250) which leads to the present result.

Proof. If ρ is a monomorphism then clearly R can be embedded in a matrix ring over a commutative ring, e.g., in $M_n(S)$. Conversely, if there exist an embedding $\sigma: R \to M_n(K)$, then since $\sigma = M_n(\eta)\rho$ by Theorem 1 and σ is a monomorphism, it follows that ρ is a monomorphism.

The second part follows from the definition of ρ . Indeed $\rho = \mu \lambda \psi \varphi^{-1}$ where $\psi \colon k^{\circ}[x]/p \to k^{\circ}[X]/P$ is an epimorphism,

$$\lambda \colon k^{\scriptscriptstyle 0}[X]/P \mathop{\longrightarrow} M_n(\varDelta)/\{P\}$$
 .

Thus, ρ is a monomorphism if and only if ψ is an isomorphism and λ is a monomorphism. The fact that ψ is an isomorphism means that $k^{0}[X]/P \cong k^{0}[x]/\mathfrak{p} \cong R$, and that λ is a monomorphism is equivalent to saying that Ker $\lambda_{0} = k^{0}[X] \cap \{P\} = P$.

Thus if the condition of our theorem holds for one representation, we can apply this representation to obtain the ring S and so the given ρ will be a monomorphism; but then by the uniqueness of (S, ρ) this will hold in any other way we define an S and an ρ . So the fact that ρ is a monomorphism implies that $k^{\circ}[X] \cap \{P\} = P$ for any other representation of R.

A corollary of Theorem 1 (and a similar corollary of Theorem 2) is that

THEOREM 4. Every k-algebra R contains a unique ideal Q such that R/Q can be embedded in a matrix ring $M_n(K)$ over some commutative ring, and if R/Q_0 can be embedded in some $M_n(K)$ the $Q \subseteq Q_0$.

Proof. Let $\rho: R \to M_n(S)$ and set $Q = \text{Ker } \rho$. Then ρ induces a monomorphism of R/Q into $M_n(S)$. If σ is any other homomorphism: $R \to M_n(K)$ then by Theorem 1 $M_n(\eta)\rho = \sigma$ so that

$$\operatorname{Ker}\left(\sigma\right) \supseteq \operatorname{Ker}\left(\rho\right) = Q$$

which proves Theorem 4.

4. Irreducible representations. Let R be a k-algebra with a unit¹ and k be a field. A homomorphism $\varphi: R \to M_n(F)$, F a commutative field, is called an irreducible representation if $\varphi(R)$ contains an F-base of $M_n(F)$, or equivalently $\varphi(R)F = M_n(F)$.

THEOREM 5. Let $\rho: R \to M_n(S)$ be the unitary embedding of R of Theorem 1, then $\rho(R)S = M_n(S)$ if and only if all irreducible representations of R are of dimension $\geq n$, and then all representations of R of dimension n are irreducible.

Proof. In view of Theorem 1 it suffices to prove our result for a ring $S = \Delta/I$ obtained by a fixed presentation of $R = k^{\circ}[X]/P$ and with $\{P\} = M_n(I)$.

Let Ω be the field of all rational functions on the ξ 's, i.e., the quotient field of $k[\xi] = \Delta$. By a result of Procesi (ibid.), $k^{\circ}[X]\Omega = M_n(\Omega)$. Actually it was shown that $k[X]\Omega = M_n(\Omega)$, but since

$$k^{\circ}[X] \Omega \subseteq M_n(\Omega)$$

and any identity which holds in $k^{\circ}[X]$ will hold also in $M_n(\Omega)$ as such an identity is a relation in generic matrices, it follows that $k^{\circ}[X]\Omega$ cannot be a proper subalgebra of $M_n(\Omega)$ since these have different identities. Hence, since every element of Ω is a quotient of two polynomials in ξ it follows that there exists $0 \neq h$ in Δ such that $he_{ik} \in k^{\circ}[X]\Delta$ where e_{ik} is a matrix base of $M_n(\Omega)$. In particular this implies that $k^{\circ}[X]\Delta \supseteq M_n(T)$ for some ideal T in Δ and, in fact, we choose T to be the maximal with this property.

Next we show that in our case $T + I = \Delta$:

Indeed, if it were not so, then let $m \neq \Delta$ be a maximal ideal in $\Delta, m \supseteq T + I$. Let $F = \Delta/m$ and σ be the composite homomorphism $\sigma: R \to M_n(\Delta/I) \to M_n(F)$. This representation must be irreducible, otherwise $\sigma(R)F$ is a proper subalgebra (with a unit) of $M_n(F)$ and, therefore, it has an irreducible representation of dimension $< n^2$, or else $\sigma(R)$ is nilpotent but $\sigma(R) = \sigma(R^2)$, thus, R will have representations which contradict our assumption. Hence, $\sigma(R)F = M_n(F)$.

Consider the commutative diagram

where σ is the composite of the lower row, and denote by τ the composite $\tau: k^0[X] \to M_n(\varDelta) \to M_n(\varDelta/I) \to M_n(F)$. The first vertical

¹ It is sufficient to assume that $R^2 = R$.

S. A. AMITSUR

map is an epimorphism hence $\tau(k^{\circ}[x]) = \sigma(R)$. Consequently, since $\sigma(R)F = M_n(F)$, there exists a set of polynomials $f_{\tau}[X] \in k^{\circ}[X]$, $\lambda = 1, 2, \dots, n^2$ such that $\tau(f_{\lambda})$ are a base of $M_n(F)$. This is equivalent to the statement that the discriminant $\delta = \det(\operatorname{tr}[\tau(f_{\lambda})\tau(f_{\mu})] \neq 0$, where tr (\cdot) is the reduced trace of $M_n(F)$.

Considering f_{λ} as elements of $M_n(\Delta)$ and noting that the reduced tr (•) commutes with the specialization $\tau_0: \Delta \to \Delta/I \to F$, it follows that

$$0 \neq \delta = \det \left(\operatorname{tr} \left(f_{\lambda} f_{\mu} \right) \right) = \det \left(\tau_{0} [f_{\lambda} f_{\mu}] \right) = \tau_{0} [\det \left(\operatorname{tr} \left(f_{\lambda} f_{\mu} \right) \right)]$$

and so det $[tr(f_{\lambda}f_{\mu})] = D \neq 0$ in $M_n(\Delta) \subseteq M_n(\Omega)$. Hence $\{f_{\lambda}\}$ is an Ω -base of $M_n(\Omega)$.

In particular $e_{ik} = \sum f_{\lambda}[X] u_{\lambda,ik}$ with $u_{\lambda,ik} \in \Omega$. By multiplying each equation by f_{μ} and taking the trace we obtain:

$$\sum \operatorname{tr}(f_{\mu}f_{\lambda})u_{\lambda,ik} = h_{\mu,ik} \in arDelta$$
 .

Eliminating these equations by Cramer's rule we obtain $Du_{\lambda,ik} \in \Delta$ where $D = \det[\operatorname{tr}(f_{\lambda}f_{\mu})]$ which implies

$$De_{ik} = \sum f_{\lambda}[X] \boldsymbol{\cdot} Du_{\lambda,ik} \in k[X] arDelta$$
 .

Namely $D \in T$. This leads to a contradiction, since then $D \in T + I \subseteq m$ and so $D \equiv 0 \pmod{m}$, and so $\tau_0(D) = 0$ under the mapping

$$au_{\mathfrak{o}}: arDelta o arDelta/I o arDelta/\mathfrak{m} = F$$

but on the other hand $\tau_0(D) = \sigma \neq 0$.

This completes the proof that $T + I = \Delta$. And so

$$M_n(\varDelta) = M_n(T) + M_n(I) \subseteq k[X] \varDelta + \{P\} \subseteq M_n(\varDelta)$$
 .

Applying $M_n(\eta): M_n(\varDelta) \to M_n(S)$ to this equality we obtain

$$M_n(S) = M_n(\eta) M_n(\varDelta) = M_n(\eta) (k[X] \varDelta) =
ho(R) S$$

since $\eta(I) = 0$, $\eta(\varDelta) = S$ and $M_n(k[X]) = \rho(R)$. Thus $M_n(S) = \rho(R)S$.

Conversely, if $M_n(S) = \rho(R)S$, then any homomorphism $\tau: R \to M_n(H)$ is irreducible. Indeed, $\tau = M_n(\eta)\rho$ for some $\eta: S \to H$. Hence $\tau(R)H \supseteq M_n(\eta)[\rho(R)S] = M_n(\eta S)$. Consequently, $M_n(H) \subseteq M_n(\eta S)H \subseteq \tau(R)H \subseteq M_n(H)$ which proves that τ is irreducible. The rest follows from the fact that any representation $\tau: R \to M_m(H)$ $m \leq n$ could be followed by an embedding $M_m(H) \to M_n(H)$ and since the composite $R \to M_n(H)$ must be irreducible we obtain that n = m, as required.

COROLLARY 6. If R satisfies an identity of degree $\leq 2n$, then all irreducible representations of R are exactly of dimension n - if and only if $\rho(R)S = M_n(S)$.

Indeed, since the irreducible representation of such an algebra will satisfy identities of the same degree, hence their dimension is anyway $\leq n^2$. Thus Theorem 5 yields in this case our corollary.

Another equivalent condition to Theorem 5, is the following:

THEOREM 7. A ring R has all its irreducible representation of dimension $\geq n - if$ and only if there exists a polynomial $f[x_1, \dots, x_k]$ such that $f[x] \equiv 0$ holds identically in $M_{n-1}(k)$ and $f[r_1, \dots, r_k] = 1$ for some $r_i \in R$.

Indeed, let $R \cong k[k]/\mathfrak{p}$ and let \mathfrak{m}_{n-1} be the ideal of identities of $M_{n-1}(k)$. Then $\mathfrak{p} + \mathfrak{m}_{n-1} = k[x]$, otherwise, there exist a maximal ideal $\mathfrak{m} \supseteq \mathfrak{p} + \mathfrak{m}_{n-1}, \mathfrak{m} \neq k[x]$. Hence $k[x]/\mathfrak{m}$ is a simple ring and satisfies all identities of $M_{n-1}(k)$ so it is central simple of dimension $< n^2$. But it yields also an irreducible representation of R of the same degree, which contradicts our assumption. Thus $k[x] = \mathfrak{p} + \mathfrak{m}_{n-1}$ and so $1 \equiv f[x] \pmod{\mathfrak{p}}$ with $f \in \mathfrak{m}_{n-1}$ and f satisfies our theorem.

The converse, is evident, since under any map $\sigma \to M_m(H), \ m < n$ we must have

$$\sigma(f[r_1, \cdots, r_k]) = f[\sigma(r_1), \cdots, \sigma(r_k)] = 0$$

but $f[r_1, \dots, r_k] = 1$. Hence, $m \ge n$.

REMARK. Examples of rings satisfying Theorem 5 are central simple algebras of dimension n^2 over their center, and then ρ is a monomorphism. Hence the relation $\rho(R)S = M_n(S)$ means that S is a splitting ring of R, and in view of Theorem 1, it follows that S is the uniquely determined splitting ring of R.

Received March 5, 1970. This work was supported in part by NSF Grant GP-9661.

UNIVERSITY OF CALIFORNIA. LOS ANGELES, AND HEBREW UNIVERSITY, JERUSALEM