EMBEDDINGS IN MATRIX RINGS

S. A. Amitsur

Abstract

For a fixed integer $n \geqq 1$, and a given ring R there exists a homomorphism $\rho ; R \rightarrow M_{n}(K), K$ a commutative ring such that every homomorphism of R into an $n \times n$ matrix ring $M_{n}(H)$ over a commutative ring can be factored through ρ by a homomorphism induced by a mapping $\eta: K \rightarrow H$. The ring K is uniquely determined up to isomorphisms. Further properties of K are given.

1. Notations. Let R be an (associative) ring, $M_{n}(R)$ will denote the ring of all $n \times n$ matrices over R. If $\eta: R \rightarrow S$ is a ring homomorphism then $M_{n}(\eta): M_{n}(R) \rightarrow M_{n}(S)$ denotes the homomorphism induced by η on the matrix ring, i.e., $M_{n}(\eta)\left(r_{i k}\right)=\left(\eta\left(r_{i k}\right)\right)$.

If $A \in M_{n}(R)$, we shall denote by $(A)_{i k}$ the entry in the matrix A standing in the (i, k) place.

Let k be a commutative ring with a unit (e.g., $k=\mathbf{Z}$ the ring of integers). All rings considered henceforth will be assumed to be k-algebras on which $1 \in k$ acts as a unit, and all homomorphisms will be k-homomorphisms, and will be into unless stated otherwise.

Let $\left\{x_{i}\right\}$ be a set (of high enough cardinality) of noncommutative indeterminates over k, and put $k[x]=k\left[\cdots, x_{i}, \cdots\right]$ the free ring generated over k with k commuting with the x_{i}. We shall denote by $k^{0}[x]$ the subring of $k[x]$ containing all polynomials with free coefficient zero.

Denote by $X_{i}=\left(\xi_{\alpha, \beta}^{i}\right) \alpha, \beta=1,2, \cdots, n$ the generic matrices of order n over k, i.e., the elements $\left\{\xi_{\alpha, \beta}^{i}\right\}$ are commutative indeterminates over k. Let $\Delta=k[\xi]=k\left[\cdots, \xi_{\alpha, \beta}^{i}, \cdots\right]$ denote the ring of all commutative polynomials in the ξ 's, then we have $k^{0}[X] \subseteq k[X] \subseteq M_{n}(\Delta)$ where $k[X]$ is the k-algebra generated by 1 and all the $X_{i} ; k^{0}[X]$ is the k-algebra generated by the X_{i} (without the unit).

There is a canonical homomorphism $\psi_{0}: k[x] \rightarrow k[X]$ which maps also $k^{0}[x]$ onto $k^{0}[X]$ given by $\psi_{0}\left(x_{i}\right)=X_{i}$.
2. Main result. The object of this note is to prove the following:

Theorem 1. Let R bз a k-algebra, then
(i) There exists a commutative k-algebra S and a homomorphism $\rho: R \rightarrow M_{n}(S)$ such that:
(a) The entries $\left\{[\rho(r)]_{\alpha \beta} ; r \in R\right\}$ generate together with 1 , the ring S.
(b) For any $\sigma: R \rightarrow M_{n}(K)$, K a commutative k-algebra, with a unit, (but with the same n) there exists a homomorphism $\eta: S \rightarrow K$ such that for the induced $\operatorname{map} M_{n}(\eta): M_{n}(S) \rightarrow M_{n}(K)$, we have the relation $M_{n}(\eta) \rho=\sigma$, i.e., σ is factored through ρ by a specialization $M_{n}(\eta)$.
(ii) S is uniquely determined up to an isomorphism by properties (a) and (b); and similarly ρ is uniquely determined up to a multiple by an isomorphism of S. Given S, ρ and σ then $M_{n}(\eta)$ is uniquely determined.
(iii) If R is a finitely generated k-algebra then so is S. Thus if k is noetherian, S will also be noetherian.

Proof. Before proceeding with the proof of the existence of (S, ρ) we prove the uniqueness stated in (ii).

Let $(S, \rho)\left(S_{0}, \rho_{0}\right)$ be two rings and homomorphisms satisfying (i), then by (b) it follows that there exist $\eta: S \rightarrow S_{0}$ and $\eta_{0}: S_{0} \rightarrow S$ such that $M_{n}(\eta) \rho=\rho_{0}, M_{n}\left(\eta_{0}\right) \rho_{0}=\rho$. Hence, $M_{n}\left(\eta_{0}\right) M_{n}(\eta) \rho=\rho$. Clearly $M_{n}\left(\eta_{0}\right) M_{n}(\eta)=M_{n}\left(\eta_{0} \eta\right)$ and $\eta_{0} \eta: S \rightarrow S$. For every $r \in R$, it follows that $\rho(r)=M_{n}\left(\eta_{0} \eta\right) \rho(r)$ and so for every entry $\rho(r)_{\alpha \beta}$ we have

$$
\rho(r)_{\alpha, \beta}=\left(\eta_{0} \eta\right)[\rho(r)]_{\alpha \beta} .
$$

Thus, $\eta_{0} \eta$ is the identity on the entries of the matrices of $\rho(R)$, and since $\eta_{0} \eta$ are also k-homomorphism (by assumption stated in the introduction) and these entries generate S by (a)—we have $\eta_{0} \eta=$ identity. Similarly $\eta \eta_{0}=$ identity on S_{0} and η, η_{0} are isomorphism, and in particular it follows that $\rho_{0}=M_{n}\left(\eta_{0}\right) \rho$ which completes the proof of uniqueness of S and ρ.

If $\sigma: R \rightarrow M_{n}(K)$ is given and if there exist $\eta, \eta^{\prime}: S \rightarrow K$ satisfying (i), i.e., $M_{n}(\eta) \rho=M_{n}\left(\eta^{\prime}\right) \rho=\sigma$ then $M_{n}(\eta) \rho(r)=M_{n}\left(\eta^{\prime}\right) \rho(r)$ for every $r \in R$ and thus for every entry $\rho(r)_{\alpha \beta}$ we have $\eta\left[\rho(r)_{\alpha \beta}\right]=\eta^{\prime}\left[\rho(r)_{\alpha \beta}\right]$, and from the previous argument that all $\rho(r)_{\alpha \beta}$ generate S we have $\eta=\eta^{\prime}$.

Proof of (i). We define a homomorphism ρ and the ring S as follows: Let $\left\{r_{i}\right\}$ be a set of k-generators of R, and consider the homomorphism onto: $\varphi_{0}: k^{0}[x] \rightarrow R$ given by $\varphi_{0}\left(x_{i}\right)=r_{i}$, and let $\mathfrak{p}=$ $\operatorname{Ker} \varphi$. Thus φ induces an isomorphism (denoted by φ) between $k^{0}[x] / \mathfrak{p}$ and R.

If $\psi_{0}: k^{0}[x] \rightarrow k^{0}[X]$ given by $\psi\left(x_{i}\right)=X_{i}$, then let $P=\psi_{0}(\mathfrak{p})$ the image of the ideal \mathfrak{p} under ψ_{0}. Hence ψ_{0} induces a homomorphism (denoted by ψ) $k^{0}[x] / p \rightarrow k^{0}[X] / P$.

The ring $k^{0}[X]$ is a subalgebra of $M_{n}(\Delta)$, so let $\{P\}$ be the ideal in $M_{n}(\Delta)$ generated by P. Then $\{P\}=M_{n}(I)$ for some ideal I in Δ, since Δ contains a unit, I is the ideal generated by all entries of the matrices of $\{P\}$. With this notation we put:

$$
\begin{gathered}
S=\Delta / I \text { and } \rho \text { be the composite map: } \\
R \rightarrow k^{0}[x] \mathfrak{p} \rightarrow k^{0}[X] / P \rightarrow M_{n}(\Delta) /\{P\} \rightarrow M_{n}(\Delta / I)=M_{n}(S) .
\end{gathered}
$$

Where the first map is φ^{-1}, the second map is ψ. The map

$$
\nu: k^{0}[X] / P \rightarrow M_{n}(\Delta) /\{P\}
$$

is the one induced by the inclusion $k^{0}[X] \rightarrow M_{n}(\Delta)$ which maps, therefore, P into $\{P\}$ and so ν is well defined. The last map is the natural isomorphism of $M_{n}(\Delta) /\{P\}=M_{n}(\Delta) / M_{n}(I) \cong M_{n}(\Delta / I)$, which correspond to a matrix $\left(u_{i k}\right)+M_{n}(I) \mapsto\left(u_{i k}+I\right)$.

Note that Δ is generated by the $\xi_{\alpha \beta}^{i}$ and 1, thus, so $\Delta / I=S$ is generated by 1 and $\xi_{\alpha \beta}^{i}+I$ but the latter are the $(\alpha \beta)$ entries of the matrices $\rho\left(r_{i}\right)$. Indeed, $\varphi^{-1}\left(r_{i}\right)=x_{i}+\mathfrak{p}$ so that $\psi \varphi^{-1}\left(r_{i}\right)=X_{i}+P$ so that $\rho\left(r_{i}\right)_{\alpha \beta}=\xi_{\alpha \beta}^{i}+I$, which proves (a).

To prove (b) let $\sigma: R \rightarrow M_{n}(K)$ a fixed homomorphism, then define η as follows:

Let $\sigma\left(r_{i}\right)=\left(k_{\alpha \beta}^{i}\right) \in M_{n}(K)$, then consider the specialization $\eta_{0}: \Delta=$ $k[\xi] \rightarrow K$ given by $\eta_{0}\left(\xi_{\alpha \beta}^{i}\right)=k_{\alpha \beta}^{i}$. We have to show that the homomorphism η_{0} maps I into zero and η will be the induced map $\Delta / I \rightarrow K$.

Consider the diagram:

where the second column is actually the composite

$$
k^{0}[x] \rightarrow M_{n}(4) \rightarrow M_{n}(K)
$$

in which the first is the inclusion and the second is the map $M_{n}\left(\eta_{0}\right)$, we shall use the same notation $M_{n}\left(\eta_{0}\right)$ to denote also this map. This diagram is commutative since $\tau \varphi_{0}\left(x_{i}\right)=\tau\left(r_{i}\right)=\left(k_{\alpha \beta}^{i}\right)$ and also

$$
M_{n}\left(\eta_{0}\right) \psi_{0}\left(x_{i}\right)=M_{n}\left(\eta_{0}\right) X_{i}=\left(\eta_{0}\left(\xi_{\alpha \beta}^{i}\right)\right)=\left(k_{\alpha \beta}^{i}\right)
$$

by definition. Thus $\tau \varphi_{0}=M_{n}\left(\eta_{0}\right) \psi_{0}$ on the generators and hence on all $k^{0}[x]$. In particular, if $p[x] \in \mathfrak{p}=\operatorname{ker} \varphi_{0}$, then

$$
0=\tau \varphi_{0}(p[x])=M_{n}\left(\eta_{0}\right) \psi_{0}(p[x])
$$

which shows $\psi_{0}(p[x]) \subseteq \operatorname{Ker} M_{n}\left(\eta_{0}\right)$ and thus $P=\psi_{0}(\mathfrak{p}) \subseteq \operatorname{Ker} M_{n}\left(\eta_{0}\right)$. Consequently, the preceding diagram induces the commutative diagram (I):

Let $\bar{\eta}: k^{0}[X] / P \rightarrow M_{n}(K)$ denote the second column homomorphism which is induced by $M_{n}\left(\eta_{0}\right)$. Observe that $\bar{\eta}\left(X_{i}+P\right)=\tau\left(r_{i}\right)\left(=M_{n}(\eta)\left(X_{i}\right)\right)$ since $\bar{\eta}\left(X_{i}+P\right)=\bar{\eta} \psi\left(x_{i}+\mathfrak{p}\right)=\tau \varphi\left(x_{i}+\mathfrak{p}\right)=\tau\left(r_{i}\right)$.

To obtain the final stage of our map ρ we consider the diagram:

where λ_{0} is the injection, r is the projection. This diagram is also commutative since

$$
M_{n}\left(\eta_{0}\right) \lambda_{0}\left(X_{i}\right)=M_{n}\left(\eta_{0}\right) X_{i}=\left(\eta_{0}\left(\xi_{\alpha \beta}^{i}\right)\right)=\left(k_{\alpha \beta}^{i}\right)=\tau\left(r_{i}\right),
$$

and also $\bar{\eta} r\left(X_{i}\right)=\bar{\eta}\left(X_{i}+P\right)=\tau\left(r_{i}\right)$. This being true for the generators implies that $M_{n}\left(\eta_{0}\right) \lambda=\bar{\eta} r$.

Now $r(P)=0$, hence $M_{n}\left(\eta_{0}\right) \lambda_{0}(P)=\bar{\eta} r(P)=0$ and as $\lambda_{0}(P)=P$ (being the injection) it follows that $P \cong \operatorname{Ker} M_{n}\left(\eta_{0}\right)$. The latter is an ideal in $M_{n}(\Delta)$, hence Ker $M_{n}\left(\eta_{0}\right) \supseteqq\{P\}$. Consequently $M_{n}\left(\eta_{0}\right)$ induces a homomorphism $\tilde{\eta}: M_{n}(\Delta) /\{P\} \rightarrow M_{n}(K)$ and we have the commutative diagram (II):

where λ is the map induced by the injection $\lambda_{0}: k^{0}[X] \rightarrow M_{n}(\Delta)$, and λ is well defined since $\lambda(P) \subseteq\{P\}$. The diagram is commutative, since

$$
\tilde{\eta} \lambda\left(X_{i}+P\right)=\tilde{\eta}\left(X_{i}+\{P\}\right)=M_{n}\left(\eta_{0}\right)\left(X_{i}\right)=\left(\eta_{0} \xi_{\alpha \beta}^{i}\right)=\left(k_{\alpha \beta}^{i}\right)=\tau\left(r_{i}\right)
$$

and also $\bar{\eta}\left(X_{i}+P\right)=\tau\left(r_{i}\right)$ as shown above.
Another consequence of the existence of $\tilde{\eta}$, is the fact that $\eta_{0}(I)=0$ where $\{P\}=M_{n}(I)$. Indeed, as was shown $\{P\} \subseteq \operatorname{Ker} M_{n}\left(\eta_{0}\right)$ so that $M_{n}\left(\eta_{0}\right)(\{P\})=M_{n}\left(\eta_{0} I\right)=0$. Thus $\eta_{0}: \Delta \rightarrow K$, induces a homomorphism $\eta: \Delta / I \rightarrow K$ and hence the homomorphism

$$
M_{n}(\eta): M_{n}(\Delta / I) \rightarrow M_{n}(K)
$$

and we have a third commutative diagram (III):

where μ is the isomorphism $M_{n}(\Delta) / P=M_{n}(\Delta) / M_{n}(I) \cong M_{n}(\Delta / I)$. This diagram is also commutative since $\tilde{\eta}\left(X_{i}+P\right)=M_{n}\left(\eta_{0}\right)\left(X_{i}\right)=\tau\left(r_{i}\right)$ as before, and $M_{n}(\eta) \mu\left(X_{i}+P\right)=M_{n}(\eta)\left(\left(\xi_{\alpha \beta}^{i}+I\right)\right)=\left(\eta_{0} \xi_{\alpha \beta}^{i}\right)=\tau\left(r_{i}\right)$.

Combining the commutative diagrams (I), (II) and (III) and noting that ρ is an isomorphism, and that we have defined ρ to be $\rho=$ $\mu \lambda \psi \varphi^{-1}$, we finally obtain

$$
M_{n}(\eta) \rho=\left(M_{n}(\eta) \mu\right) \lambda \psi \varphi^{-1}=(\tilde{\eta} \lambda) \psi \varphi^{-1}=(\bar{\eta} \psi) \varphi^{-1}=\tau \varphi \varphi^{-1}=\tau
$$

and this completes the proof of our theorem.
Note that for this ring $S=\Delta / I$, if R is finitely generated then we can choose the set $\left\{x_{i}\right\}$ to be finite and, therefore, Δ is a k-polynomial ring in a finite number of commutative indeterminate. Thus, $S=\Delta / I$ is a finitely generated ring. This will prove (iii) of (S, ρ) defined above will satisfy (i) and the uniqueness of (ii) shows that this property is independent on the definition of S and ρ.
3. Other results. The proof of Theorem 1, can be carried over by replacing $k^{0}[x], k^{0}[X]$ by the rings $k[x], k[X]$ to the following situation.

Consider rings R with a unit, and unitary homomorphisms, i.e., homomorphisms which maps the unit onto the unit. Then

Theorem 2. There exists a commutative k-algebra S_{u} with a unit and a unitary homomorphism $\rho_{u}: R \rightarrow M_{n}\left(S_{u}\right)$ which satisfies (i)-(iii) of Theorem 1 when restricted only to unitary homomorphisms $\sigma_{u}: R \rightarrow M_{n}(K)$.

We remark that S_{u} is not necessarily the same as S.
Another result which follows from the proof Theorem 1:
Theorem 3. R can be embedded in a matrix ring $M_{n}(K)$ over some commutative ring K, if and only if the morphism $\rho: R \rightarrow M_{n}(S)$ of Theorem 1 is a monomorphism.

A necessary and sufficient condition that this holds, is that there exists a homomorphism φ of $k^{0}[X]$ onto R, and if $P=\operatorname{Ker} \varphi$ then $\{P\} \cap k^{0}[X]=P$.

If this holds for one such presentation of R then it holds for
all of them.
Remark. It goes without changes to show that Theorem 3 can be stated and shown for unitary embeddings.

The necessary and sufficient condition given in this theorem is actually included in the proof of Theorem 2.11 (Procesi, Non-commutative affine rings, Accad. Lincei, v. VIII (1967), p. 250) which leads to the present result.

Proof. If ρ is a monomorphism then clearly R can be embedded in a matrix ring over a commutative ring, e.g., in $M_{n}(S)$. Conversely, if there exist an embedding $\sigma: R \rightarrow M_{n}(K)$, then since $\sigma=M_{n}(\eta) \rho$ by Theorem 1 and σ is a monomorphism, it follows that ρ is a monomorphism.

The second part follows from the definition of ρ. Indeed $\rho=$ $\mu \lambda \psi^{\prime} \varphi^{-1}$ where $\psi: k^{0}[x] / p \rightarrow k^{0}[X] / P$ is an epimorphism,

$$
\lambda: k^{0}[X] / P \rightarrow M_{n}(\Delta) /\{P\}
$$

Thus, ρ is a monomorphism if and only if ψ is an isomorphism and λ is a monomorphism. The fact that ψ is an isomorphism means that $k^{0}[X] / P \cong k^{0}[x] / \mathfrak{p} \cong R$, and that λ is a monomorphism is equivalent to saying that Ker $\lambda_{0}=k^{0}[X] \cap\{P\}=P$.

Thus if the condition of our theorem holds for one representation, we can apply this representation to obtain the ring S and so the given ρ will be a monomorphism; but then by the uniqueness of (S, ρ) this will hold in any other way we define an S and an ρ. So the fact that ρ is a monomorphism implies that $k^{0}[X] \cap\{P\}=P$ for any other representation of R.

A corollary of Theorem 1 (and a similar corollary of Theorem 2) is that

Theorem 4. Every k-algebra R contains a unique ideal Q such that R / Q can be embedded in a matrix ring $M_{n}(K)$ over some commutative ring, and if R / Q_{0} can be embedded in some $M_{n}(K)$ the $Q \subseteq Q_{0}$.

Proof. Let $\rho: R \rightarrow M_{n}(S)$ and set $Q=\operatorname{Ker} \rho$. Then ρ induces a monomorphism of R / Q into $M_{n}(S)$. If σ is any other homomorphism: $R \rightarrow M_{n}(K)$ then by Theorem $1 M_{n}(\eta) \rho=\sigma$ so that

$$
\operatorname{Ker}(\sigma) \supseteqq \operatorname{Ker}(\rho)=Q
$$

which proves Theorem 4.
4. Irreducible representations. Let R be a k-algebra with a unit ${ }^{1}$ and k be a field. A homomorphism $\varphi: R \rightarrow M_{n}(F), F$ a commutative field, is called an irreducible representation if $\varphi(R)$ contains an F-base of $M_{n}(F)$, or equivalently $\varphi(R) F=M_{n}(F)$.

Theorem 5. Let $\rho: R \rightarrow M_{n}(S)$ be the unitary embedding of R of Theorem 1, then $\rho(R) S=M_{n}(S)$ if and only if all irreducible representations of R are of dimension $\geqq n$, and then all representations of R of dimension n are irreducible.

Proof. In view of Theorem 1 it suffices to prove our result for a ring $S=\Delta / I$ obtained by a fixed presentation of $R=k^{0}[X] / P$ and with $\{P\}=M_{n}(I)$.

Let Ω be the field of all rational functions on the $\xi^{\prime} s$, i.e., the quotient field of $k[\xi]=\Delta$. By a result of Procesi (ibid.), $k^{\circ}[X] \Omega=$ $M_{n}(\Omega)$. Actually it was shown that $k[X] \Omega=M_{n}(\Omega)$, but since

$$
k^{0}[X] \Omega \subseteq M_{n}(\Omega)
$$

and any identity which holds in $k^{0}[X]$ will hold also in $M_{n}(\Omega)$ as such an identity is a relation in generic matrices, it follows that $k^{0}[X] \Omega$ cannot be a proper subalgebra of $M_{n}(\Omega)$ since these have different identities. Hence, since every element of Ω is a quotient of two polynomials in ξ it follows that there exists $0 \neq h$ in Δ such that $h e_{i k} \in k^{0}[X] \Delta$ where $e_{i k}$ is a matrix base of $M_{n}(\Omega)$. In particular this implies that $k^{0}[X] \Delta \supseteqq M_{n}(T)$ for some ideal T in Δ and, in fact, we choose T to be the maximal with this property.

Next we show that in our case $T+I=\Delta$:
Indeed, if it were not so, then let $\mathfrak{m} \neq \Delta$ be a maximal ideal in $\Delta, \mathfrak{m} \supseteq T+I$. Let $F=\Delta / \mathfrak{n t}$ and σ be the composite homomorphism $\sigma: R \rightarrow M_{n}(\Delta / I) \rightarrow M_{n}(F)$. This representation must be irreducible, otherwise $\sigma(R) F$ is a proper subalgebra (with a unit) of $M_{n}(F)$ and, therefore, it has an irreducible representation of dimension $<n^{2}$, or else $\sigma(R)$ is nilpotent but $\sigma(R)=\sigma\left(R^{2}\right)$, thus, R will have representations which contradict our assumption. Hence, $\sigma(R) F=M_{n}(F)$.

Consider the commutative diagram

where σ is the composite of the lower row, and denote by τ the composite $\tau: k^{0}[X] \rightarrow M_{n}(\Delta) \rightarrow M_{n}(\Delta / I) \rightarrow M_{n}(F)$. The first vertical

[^0]map is an epimorphism hence $\tau\left(k^{0}[x]\right)=\sigma(R)$. Consequently, since $\sigma(R) F=M_{n}(F)$, there exists a set of polynomials $f_{\tau}[X] \in k^{0}[X], \lambda=$ $1,2, \cdots, n^{2}$ such that $\tau\left(f_{2}\right)$ are a base of $M_{n}(F)$. This is equivalent to the statement that the discriminant $\delta=\operatorname{det}\left(\operatorname{tr}\left[\tau\left(f_{2}\right) \tau\left(f_{\mu}\right)\right] \neq 0\right.$, where $\operatorname{tr}(\cdot)$ is the reduced trace of $M_{n}(F)$.

Considering f_{λ} as elements of $M_{n}(\Delta)$ and noting that the reduced $\operatorname{tr}(\cdot)$ commutes with the specialization $\tau_{0}: \Delta \rightarrow \Delta / I \rightarrow F$, it follows that

$$
\left.\left.0 \neq \delta=\operatorname{det}\left(\operatorname{tr}\left(f_{\lambda} f_{\mu}\right)\right]\right)=\operatorname{det}\left(\tau_{0}\left[f_{\lambda} f_{\mu}\right)\right]\right)=\tau_{0}\left[\operatorname{det}\left(\operatorname{tr}\left(f_{2} f_{\mu}\right)\right)\right]
$$

and so $\operatorname{det}\left[\operatorname{tr}\left(f_{2} f_{\mu}\right)\right]=D \neq 0$ in $M_{n}(\Delta) \subseteq M_{n}(\Omega)$. Hence $\left\{f_{k}\right\}$ is an Ω base of $M_{n}(\Omega)$.

In particular $e_{i k}=\sum f_{\lambda}[X] u_{\lambda, i_{k}}$ with $u_{\lambda, i k} \in \Omega$. By multiplying each equation by f_{μ} and taking the trace we obtain:

$$
\sum \operatorname{tr}\left(f_{\mu} f_{\lambda}\right) u_{\lambda, i k}=h_{\mu, i k} \in \Delta
$$

Eliminating these equations by Cramer's rule we obtain $D u_{\lambda, i k} \in \Delta$ where $D=\operatorname{det}\left[\operatorname{tr}\left(f_{2} f_{\mu}\right)\right]$ which implies

$$
D e_{i k}=\sum f_{\lambda}[X] \cdot D u_{\lambda, i k} \in k[X] \Delta
$$

Namely $D \in T$. This leads to a contradiction, since then $D \in T+I \subseteq \mathfrak{m}$ and so $D \equiv 0(\bmod \mathrm{~m})$, and so $\tau_{0}(D)=0$ under the mapping

$$
\tau_{0}: \Delta \rightarrow \Delta / I \rightarrow \Delta / \mathrm{m}=F
$$

but on the other hand $\tau_{0}(D)=\sigma \neq 0$.
This completes the proof that $T+I=\Delta$. And so

$$
M_{n}(\Delta)=M_{n}(T)+M_{n}(I) \cong k[X] \Delta+\{P\} \subseteq M_{n}(\Delta) .
$$

Applying $M_{n}(\eta): M_{n}(\Delta) \rightarrow M_{n}(S)$ to this equality we obtain

$$
M_{n}(S)=M_{n}(\eta) M_{n}(\Delta)=M_{n}(\eta)(k[X] \Delta)=\rho(R) S
$$

since $\eta(I)=0, \eta(\Delta)=S$ and $M_{n}(k[X])=\rho(R)$. Thus $M_{n}(S)=\rho(R) S$.
Conversely, if $M_{n}(S)=\rho(R) S$, then any homomorphism $\tau: R \rightarrow$ $M_{n}(H)$ is irreducible. Indeed, $\tau=M_{n}(\eta) \rho$ for some $\eta: S \rightarrow H$. Hence $\tau(R) H \supseteqq M_{n}(\eta)[\rho(R) S]=M_{n}(\eta S)$. Consequently, $M_{n}(H) \cong M_{n}(\eta S) H \cong$ $\tau(R) H \cong M_{n}(H)$ which proves that τ is irreducible. The rest follows from the fact that any representation $\tau: R \rightarrow M_{m}(H) m \leqq n$ could be followed by an embedding $M_{m}(H) \rightarrow M_{n}(H)$ and since the composite $R \rightarrow M_{n}(H)$ must be irreducible we obtain that $n=m$, as required.

Corollary 6. If R satisfies an identity of degree $\leqq 2 n$, then all irreducible representations of R are exactly of dimension $n-i f$
and only if $\rho(R) S=M_{n}(S)$.
Indeed, since the irreducible representation of such an algebra will satisfy identities of the same degree, hence their dimension is anyway $\leqq n^{2}$. Thus Theorem 5 yields in this case our corollary.

Another equivalent condition to Theorem 5, is the following:
Theorem 7. A ring R has all its irreducible representation of dimension $\geqq n-i f$ and only if there exists a polynomial $f\left[x_{1}, \cdots, x_{k}\right]$ such that $f[x] \equiv 0$ holds identically in $M_{n-1}(k)$ and $f\left[r_{1} \cdots, r_{k}\right]=1$ for some $r_{i} \in R$.

Indeed, let $R \cong k[k] / \mathfrak{p}$ and let $\mathfrak{n t}_{n-1}$ be the ideal of identities of $M_{n-1}(k)$. Then $\mathfrak{p}+\mathrm{mt}_{n-1}=k[x]$, otherwise, there exist a maximal ideal $\mathfrak{n t} \supseteq \mathfrak{p}+\mathfrak{m}_{n-1}, \mathfrak{n t} \neq k[x]$. Hence $k[x] / \mathfrak{n t}$ is a simple ring and satisfies all identities of $M_{n-i}(k)$ so it is central simple of dimension $<n^{2}$. But it yields also an irreducible representation of R of the same degree, which contradicts our assumption. Thus $k[x]=\mathfrak{p}+\mathfrak{m}_{n-1}$ and so $1 \equiv$ $f[x](\bmod \mathfrak{p})$ with $f \in \operatorname{nt}_{n-1}$ and f satisfies our theorem.

The converse, is evident, since under any map $\sigma \rightarrow M_{m}(H), m<$ n we must have

$$
\sigma\left(f\left[r_{1}, \cdots, r_{k}\right]\right)=f\left[\sigma\left(r_{1}\right), \cdots, \sigma\left(r_{k}\right)\right]=0
$$

but $f\left[r_{1}, \cdots, r_{k}\right]=1$. Hence, $m \geqq n$.
Remark. Examples of rings satisfying Theorem 5 are central simple algebras of dimension n^{2} over their center, and then ρ is a monomorphism. Hence the relation $\rho(R) S=M_{n}(S)$ means that S is a splitting ring of R, and in view of Theorem 1 , it follows that S is the uniquely determined splitting ring of R.

Received March 5, 1970. This work was supported in part by NSF Grant GP-9661.

[^0]: ${ }^{1}$ It is sufficient to assume that $R^{2}=R$.

