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EMBEDDINGS IN MATRIX RINGS

S. A. AMITSUR

For a fixed integer n^l, and a given ring R there exists
a homomorphism p; R-> Mn(K), K a commutative ring such
that every homomorphism of R into an n X n matrix ring
Mn(H) over a commutative ring can be factored through p by
a homomorphism induced by a mapping η\ K-> H. The ring
K is uniquely determined up to isomorphisms. Further pro-
perties of K are given.

1* Notations* Let R be an (associative) ring, Mn(R) will denote
the ring of all n x n matrices over R. If η\ R—»S is a ring homo-
morphism then Mn(η): Mn(R) —> Mn(S) denotes the homomorphism
induced by η on the matrix ring, i.e., Mn(η)(rik) = (^(rίfc)).

If AeΛfn(i2), we shall denote by (A)ik the entry in the matrix
A standing in the (i, fc) place.

Let A: be a commutative ring with a unit (e.g., k = Z the ring
of integers). All rings considered henceforth will be assumed to be
fe-algebras on which lek acts as a unit, and all homomorphisms
will be fc-homomorphisms, and will be into unless stated otherwise.

Let {Xi} be a set (of high enough cardinality) of noncommutative
indeterminates over k, and put &[&] = &[•••,&<,-••] the free ring
generated over k with k commuting with the xim We shall denote
by k°[x] the subring of k[x] containing all polynomials with free
coefficient zero.

Denote by j ζ = (ξitβ) a, β = 1,2, ••*, n the generic matrices of
order n over k, i.e., the elements {ζi,β} are commutative indeterminates
over k. Let Δ — k[ξ] = ft[ ,ίi f i 9, •••] denote the ring of all com-
mutative polynomials in the ξ's, then we have k°[X] C k[X] <Ξ ikfw(J)
where k[X] is the /b-algebra generated by 1 and all the X{; k°[X] is
the ά-algebra generated by the X{ (without the unit).

There is a canonical homomorphism ^ 0 : k[x] —> k[X] which maps
also k°[x] onto k°[X] given by to(Xi) = X{.

2. Main result* The object of this note is to prove the follow-
ing:

THEOREM 1. Let R hz a k-algebra, then
( i ) There exists a commutative k-algebra S and a homomor-

phism p:R-+Mn(S) such that:
(a) The entries {[p(r)]nβ; r e R) generate together with 1, the

ring S.

21



22 S. A. AMITSUR

(b) For any σ: R—> Mn(K), K a commutative k-algebra, with a
unit, {but with the same n) there exists a homomorphism rj\ S—> K such
that for the induced map Mn(η): Mn(S) —> Mn(K), we have the relation
Mn{r])ρ — σ, i.e., σ is factored through p by a specialization Mn(η).

(ii) S is uniquely determined up to an isomorphism by pro-
perties (a) and (b); and similarly p is uniquely determined up to a
multiple by an isomorphism of S. Given S, p and σ then MJjj) is
uniquely determined.

(iii) If R is a finitely generated k-algebra then so is S. Thus
if k is noetherian, S will also be noetherian.

Proof. Before proceeding with the proof of the existence of (S, p)
we prove the uniqueness stated in (ii).

Let (S, p) (So, Po) be two rings and homomorphisms satisfying (i),
then by (b) it follows that there exist η:S—*S0 and ηo:So—*S such
that Mn(η)ρ = p0, Mn(η0)ρQ = p. Hence, Mn(η0)Mn(η)ρ = p. Clearly
MjΎ]0)MJτj) = Mn(Ύ]Qη) and ηoη: S —> S. For every reR, it follows that
p(r) = Mn(r]j])ρ(r) and so for every entry p(r)aβ we have

Thus, τ]Qη is the identity on the entries of the matrices of p(R), and since
Ύ]Qη are also &-homomorphism (by assumption stated in the introduction)
and these entries generate S by (a)—we have ηj] = identity. Similarly
ηηQ = identity on So and η, ηQ are isomorphism, and in particular it follows
that ρ0 = Mn(ηϋ)ρ which completes the proof of uniqueness of S and p.

If σ: R—> Mn(K) is given and if there exist rj, τf\ S—> K satisfy-
ing (i), i.e., Mn{η)ρ = Mn(r]f)ρ = σ then Mn(rj)ρ(r) = Mn(η')p(r) for every
reR and thus for every entry p(r)aβ we have y][p(r)aβ] = rf[p(r)aβ],
and from the previous argument that all p(r)aβ generate S we have
η = rf.

Proof of (i). We define a homomorphism p and the ring S as
follows: Let {r̂ } be a set of fc-generators of R, and consider the
homomorphism onto: φ0: k°[x] —> R given by φo(Xi) = r4, and let p =
Kerφ. Thus φ induces an isomorphism (denoted by φ) between
k°[x]/p and R.

If W Jc°[x] -> k°[X] given by ir(χ.) = Xίy then let P = ψo(p) the
image of the ideal p under ψQm Hence Ψo induces a homomorphism
(denoted by ψ) k°[x]/p-+k°[X]/P.

The ring k°[X] is a subalgebra of Mn(Δ), so let {P} be the ideal
in Mn(A) generated by P. Then {P} = Mn(I) for some ideal / in Δ,
since A contains a unit, / is the ideal generated by all entries of the
matrices of {P}. With this notation we put:
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S = A/I and <o be the composite map:

R _ Λ o [ a . ] t ) _

Where the first map is φ~\ the second map is ψ. The map

v:k°[X]/P-+Mn(J)/{P}

is the one induced by the inclusion k°[X] —> Mn{A) which maps, there-
fore, P into {P} and so v is well defined. The last map is the natural
isomorphism of Mn(A)/{P} = Mn(Δ)/Mn(I) ~ Mn{Δ\I), which correspond
to a matrix (uik) + MJJ) \-+ (uik + I).

Note that A is generated by the ζiβ and 1, thus, so Δ/I = S is
generated by 1 and ξiβ + I but the latter are the (aβ) entries of the
matrices p(Ti). Indeed, φ~\r^ = xt + p so that ψφ"ι(r^ = Xt + P so
that ^(r ),,̂  = ί^ + I, which proves (α).

To prove (b) let σ: R~^ Mn{K) a fixed homomorphism, then de-
fine Ύj as follows:

Let <7(ri) = (kiβ)e Mn(K), then consider the specialization ηQ: A =
A:[<J] —> jfiΓ given by η^ξU) — ^β- We have to show that the homo-
morphism 7]0 maps I into zero and η will be the induced map Δ/I-* K.

Consider the diagram:

k\χ\ -^-> k°[X]

R >Mn{K)
τ

where the second column is actually the composite

k°[x] - Mn{A) - Mn{K) ,

in which the first is the inclusion and the second is the map Mn(ηQ),
we shall use the same notation Mn{ηQ) to denote also this map. This
diagram is commutative since τφo(Xi) = τfc) = (kiβ) and also

by definition. Thus τφ0 = Mn(ηQ)ψ0 on the generators and hence on
all k°[x]. In particular, if p[x] e p = ker φ0, then

0 = τφo(p[x]) = Mn(r?o)φo(p[x])

which shows ψo(p[%]) S Ker Mn(rj0) and thus P = ^0(t>) <Ξ Ker Mn(η0).

Consequently, the preceding diagram induces the commutative diagram

(I):
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W[x]lP — fc"[X]/P

4 I
R > Mn(K) .

τ

Let η: k°[X]/P—> Mn{K) denote the second column homomorphism which
is induced by Mn{η0). Observe that fJ(Xi + P) = τ{r^( = MJrj)(X^) since

\- P) ~ rjψ(χi + p) = τφ(xi + p) — τ(ri).
To obtain the final stage of our map p we consider the diagram:

k°[X] -^-> Mn{A)

where λ0 is the injection, r is the projection. This diagram is also
commutative since

and also ηr(Xi) = η(Xi + F) = τ(r t ). This being true for the gener-
ators implies that Mn(ηQ)X = ηr.

Now r(P) = 0, hence Mn{η0)XQ{P) = ηr{P) = 0 and as λo(P) = P
(being the injection) it follows that P g K e r M B ( % ) . The latter is an
ideal in Mn(J), hence Ker Mn(η0) a {-P} Consequently Mn(η0) induces
a homomorphism ^: Mn{Δ)j{P} —* Mn{K) and we have the commutative
diagram (II):

Mn{K)

where λ is the map induced by the injection λ0: k°[X] —> ikΓΛ(J), and
λ is well defined since λ(P) S {P}. The diagram is commutative,
since

+ P) - TO + {P}) =

and also ^(X^ + P) = τ(r^) as shown above.
Another consequence of the existence of rj, is the fact that

Ύjt(I) = 0 where {P} = Λίn(/). Indeed, as was shown {P} S Ker Λfn( 0̂)
so that ikΓw( 0̂)({P}) = Mn(ηcl) = 0. Thus 0̂

#. Δ—>K, induces a homo-
morphism η:J/I—>K and hence the homomorphism
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and we have a third commutative diagram (III):

Mn{K)

where μ is the isomorphism Mn(Δ)/P = Mn{A)jMn{I) ~ Mn(Δ/I). This
diagram is also commutative since rj{Xi + P) = ΛfΛ(fy))(-<Q = τ(Ti) a s

before, and Mn(η)K^i + P) = MM((ζiβ + /)) - (η&β) = r(r<).
Combining the commutative diagrams (I), (II) and (III) and noting

that φ is an isomorphism, and that we have defined p to be p —
μ\ψφ-\ we finally obtain

Mn(η)p = {Mn{η)μ)\fφ~ι = {Ύ}X)>fφ-1 = (ηf)φ-1 = τφφ~ι = τ

and this completes the proof of our theorem.

Note that for this ring S = Ajl, if R is finitely generated then
we can choose the set {xι} to be finite and, therefore, Δ is a &-poly-
nomial ring in a finite number of commutative indeterminate. Thus,
S = Δ/I is a finitely generated ring. This will prove (iii) of (S, p)
defined above will satisfy (i) and the uniqueness of (ii) shows that
this property is independent on the definition of S and p.

3. Other results* The proof of Theorem 1, can be carried over
by replacing k°[x], k°[X] by the rings k[x], k[X] to the following
situation.

Consider rings R with a unit, and unitary homomorphisms, i.e.,
homomorphisms which maps the unit onto the unit. Then

THEOREM 2. There exists a commutative k-algebra Su with a
unit and a unitary homomorphism pu:R-+Mn(Su) which satisfies
(i)-(iii) of Theorem 1 when restricted only to unitary homomorphisms

We remark that Su is not necessarily the same as S.
Another result which follows from the proof Theorem 1:

THEOREM 3. R can be embedded in a matrix ring Mn{K) over
some commutative ring K, if and only if the morphism p: R —> Mn{S)
of Theorem 1 is a monomorphism.

A necessary and sufficient condition that this holds, is that
there exists a homomorphism φ of k°[X] onto R, and if P = Ker φ
then {P} Π k°[X] = P.

If this holds for one such presentation of R then it holds for
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all of them.

REMARK. It goes without changes to show that Theorem 3 can
be stated and shown for unitary embeddings.

The necessary and sufficient condition given in this theorem is
actually included in the proof of Theorem 2.11 (Procesi, Non-com-
mutative affine rings, Accad. Lincei, v. VIII (1967), p. 250) which
leads to the present result.

Proof. If p is a monomorphism then clearly R can be embedded
in a matrix ring over a commutative ring, e.g., in Mn(S). Conversely,
if there exist an embedding σ: R—> Mn{K), then since σ = Mn(η)p by
Theorem 1 and σ is a monomorphism, it follows that p is a mono-
morphism.

The second part follows from the definition of p. Indeed p =
-1 where ψ: k°[x]/p —• k°[X]/P is an epimorphism,

Thus, p is a monomorphism if and only if Ψ is an isomorphism and
λ is a monomorphism. The fact that ψ is an isomorphism means
that k°[X]/P ̂  k°[x]/p ~ R, and that λ is a monomorphism is equiva-
lent to saying that Ker λ0 = k°[X] Π {P} = P.

Thus if the condition of our theorem holds for one representation,
we can apply this representation to obtain the ring S and so the
given p will be a monomorphism; but then by the uniqueness of
(S, p) this will hold in any other way we define an S and an p. So
the fact that p is a monomorphism implies that k°[X] Π {P} = P for
any other representation of R.

A corollary of Theorem 1 (and a similar corollary of Theorem 2)
is that

THEOREM 4. Every k-algebra R contains a unique ideal Q such
that R/Q can be embedded in a matrix ring Mn(K) over some com-
mutative ring, and if R/Qo can be embedded in some Mn{K) the

Proof. Let p: R-+ Mn(S) and set Q = Ker p. Then p induces a
monomorphism of R/Q into Mn(S). If σ is any other homomorphism:
R —• Mn{K) then by Theorem 1 MJrj)p = σ so that

Ker (σ) 3 Ker (p) = Q

which proves Theorem 4.
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4* Irreducible representations• Let R be a ά-algebra with a
unit1 and k be a field. A homomorphism φ: R-+ Mn(F), F a com-
mutative field, is called an irreducible representation if φ{R) contains
an F-base of Mn(F), or equivalently φ(R)F = A

THEOREM 5. Lei p: R—»Mn(S) be the unitary embedding of R
of Theorem 1, then ρ(R)S = Mn{S) if and only if all irreducible
representations of R are of dimension Ξ> n, and then all representa-
tions of R of dimension n are irreducible.

Proof. In view of Theorem 1 it suffices to prove our result for
a ring S = A/I obtained by a fixed presentation of R — k°[X]/P and
with {P} = Mn(I).

Let Ω be the field of all rational functions on the ξ's, i.e., the
quotient field of k[ζ] = A. By a result of Procesi (ibid.), k°[X]Ω =
Mn(Ω). Actually it was shown that k[X]Ω = Mn(Ω), but since

k°[X]Ω S Mnψ)

and any identity which holds in k°[X] will hold also in Mn(Ω) as such
an identity is a relation in generic matrices, it follows that k°[X]Ω
cannot be a proper subalgebra of MJfi) since these have different
identities. Hence, since every element of Ω is a quotient of two
polynomials in ξ it follows that there exists 0 Φ h in A such that
heikek°[X]A where eik is a matrix base of Mn(Ω). In particular this
implies that k°[X]A 2 Mn{T) for some ideal T in A and, in fact, we
choose T to be the maximal with this property.

Next we show that in our case T + / = Δ:
Indeed, if it were not so, then let m Φ A be a maximal ideal in

Δ, m 2 T + J. Let F = Δ/m and σ be the composite homomorphism
σ: R—> Mn(A/I)—> Mn(F). This representation must be irreducible,
otherwise σ(R)F is a proper subalgebra (with a unit) of Mn(F) and,
therefore, it has an irreducible representation of dimension < n\ or else
σ(R) is nilpotent but σ(R) = σ(R2), thus, R will have representations
which contradict our assumption. Hence, σ(R)F = Mn(F).

Consider the commutative diagram

k°[X] > Mn(Δ)

i i
where σ is the composite of the lower row, and denote by r the
composite τ: k°[X] -* MM — Mn(Δ/I) -> Mn(F). The first vertical

1 It is sufficient to assume that R2 = R.
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map is an epimorphism hence τ(k°[x]) = σ(R). Consequently, since
σ(R)F = Mn(F), there exists a set of polynomials fτ[X] e k*[X], λ =
1, 2, •••, n2 such that τ(fλ) are a base of Mn{F). This is equivalent
to the statement that the discriminant δ = det (tr [τ(fλ)τ(fμ)] Φ 0,
where t r ( ) is the reduced trace of Mn(F).

Considering fλ as elements of Mn(A) and noting that the reduced
tr (•) commutes with the specialization r0: A —> A/I—> F, it follows that

0 Φ δ = det (tr (fjμ)]) = det (τo[fjμ)]) = ro[det (tτ(fjμ))]

and so det [tr(fjμ)] = D Φ 0 in ΛfΛ(J) S ilίΛ(β). Hence {/;} is an Ω-
base of Mn(Ω).

In particular βίA; = ^ΣiΛ[X]uλtik with %;,<A. e fl. By multiplying each
equation by fμ and taking the trace we obtain:

Σ tr(fμfλ)uitik = hμ,ik e A .

Eliminating these equations by Cramer's rule we obtain Du1Λk e A
where D = det [tτ(fλfμ)] which implies

Deik = ΣfάX]'Duλ,ikek[X]A .

Namely Be T. This leads to a contradiction, since then D e Γ
and S O D Ξ O (mod m), and so τQ(D) = 0 under the mapping

^A/ιn = F

but on the other hand τQ(D) = σ Φ 0
This completes the proof that T + I = A. And so

Applying Mn(rj)\Mn(A) —> Mn(S) to this equality we obtain

MΛS) = MM(̂ )M%(zί) - MMWXV) = P(R)S

since ^(J) - 0, η(Δ) = S and ΛfΛ(fc[X]) = /o(Λ). Thus Mn(S) =

Conversely, if Mn(S) = p(R)S, then any homomorphism τ:R—>
Mn{H) is irreducible. Indeed, τ = Mn{η)P f° r some η: S~+ H. Hence
T(R)H^ Mn(η)[p(R)S] - Mn(τjS). Consequently, Λfn(JΪ) S Mn(ηS)HS
τ(R)HQ Mn(H) which proves that r is irreducible. The rest follows
from the fact that any representation τ: iϋ —> Mm(H) m ^ n could be
followed by an embedding Mm(H) —> Mn(H) and since the composite
iϋ —• Mn(H) must be irreducible we obtain that n = ni, as required.

COROLLARY 6. // i2 satisfies an identity of degree ^ 2w, then
all irreducible representations of R are exactly of dimension n — if
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and only if ρ(R)S = Mn{S).

Indeed, since the irreducible representation of such an algebra
will satisfy identities of the same degree, hence their dimension is
anyway <g n2. Thus Theorem 5 yields in this case our corollary.

Another equivalent condition to Theorem 5, is the following:

THEOREM 7. A ring R has all its irreducible representation of
dimension ^ n — if and only if there exists a polynomial f[xlf , xk]
such that f[x] = 0 holds identically in Mn^{k) and /[TV---, rk] = 1
for some ri e R.

Indeed, let R = k[k]/p and let mn_x be the ideal of identities of
M^k). Then p + mn^ = k[x], otherwise, there exist a maximal ideal
nt Ξ2 p -f mn_l9 m Φ k[x]. Hence k[x]/m is a simple ring and satisfies all
identities of Mn_x(k) so it is central simple of dimension < n2. But
it yields also an irreducible representation of R of the same degree,
which contradicts our assumption. Thus k[x] = p + tn%_1 and so 1 Ξ
f[x] (mod p) with / e mn_{ and / satisfies our theorem.

The converse, is evident, since under any map σ—> Mm{H), m <
n we must have

tf(/[rx, , rk]) - /^(rO, , σ(rk)] = 0

but /[r i ? , rlc] = 1. Hence, m^ n.

REMARK. Examples of rings satisfying Theorem 5 are central
simple algebras of dimension n2 over their center, and then p is a
monomorphism. Hence the relation ρ(R)S = MJβ) means that S is
a splitting ring of R, and in view of Theorem 1, it follows that S
is the uniquely determined splitting ring of R.
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