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ON WEIGHTED POLYNOMIAL APPROXIMATION
OF ENTIRE FUNCTIONS

B. A. TAYLOR

An existence theorem for the d operator is used here to
prove some results on weighted approximation of entire func-
tions. Theorem 2 shows that if φ is a convex function on
<5> = R^n g u c n t n a t t n e Hubert space of all entire functions

/ with I \f\2e~φdλ < +oo (dλ Lebesgue measure) contains the

polynomials, then the polynomials are dense in this Hubert
space. Two approximation theorems are also given which
are related to the theory of quasi-analytic functions.

The method used here is the analogue for (£* of the method used
l)y Hormander in [7] (see also [6]) to prove approximation theorems for
analytic functions in domains of holomorphy. We apply an existence
theorem for the 9 operator, Theorem 4.4.1 of [7], to prove our Theo-
rem 1, which gives essentially a modification of the results proved in
Lemma 4.3.1 and Theorem 4.4.4 of [7]. Our proof is somewhat sim-
pler than the corresponding proofs in [7] because we are working on
& rather than an arbitrary domain of holomorphy, which makes several
technical details easier. The rest of the paper then deals with appli-
cations of Theorem 1 to weighted approximation of entire functions.

We point out that most of the results proved in this paper can
ΐ>e proved by other methods. For example, Theorems 2 and 5 can be
deduced from results in [3]. However, the theorems in this paper are
much simpler than the corresponding results of [3]. The methods used
liere also demonstrate that Hormander's U estimates for the 3 operator
are non-trivial even in one variable, as has already been pointed out
by Kiselman [10].

1* Application of the 9 existence theorem* We recall briefly
some of the results of Hormander as presented in [7]. Throughout
the following φ denotes a plurisubharmonic function on 6>> = (Hx x&
(n times, & = complex numbers), and L2(^)( = !/*((£% φ)) denotes the
Hubert space of functions on (£Λ which are square integrable with
respect to the measure e~φdλ, where dx is the Lebesgue measure.
Similarly, L2

p>q(φ) is the space of differential forms of type (p, q) with
[coefficients from L\φ). The collection of all entire functions fe U(φ)

is denoted %{φ). A function / e L\φ) is n %{φ) if and only if df =
]Γj=i (df/dz^dZj is the zero (0, 1) form (with derivatives taken in the
sense of distributions).

We shall use a special case of Theorem 4.4.1 of [7].
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THEOREM. Let φ be a strictly plurisubharmonic function of class
C2 such that

Σ (d2φ\dzβzh)wάwk ^c±\w3 \2

where c(z) is a positive continuous function and z = (zt1 •••, zn), w —
(wl9 , wn) 6 (£\ For every g = Σ?=i Q$&ie IAΛΦ) suc^ ^ α ί d# = 0
and

exists u e L2(φ) such that du = g and

[ \u\2e~Ux^ [ \g\2e~*/cdX.

Actually, we need a slightly stronger version of the theorem in
which the hypothesis that φeC2 is relaxed. The weight functions we
wish to apply the theorem to are of the form φ(z) + log (1 + | z |2)
(1212 = Σ*=i |s; | 2 for z = (z19 •••, zn)e&), where φ does not belong to
the class C2. However, as pointed out by Hormander in [8], the theorem
is easily extended to this case by the same technique used in the proof
of Theorem 4.4.2 of [7]. Also from this proof, we see that for weight
functions of this form, we can take c(z) = (1 + |2|2)~2.

THEOREM 1. Let φί^φ2^φz^ be plurisubharmonic functions

on (£w, let φ — lim^+eo ̂  , and suppose that \ exp(—φ^dX < + ^ for
JK

h l f \J % l (1 | |2))
every compact set K. Then the closure of \J7=1 %{φs + log (1 + | z |2))
in the Hilbert space L2(φ + log (1 + \z\2)) contains

Proof. Let al9 a2, be a sequence of C°° functions with compact
support such that an(z) = 1 for \z\ ^ n, 0 ^ an ^ 1, and

(For example, let χeC°° have compact support, 0 ^ χ ^ 1 and χ(z) = 1
for \z\^l. Then put an(z) = χ(z/n).) Let /eStfo). Then fan is a
good approximation to /, but it is not analytic, so we modify it as
usual. That is, put gn = d(fan) = fdan. We will use the above exist-
ence theorem to solve the equation dun = gn so that the analytic func-
tion an = fan — un belongs to \Jj %{φό + log (1 + | z |2)) and converges
to / in the Hilbert space %{φ + log (1 + |z|2)).

Let ψj{z) = φά(z) + log (1 + I z |2), and let ψ be defined in the same
way with φ3- replaced by φ. Then define
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and let I(n)he defined in the same way with ψj replaced by ψ. Now

I(n) = \ I/12|dan|
2(1 + |z\2)e~HX £κ\ \f ?e~Πx = εn and e . - O a s

^ — o o , since i \f\2e~Ή\< + ° ° . Moreover, gn has compact support

and the φ, increase monotonely to φ. Therefore, lim^+oo I(n, j) = I(n)

by the dominated convergence theorem, so there is an integer j — j{n)

such that Tκn, j(n)) < 2εn. Then by the above theorem (and remarks)

applied with the weight function (Ψv(Λ)) there exists un such that

dun = gn and

If an = fan — un, then ane\J3 2ΐ(Ψv). Moreover,

S r
\un\e X ^ j I u n I β ' X = -en (j -

so un—>0 in L2(^). Also fan—*f in L2(^), so that an-+f as asserted.

REMARKS. 1. It is not necessarily true that 2ΐ(0) is dense in
21(0 + log (1 + I £ |2)). For example, take, in one variable

φ[z) = — l o g (1 + \z\*)

so that 21(0) is the constants and 21(0 + log (1 + | z j2)) is the polynomials
of degree ^ 1 . However, we know of no nontrivial example in which
21(0) is not dense in 2ί(0 + log (1 + |z|2)). Also, we know of no ex-
ample in which \Jό %{φj) fails to be dense in the Hubert space 21(0).

2. Note that to prove 21(0) is dense in 21(0 + log (1 + |z|2)), it
suffices to prove that the reproducing kernel K(z, w) for this latter
Hubert space belongs to 21(0), (as a function of one variable with the
other held fixed). This is the case in every nontrivial example we
know. However, we have been unable to prove this estimate for any
reasonably general class of weight functions.

3. As is well known, we note that questions of polynomial ap-
proximation are trivial when φ(z) = Φ{\z\) is a function only of the
distance from the origin.

COROLLARY, (n = 1) Suppose \ e~ΦldX < + ^ , and let
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S%(f) = {fe%(φ): (1 + \z\)feL\φ)} .

Then the closure of (Ji ̂ (ΦJ) i>n *&(Φ) contains

Proof. If / e S$ί(φ), then zfe %{φ) and then by Theorem 1 there
are functions an is U; ̂ (Φs + log (1 + \z|2)) which converge to zf in
3t(φ + log(l + |z|2)). It is then easy to check that the functions
bn(z) = (ajz) — an(0))/z belong to \JS ̂ (Φs) a n ( * converge to / in

2* Convex weight functions* In case the plurisubharmonic
weight function φ is a convex function on Sw = R2n, we can completely
settle the question of when the polynomials are dense in St(^). Recall
that for a convex function φ on R2n = Kw, the conjugate convex func-
tion to φ, φ*, is defined by

Φ*(w) = sup {Re <z, w} - φ(z): z e &} ,

where
n

ζzj wy = Σ 2 ,̂- , z, we&n .
i

THEOREM 2. Le£ φ be convex on (£%.

( i ) If le $L(φ), then Φ*(w) is finite on a neighborhood of the
origin in (£\

(ii) If φ* is finite on a neighborhood of the origin in (Σ%, then
the polynomials are dense in 21(0).

The proof of (ii) of Theorem 2 is essentially an application of
Theorem 1, where the φs are finite maximums of suitable tangent
planes to the surface y = φ(z), and part (i) is just a fact about con-
vex functions. Before proving Theorem 2, we shall collect some
elementary facts about convex functions which will be needed in the
proof.

DEFINITION, (a) £f(φ) = {/(z):s(z)<Lφ(z) for all ze(£w}, where
/(z) = Reζz, wy + A for some we& and some constant A.

(b) F(φ) = {we &n: φ*(w) < + oo}.
(c) F°(φ) - interior of F(φ).
Note that F(φ), F\φ) are convex, though possibly empty.

PROPOSITION 1. If K is a compact subset of F\φ) of distance
greater than δ > 0 from the complement of F°(φ), then

φ{z) ̂  h(z,K) + δ\z\ - A

where
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h(z, K) = Sup {Re <s, w}: weK}

is the support function of K and A = A(K, δ) is a constant.

Proof. Let K! denote the set of all points of (£n which are of
distance at most δ from K. Then Kr is a compact subset of F°(φ).
Now φ* is continuous on F°(φ) (see, e.g., [4]), and thus bounded on
K', say A = sup {Φ*(w): w e Kr). Let z e (£\ Choose u e (£*, \ u | = δ,
such that ζz, uy = δ\z\. For each we K, the vector w + ̂ 6G K'. Thus
A ^ ^*(w + u) ̂  Re<^, w + uy - φ(z) = Re<^, ̂ > - 0(2) + <5J2|. This
holds for all w 6 iΓ, so A ^ A(̂ , i ί ) — φ(z) + δ|^ | , which is equivalent
to the desired inequality.

PROPOSITION 2. Let F{φ) be as above. If F\φ) is empty, then F
is contained in a (real) 2n — 1 dimensional hyper plane. Moreover,
φ is constant on lines perpendicular to this hyperplane.

Proof. The set F where φ* is finite is clearly convex, since

φ*(awι + (1 - a)w2) rg aφ*{wά + (1 - a)φ*{w2)

for 0 < a < 1, and any convex set in RZn = &n with empty interior is
contained in some (not necessarily unique) hyperplane. Suppose such
a hyperplane is

H= {we (£*: Re<>(0), w> + A = 0} where zi0) e&n,AeR.

Now, Φ(z) = sup {/(z):se^f(φ)} (see, e.g., [4], or apply the Hahn-
Banach theorem). Let /e J*f(Φ). Then /(z) — Reφ, wy + c for some
constant c and some w e&n, and

Re <£, w> + c ̂  φ(z) .

This implies that Φ*(w) < +oo, hence that weH. Therefore, /(z) is
constant on all one (real) dimensional lines orthogonal to H, and φ(z),
as the upper envelope of all the /e£^(φ), is also constant on such
lines.

PROPOSITION 3. Suppose that F\φ) contains the origin. Then
there is a compact subset K of &n and a number ε > 0 such that

φ{θz) ~φ{z)^ε{θ - 1)|sI

for all θ > 1 and all z&K.

Proof. We will prove this by obtaining a lower bound on (d/dt)φ(tz)
for large real numbers t. Let ε > 0 be such that the closed ball of
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radius 4ε, and center at the origin is contained in F°(φ). If K denotes
the closed ball of radius 2ε and center at the origin, then h(z, K) =
2e\z\ so from Proposition 1,

φ(z) ;> 2e\z\ - A .

Consider for ze (£Λ, \z\ = 1, and for teR, the convex function of t,

9{t) = g.{t) = φ(tz) .

Let dg/dt denote the left hand derivative of g(t). Since the difference
quotients of a convex function are nondecreasing,

ψ- = sup {(gκt + At) - g[t))/At: At < 0} .
U/b

For large positive t, g{t) ^ 2et\z\ — A and consequently dg/dt > ε. De-
fine, for r > 0, E[r) = {ze (£w, | s | = 1: dg/dt(r) > e}. What we have
just proved above is that \Jr>QE(r) = {ze @>: \z\ — 1}. But dg/dt, as
a function of z, is lower semicontinuous, because it is the upper en-
velope of a family of continuous functions. This implies that each
E(τ) is open. Since the sets E(r) increase with increasing r, it follows
from the compactness of {ze &n: \z\ = 1} that for some r0 > 0, E(r0) =
{ze&n: \z\ = 1}. Then if \z\ ^ r0, and θ > 1,

φ(θz) - φ{z) = ^|2|(«/|2;|)) - Φ{\z\{z/\z\))

as asserted.

Proof of Theorem 2 (i). Assume, by way of contradiction, that
Φ*(w) is not finite on a neighborhood of the origin in (£*. Then, since
F(φ) is convex, there is a z e (£> such that Re ζz, wy ^ 0 for all w e F(φ).
After perhaps a linear change of variable, we may suppose that z —
(1, 0, 0, , 0), so that Re w1 ^ 0 for all w — (w1, , wn) e F(φ). But,
Φ(z) is the upper envelope of the functions s(z) e J*f(φ), and each such
s(z) has the form s(z) = Reζz, wy + c where w e F(φ). Therefore, each
s{z) is nonincreasing in the variable Re zlf and so the same is true of
Φ(z). This clearly implies that \e~φd\= +oo, which contradicts the
assumption that 1 e %(φ). Thus, (i) is proved.

Proof of Theorem 2 (ii). If F°(φ) contains the origin, then we may
choose ε > 0 such that έ? = {w:2\w\ ^ ε} is contained in F°(φ). If
f(z) = exp<^z, wy, with w e έ?, then it is easy to verify that the power
series of / converges to / in SC(̂ ). Therefore, (ii) will follow from
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assertions (a)-(d) below. The proofs of (a), (b), and (d) are routine,
and (c) follows from Theorem 1.

(a) Let έ? denote an open subset of F°(φ). Then for each we έ?,
exp (iζz, wy) e 2ί(^) and the closure of the linear span of all such ex-
ponential functions contains exp (iζz, wy) for all w e F°(φ).

(b) The closure of the linear span of the exponentials exp (£<z, vi)),
with w e F\φ) contains all entire functions of exponential type f(z) of
the form

f(z) = j exp {<z, wy)dμ(w)

where μ is a Borel measure of compact support, whose support is
contained in {iw: w e F°(φ)} = iF°(φ).

(c) The closure in SI(^) of the entire functions of exponential type
described in (b) contains all / e SI(̂ ) such that f(θz) e SC(̂ ) for some real
number θ > 1.

(d) If / e %{φ) and r < 1, then f(rz) e %(φ) and Umr^-f(rz) = f(z)
in ll(φ).

We first prove (a) and (b). Let ge%(φ) be orthogonal to all
exp (iζz, wy), with w e Λ The estimate of Proposition 1 allows us to
prove easily that

G(w) = j g(z) exp (£<s, wy) exp (-φ(z))dx(z)

is conjugate analytic for weF°(φ). By hypothesis, G vanishes for
we <^ so G vanishes on F°(φ) since F°(φ) is connected (even convex).
Part (a) then follows by the Hahn-Banaeh theorem. The proof of (b)
is essentially the same. If f(z) is of the form given there, then

W)f(z) exp (-Φ{z))d\{z) = j G(w)dμ(w) = 0 ,

the interchange in order of integration being justified by Fubini's
theorem and the inequality of Proposition 1.

We will use Theorem 1 to prove (c). Let r < 1 and Ψ(z) = Ψr(z) =
Φ(rz). We want to choose φλ ^ φ2 ^ ••• with supy φj — Ψ in such a
way that U/ SIfe + log (1 + ]^|2)) is a subset of the class of functions
described in (b). To do this, let s^z), 4(z), ••• be a sequence of func-
tions in j^f(γ) such that sup {/j(z): j = 1, 2, •} = ψ(z), and then define
φj(z) = max{<(^), •••, Sj(z)}. (To see that such functions /3 exist, note
that each / e J?f(ψ) is of the form s(z) = Re ζz, wy ~ c for some ce Rf

w e (£\ Set B = {(w, c)e&n x R: /(z) e ^f{t)}. Then B has a count-
able dense subset (wn, cn) and

'n(z) = Re < ?̂ wny - cn
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is a suitable sequence.) It then follows from Theorem 1 that the
closure of (J; 3t(& + log (1 + \z\z)) in St(t + log (1 + \z\2)) contains
$L(ψ). By Proposition 3, ψ(z) + log(l -f- |z|2) <£ φ(z), except possibly
•on a compact subset of @> and, consequently, convergence in

implies convergence in
To complete the proof of (e), it remains to show that each

is of the form prescribed in (b). Let ψj = φs + log (1 + \z\2). By
•construction of the φn, there are points wl9 , Wj e S> and constants
cί9 , cj such that ^ is the maximum of Re ζz, wky — ck, k = 1, 2, , j .
In particular, it follows easily that

fά(z) = sup {̂ -(j? + ^ ) : \u\ ^ 1} ^ ^(^) + Const.

But for / e %{ψj) we have, since / is analytic

where fc% is the volume of the unit ball in (Σ\ Thus

I /(s) I ̂  - M I f(z + u) I exp (-iΨv(s + w) + i^(« +

S -^- exp (i^y(2)) ( I /(« + w) I exp ( - ^ ( 2 + u))d\{u) .

Applying Schwarz's inequality to this last integral, and then extending
the domain of integration to all of @>, we find

\M\£ ll/ll

where | / | is the norm in § ί (^ ). Therefore,

I f(z) I ̂  Const. | | / II exp ( i f ,•(*)).

Now each -̂(«) ^ ^(«) = ^(r«) where r < 1, so each to^ occurring in
the representation of sό{z) necessarily belongs to F°(φ). Also,

log(l + | ^ | 2 ) - 0 ( ε | ^ | )

for every ε > 0. Thus, ψj(z) ^ h(z, K) + 0(1) for some compact subset
JSΓ(=JSΓy) of F°(φ). Thus,

I f(z) I - 0(exp (iΛ(β, K))) - 0(exp (Λ(«, i

It then follows that f(z) is of the form in part (b) (see, e.g., Martineau
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[12, p. 150], or Hδrmander [7, p. 98], or for the case n = 1, [1, p. 74])..
This completes the proof of (c). -

Lastly, we prove (d). Let fe^l(φ). We will use the fact that
if /,--*/ pointwise and | | / i | | - » | | / | | , t h ^ n fs^*f in 2ΐ(?) (see, e.g., [5,.
p. 209]). Clearly l i m ^ - f(τz) ~ f(z) pointwise. Also

I f{rz) ί2 = f I f(rz) |2 exp (-φ(z))dx(z) = -^Γ t I f(z) \2 exp (~φ(z/r))d\(z) .

Outside the compact set of Proposition 3, Φ(z/r) decreases monotoneljr
to φ(z), while on the compact set, φ(z/r) converges uniformly to φ(z)..
Thus, \\f(rz)\\2 converges to

\f(z)\*exv(-φ(z))dx(z) =

This completes the proof of Theorem 2, (ii).

When φ* is just finite on an open set, we can make the following'
adjustment of Theorem 2.

THEOREM 3. Let φ be convex on &n, and let F°(φ) denote the in-
terior of the set on which φ*(w) < +^o.

( i ) If f(z) = exp «s, w» G %(φ), then 2w e F°(φ), and
(ii) If F°(φ) is not empty, then the collection of functions f(z) =

exp «3, wy) with 2ιveF°(ό) have dense linear span in ϊί(φ).

Proof. If woe&n and φo(z) = φ(z) — ΈLeζz, wo>, then the mapping
f(z) —*f(z) exp (i\Z, woy) is an isometric isomorphism of 2I(^0) onto ςΛ(φ)
which carries exponential functions onto exponential functions. Also,
the set on which φ* is finite is the translate by —w0 of the set on
which 9* is finite. The above theorem then follows from Theorem 2,
or more correctly, from assertions (a)-(d) of the proof of Theorem 2
applied to the space s2ΐ( 0̂) with φύ defined using an element woe F°(φ).

We can also prove Theorems 2 and 3 for norms other than the=
U norm.

D E F I N I T I O N , (a) %*(φ) = {/ entire: \\f\\p = Q l / p e - ^ λ ) 1 ^ < + oo J
(b) %~(φ) = {f entire: f(z)e~^->0 as \z\-^+oc}, and | | / | U =

THEOREM 4. If ό is convex on &n and if φ* is finite on a neigh-
borhood of the origin, then the polynomials are dense in the Banach
spaces Tf(φ), 1 ^ p <J +co.
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Proof. We prove this only for finite p, the case p — oo being
essentially the same. As in (d) of the proof of Theorem 2, we have
f(rz) -+f(z) in SIP(^) as r —> 1~. Fix r < 1 and choose r < p < pf <
p" <1. Then exactly as proved in (c) of Theorem 2,

where φ(z) — sup {φ(z + u): \u\ = 1}. By Proposition 3,

φ(rz) ^ φ(pz) + 0(1) ^ φ{ρ' z) - (p' - p)\z\ + 0(1) .

Hence f(rz) e %((2/p)φ(p' z) = W({2jp)φ{ρ' z)). Apply Theorem 2 to obtain
polynomials Pj(z) converging to f(rz) in this Hubert space. Then these
polynomials also converge to f(rz) in %p(φ). For, we have pointwise
convergence and the bound, derived as above,

\PJ(Z) I ^ Const, exp (—φ(ρf z)\ .

Whence, by Proposition 3,

φ{p' z) £ φ{p" z) + 0(1) ^ φ(z) - (1 - p")\z\ + 0(1) ,

and therefore \ \p3 (z) — f(rz) \pe~φdX converges to zero by the dominated

convergence theorem.

3* Weight functions of the form v(r) + u(x). We study in
this section weight function of the form φ(z) = v(r) + u(x), where

z = (z19 •••,«»), r = flsj, •••, \zn\),

and x = (Re zlf , Re zn) — (x19 , xn). In order to guarantee that
Φ be plurisubharmonic, we assume that the following conditions are
satisfied.

( i ) u{x) is convex;
(ii) v(r) is a convex function of log r (i.e., v(er\ , ern) is

convex);
To insure that SI(^) contains the polynomials, we assume
(iii) v(r) ^ A Σ?=i log (1 + r<) for each A > 0 and ^ 4 - + rΛ

sufficiently large.
In order that the space %(φ) contains some exponential functions

with frequencies near zero, we also assume
(iv) u(x) ^ S(\xx\ + + \xn\) — C for some δ > 0 and some con-

stant C.
Lastly, we assume a technical condition which is needed in our

proof.
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(v) v(r19 « , r j is nondecreasing in each variable r*.
From (iv) it follows that u*(t) = sup,, (t1x1+ + tnxn — u{%)) where

x = (x19 " ,xn),Xi real, is finite on some neighborhood of the origin
in Rn.

DEFINITION. E(U) = {exp «z, ίo>): %*(*) i s finite o n a neighborhood
of to in Rn).

The following theorem is useful in proving that certain spaces of
quasi-analytic functions are analytically uniform [15].

THEOREM 5. If φ(z) = v{r) + u(x) satisfies (i)-(iv) above, then the
linear span of the exponential functions in E(u) is dense in 2P(p),
1 ίg p <̂  + oo.

Proof. The proof is quite similar to that of Theorems 2 and 4,
so we shall only outline the steps for the case p = 2. The functions
φj may be chosen as follows. Let u3(x) be an increasing sequence of
convex functions such that u3 (x) ^ u(x), u3-{x) —>%(&), and

uj(x) = 0(\xx\ + . .- + \xn\)

for each j > 0. Such a sequence may be constructed as in the proof
of (c) of Theorem 2, Let v,(r) be an increasing sequence of convex
functions of logr (as described in (ii) above) such that vj(r) ^v(r),
Vj(r) —> v(r) and

Vj(r) = θ ( χ log (1 + Ti)) for each j > 0 .

Such a sequence may be constructed by passing to the convex function
v(eri, , ern), and proceeding as before to construct Vj(eri, βr%), which
thus defines vό. Then φj(z) = t6j (r) + -̂(a?) is plurisubharmonic and

ι ^ Φ z ^

Now exactly as in the proof of (d) of Theorem 2, f{rz)—*f(z) as
r—>1 for each / G S I ( ^ ) . Therefore,

is dense in %{φ), by Theorem 1. Consequently, it suffices to prove that
every / e F is a limit, in 2ί(^), of linear combinations of the exp (ζz, ί)>).
Each f e V satisfies an estimate of the form

(3.1) I f(z) I S A(l + n + + rn)
B exp (ih(x, K))

for some constants A, B, where h(x, K) is the support function of some
compact subset K of the interior of the set of all y = (yly •••, yn), y3-
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real, such that

(3.2) u*(y) = sup (yfo + . . ' . + ynxn - u(x)) < + °° .
X

Further, each / satisfying (3.1) is the limit in %(φ) of functions of the
form

(3.3) f{z) = j e™g(t)dx{t)

where g is an U function with compact support contained in the in-
terior of the set of all y satisfying (3.2). This may be seen for example,
by multiplying each / satisfying (3.3) by functions

l(z) = J e<^>χε

where

and 0 <̂  χ(t) is a C°° function on Rn with compact support such that

\ χ(t)dx(t) = 1, to obtain a function Fε(z) = f(z)χε(z) which, for e small,

still satisfies (3.1) and which is in U on the imaginary subspace of E>.
As ε-+0+, Fε—>f in 31(0), and the Paley-Weiner Theorem implies that
Fε is of the form in (3.3). Lastly, it is easy to prove that each / of the
form (3.3) is a limit in %{φ) of linear combinations of the exp (<(#, £».
This completes the proof.

In view of Theorem 5, to study when the polynomials are dense
in %(φ) for φ as above, it suffices to find when the exp «z, ty) can be
approximated by polynomials. The answer to this question is given
by the following theorem, which is in fact equivalent to the Denjoy-
Carleman theorem on quasi-analytic functions.

THEOREM 6. If φ(z) = v(r) + u(x) satisfies (i)-(v) of this section,
then the functions in E(u) can be approximated by polynomials in
%P(Φ), 1 ^ p ^ +oo, if and only if

for every r= (rly « , r j . Consequently, the polynomials are dense
in %p(φ), 1 ^ p ^ + oo if and only if (3.4) holds.

Proof. We first show that if (3.4) fails, then the polynomials
cannot be dense in W(φ). We shall prove this only for the case p =
+ oo, as the other cases may be easily deduced from this by arguments
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analogous to those used previously to pass from one value of p to all
other values of p. Thus, assume that for some r Φ (0, , 0)

v(sr)
-ds

It is no loss of generality to suppose that exp (ζz, r » e ^(φ), since if
not, we can replace r by εr for some small ε > 0. We claim that
exp «£, r)>) cannot be approximated by polynomials in 2ί°°(p). For,
assume that Pn is a sequence of polynomials converging to exp (ζz, r)>)
in %~(φ). Then for some constant C > 0,

Pn{z)\ £ Cev{lzl)^u{x) .

In particular, if ζ = a + ίb is a complex number and Fn(ζ) = Pn(rζ),
then i^w is a polynomial in ς and

log IFn(ib) \£v(\b \r) + u(0) + log C.

For the polynomials JF ,̂ we have the well-known majorization given
by Poisson's formula,

log I FJμ + ib) I ̂  i - \ +°° — 1 — log I Fn(iτ) \dτ, (a > 0) .
7Γ J-oo α2 + (b — τf

In particular, for a > 0, we have

log I * » I ̂  w(0) + log C + a

However,

-« a2 + τ2 as

if (3.4) failso Therefore, since the Pn are assumed to converge to
exp «2, r)>) in 2I°°(̂ ), we have for a > 0

α ^ r ^ r\> _. j j m iOg. i Fn{a) I ̂  o(α) + Const ,

which implies <(r, r> = 0 and therefore r = 0, a contradiction. Thus,
exp<^£, r)> cannot be a limit of polynomials in 2I°°(0).

We now prove the sufficiency of (8.4), again only for p = co, as
the other cases are similar. To simplify the notation and computations,
let us assume we are in the case of two complex variables. Define 6?

to be the open set in R2 on which u*(tlf t2) is finite. Then let F be
the set of all (ί1? t2) in έ? for which P(zly z2)etlZl^2Z2 is a limit of poly-
nomials in 2ΐ°°(0) for all polynomials P. It is easy to check that F is
a (relatively) closed subset of ^ . Therefore, if F is also an open
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subset we have F = ^ , since <? is convex, hence connected, and this
is what we had to prove.

To prove that F is open, we first prove the following apparently-
weaker assertion,

(*) If u*(tl9 t2) < +co for |*xI < 2ε, \t2\ < 2ε then F contains

The proof of (*) is based on the Denjoy-Carleman theorem. Let
L be a continuous linear functional on 5I°°(0) which annihilates all
polynomials. By the Hahn-Banach theorem, it is enough to prove that

L(^ 2V l Z l + ί 2 Z 2) = 0 for |*xI < ε, \t2\ < e .

Define for such tlf t2,

Then / is infinitely differentiate and

βn+m

so it suffices to prove that f(t1912) = 0. Now

since L is continuous. However,

Isfβ*1*1! ^ β (*1>0) s u p rΓβ""β ί r i ' 0 )

r

and the sequence of constants

bn = sup rΓe""(ri'0)

r l

determine a quasi-analytic class since (3.4) holds with r = (1, 0) (see,
e.g., [11]). Also,

-iL/(0,0) = 0 , ^ = 0 , 1 , 2 , . . . ,

so/(ί 1,0) = 0 , | ί 1 | < e .

Now we also assert that (ίlf 0) e F. For, from the above argument
with v(r13 0) replaced by iv(r19 0) and u(x) replaced by el^l, it follows
that there is a sequence of polynomials in zx which converges to

in the Banach space S ί ^ i ^ n , 0) + ε| x, |) of entire functions of one
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variable. In particular, there are polynomials Pn such that

Then

k r n p ίry \ ?mptiz I <C 2 /?1/2«(ri>°)+£la;il
= n

n

n

since v(r19 r2) is nondecreasing in each variable. Therefore,

and consequently

——f{tι<> 0) = L(z™ehZl) = 0, | £ i | < ε

Then also

— /(ίi, 0) = 0
dtndtm

so (t19 0) G JP as asserted.
We now proceed as earlier and apply the Denjoy-Carleman Theo-

rem. Thus

3tΓ '

<J Ceu*{tl>t2) sup (r™e~v{0>r2))
r

and hence for fixed t19 f(t1912) — g(t2) belongs to a quasi-analytic class.
As verified above

- i ! - / ^ , 0) = 0, m = 0, 1, 2,

so /(ίi, ίg) = 0, I ίil < ε, |£ 2 | < ε, which completes the proof of (*).
It remains to prove t h a t F is open. Let (t1912) e F. Choose ε > 0

so small t h a t (t, + s1912 + s2) e & for \sλ\ < 2ε, | s 2 | < 2ε. Then let
ί?(ίCi, 2̂) = ^(^ ! , #2) — £i#i — ̂ 2̂ 2 We have t h a t u*(s19 s2) < + ^ for
I Si I < 2ε, |s2 | < 2ε. Applying (*) with the weight function v(r19 r2) +
u(xlf x2), we obtain the existence of polynomials Pn converging to

en*ι+s2*2 i n yxr(v(ri, r2) + u(x19 x2)). But the norm of



538 B. A. TAYLOR

in the space with weight v(rl9 r2) + u(xί9 x2) is equal to the norm of
Pn — eSlZl+S2Z2 in the space with weight v(r19 r2) + u(x19 x2). Therefore

e(h+sl)Zl+{t2+s2)z2 i s a l i m i t o f polynomials in %°°{φ) for all | s j < ε, |s 2 | <..ε.

It is easy to deduce from this that

is also a limit of polynomials so that (tί + slf t2 + s2) 6 i*7. This com-
pletes the proof.

4 Examples* We conclude with some simple examples. Consider
the weight functions φ(z) = \χ\s + \y\\ where zά — xo + iy,, \x\ = Σ l#/l>
and |2/| = Σ l » y | . Then

(A) The polynomials are dense in 21^^) if s ^ 1, ί ^ 1 , or if s < 1
and t < 1.

(B) The polynomials are not dense in §I2)(^) i f s ^ l , ί < l o r s < ϊ ,
ί ^ 1.

The first part of (A) is a consequence of Theorem 2, and (B) fol-
lows from Theorem 6, which shows that the exponential functions
cannot be approximated by polynomials even in the space with a larger
weight function | # | s + r\ The other part of (A) is a consequence of
a Phragmen-Lindelof theorem. For, if, say s <: t < 1, then it follows
from a Phragmen-Lindelof theorem that each / e %P(Φ) satisfies

\f(z)\ ^

However, | ^ | + ••• + \zn\
s ^ | α ; | s + | τ / | s ^ |α;|s + |y | ' for \y\^l. From

these estimates, it follows easily that the Taylor series for f(Θz) con-
verges to f(θz) in %v{φ) for each θ < 1. It is also clear that f(θz) ->
/(«) in SIP(^) as Θ—+1, so the polynomials are dense, as asserted.

Lastly, we give an example where the topology is much weaker
than a norm topology but in which polynomial approximation still fails.
It is easy to construct such examples using Theorem 6. For instance,
let

= {f(χ + iy) entire: | | / | | £ - sup \f(z) exp (-|^| 1 / 2 + ε - M 2 + £ )!

< + oo for each 0 < ε < J} .

Then ^ is a Frechet space with the topology determined by the semi-
norms, || ||£, and it follows from Theorem 6 that ez cannot be appro-
ximated in J^ by polynomials.
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A result similar to Theorem 1 has been proved by J. P. Ferrier
(Approximation with bounds of holomorphic functions of several com-
plex variables, to appear in Ann. Inst. Fourier, Grenoble). In addi-
tion, two independent proofs of Theorem 2 have been given in the
dissertations of D. Wohlgelenter (Yeshiva University) and J. Metzger
(University of Michigan).
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