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MATRIX RINGS OF FINITE DEGREE OF NILPOTENCY

ABRAHAM A. KLEIN

The degree of nilpotency of a ring R is defined to be
the supremum of the orders of nilpotency of its nilpotent
elements and it is denoted by v(R). We consider the degree
of nilpotency of the ring of m X m matrices Rm over a ring R.
We obtain given results concerning the degrees v(Rm) for
distinct m's, in the case R has no nonzero two-sided annihi-
lators. It is shown that if v(RM) = m for some m, and if R!

is a ring containing R as an ideal such that R' has no non-
zero two-sided annihilators of R, then v(R'm) = m. An applica-
tion of this result is given.

R will always be a nonzero associative ring. If ae R is nilpotent,
we denote its order of nilpotency by v(a) = min {k\ak = 0}, and if a is
not nilpotent we put: v(a) — 0. The degree of nilpotency v(R) of R
is defined by

v(R) = supαeΛv(α) .

If R is a ring without nonzero nilpotent elements then v(R) = v(0) =
1, and we shall soon see that the ring Rm of m x m matrices over R
satisfies v(Rm) ̂  m (Lemma 1).

There exist rings R satisfying v(Rm) > m and in [3] was shown
that such an R may even be a (noncommutative) integral domain.
The object of this paper is to deal with rings R which satisfy v(Rm) —
m for some m. We denote this condition by 9βm. First we shall con-
sider the degree of nilpotency of matrix rings over rings without
nonzero two-sided annihilators. Then we give some conditions equiva-
lent to 9ΐm. Our main result is: If a nonzero ideal in an integral
domain R satisfies 5ftw then R itself satisfies 9im. This implication re-
sembles the following one: If a nonzero ideal in an integral domain
R is embeddable in a field then R itself is embeddable in a field [1].
This result together with other results obtained in [4], lead us to the
conjecture: "The conditions 9ϊw, m = 1,2, , are sufficient for em-
bedding an integral domain in a field.

Our result is applied to prove that a ring which has no nonzero
two-sided annihilators and satisfies 9ΐm is embeddable in a ring with
an identity which satisfies 3lw.

I wish to thank G. M. Bergman for his suggestions and comments
on this paper.

2* Rings without nonzero two-sided annihilators* The follow-
ing notations will be used later.
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If a e R then we denote by aEij the matrix with a in its (ϊ, j)
position and 0 elsewhere.

If A = (aij)eRm and r is an integer ^>1, we denote the (i, j)
entry of Ar by a<J}. Since ArAs = Ar+S we have:

LEMMA 1. If R is not nilpotent then v(Rm) ^ m for each m Ξ> 1.

2 m - 1Proo/. The result is trivial for m = 1, so let m ^ 2. Since i2m

0, there exist αx, , αm_i e R such that αx αm_x ^ 0. Hence the
matrix A = Σ ? ^ 1 ^iEi>i+1 satisfies A™"1 = ^ am^Elm Φ 0 and Am =
0. Thus, v{Rm) ^ y(A) = m.

COROLLARY. For rings R without nonzero nilpotent elements, the
condition SSlm is inherited by (nonzero) subrings.

Indeed, if Rr is a subring of R then v(R'm) ^ m since Rf is not
nilpotent. If R satisfies SSlm then since Rf

m is a subring of Rm we
have y(2C) ^ v{Rm) = m.

If S is a nonempty subset of R, we denote its right (left) anni-
hilator in R by rR(S)(lB(S)). Clearly rΛ(S) Π lR(S) is the set of two-
sided annihilators of S in R.

Note that if R is a (nonzero) ring such that rR{R) Π ̂ (i?) = {0}
then R is not nilpotent.

The proof of our next result is similar to that of [4, Lemma 9].

LEMMA 2. If rR{R) Π lR(R) = {0} αwd A e Rm is nilpotent of order
h, then there exist a matrix Be Rm+1 which is nilpotent of order h + 1.

Proof. If h = 1 then A = 0 and the result is trivial. If h ^ 2
then A^"1 =£ 0 and there exist 2) and g, 1 <£ p, g, ^ m , such that α^~1} ^
0. Since rR{R) Π ̂ (J?) = {0}, there exists an element beR such that
either &<Γυ Φ 0 or α ^ 1 ^ Φ 0. Assume that we have a{

p

h~ι)b Φ 0 (the
other case is treated similarly). Let A1 be the matrix of Rm+1 obtained
from A by adjoining a row and a column of zeros and let B = Ax +
bEq>m+1. The powers of 1? are given by

Since Af = 0 and α^~υ& ^ 0 we obtain Bh Φ 0 and £ f e + 1 - 0.
This immediately yields:

THEOREM 3. Let R be a ring such that rR{R) Π lR(R) = {0}. If
v(Rm) ^ h then v(Rm+r) ^ h + r for each r ^ 1, α^d i/ v(Rm) ^

w_ r) <^ h — r for each r = 1, 2, , m — 1.
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THEOREM 4. If rR(R) Π lR(R) = {0} and R satisfies 9im for some
m, then it also satisfies %lk for k = 1, 2, , m — 1. In particular it
follows that R has no nonzero nilpotent elements.

3* Conditions equivalent to 5Tίm*

THEOREM 5. Let m be a fixed integer > 1. The following condi-
tions are equivalent for rings R without nonzero nilpotent elements.

( i ) Vlm:v(Rm) = m
(ii) For all CeRmi Cm+1 = 0 implies Cm = 0.
(iii) For all A, BeRmi (AB)m = 0 implies (BA)m = 0.

Proof It is clear that (i) implies (ii). If (ii) holds and (AB)m = 0
then (BA)m+1 = B(AB)mA = 0, hence (BA)m = 0 and (iii) holds.

Assume (iii) holds and we proceed to prove (i). Since R has no
nonzero nilpotent elements rR(R) = lR{R) = 0, so v(Rm) ;> m. Let C =
(Cij) G 22W, we have to prove that v(C) ^ m. Assume v(C) = h> m and
let c$~λ) Φ 0. We define two matrices A = (αo) e ϋJw and ,B = (δo) e i2m

as follows:

$, i = 1, •••, m - 1 .

(Λ υ . » j = 1, « , m .

Using (1) we obtain for j = 1, , m

= 1

Since CΛ = 0, it follows that CΛ + r = 0 and 4*+ r ) = 0 for each r ^ 0.
Hence the (i, j) entry of AS is 0 for i^j, and it is c%~ι) for j = i +
1, i = 1, , m - 1. This implies that (AB)™"1 = ( c ^ " 0 ) " " 1 ^ and
(AB)m = 0. Since (iii) holds we have (J5A)m = 0. But

(BA)m = ^(AB)^- 1^

and its (i, i) entry is bil{c{X'ι))m~ιa7tιj = 0. Taking i = p and j = q we
obtain {cf~ι))m+ι = 0 and since i2 has no nonzero nilpotent elements, it
follows that c£*-1) = 0, a contradiction. Hence h^m and ϋ? satisfies (i).

4. The main result* If T Φ 0 is an ideal in R and ϊ 7 as a ring
satisfies SHm, then it does not follow that i2 satisfies 3lw, even if J2
has no nonzero nilpotent elements. Indeed, R may be a direct sum
of T and a ring J?' such that v(R'm) > m and it is possible to choose
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T and R' without nonzero nilpotent elements. Clearly, here the two-
sided annihilator of T in R is not 0. On the other hand we have:

THEOREM 6. // T is an ideal in R such that rJT) Π lR{T) = {0}
and v(Tm) = m, then v(Rm) = m.

Proof. We have ττ{T) Π lτ(T) S rR{T) Π lR{T) = 0 and v(Tm) = m,
hence it follows by Theorem 4 that T has no nonzero nilpotent elements.
Since Rm contains Tm we have v(Rm) >̂ m. Let C e Rm, we have to
prove that v(C) <; m. As in the proof of Theorem 5, assume v(C) =
h > m and cp

h

q~
i] ^ 0. Construct the same matrices A and B and take

arbitrary elements a,b^T. Then Aj = αA and BL = Bb belong to Tm.
We have AJSX = a(AB)b, hence the (i, j) entry of A1B1 is 0 for i^j
and it is ac{jι

q~
ι)b for j = i + 1, i = 1, , m — 1. From this it follows

that (4Λ)™"1 = ( α c ^ - 1 ^ ) * " 1 ^ * and (A.B,)™ - 0. Since A1? B,e Tm and
v(Γw) = m it follows that (B.A^ = 0. As in the proof of Theorem 5
we obtain that the (p, q) entry of ^ ( A i B J ^ A i = 0 is

This implies that

{bac{

p

h

q~
ι))m-1 - 0, {acl

v

h-l)b)m+1 = 0, (c{j^1]ba)m+ι - 0 .

Since T has no nonzero nilpotent elements it follows that

bae?-" = 0, ac{

p

h~ι)b = 0, o%~ι)ba - 0 .

This is true for all a,beT, hence ac%~ι) e rτ(T) Π lτ(T) = {0} and
4 ;Γ ])δ e r r (T) Π WΓ) - {0} and this implies that c\p

h~ι) e rn{T) Π lR{T) =
{0}; a contradiction. Hence h ^ m and v(i2m) = m.

If i2 is an integral domain and T a nonzero ideal in iϋ, then it
is clear that τR{T) = ΪΛ(Γ) = {0}, hence we obtain our main result
which is:

THEOREM 7. If R is an integral domain and T Φ 0 an ideal in
R which satisfies 9ϊw, then R also satisfies 5ftm.

5* Embedding. Let R be a ring without nonzero nilpotent ele-
ments. Embed R in a ring Rf with 1 in the usual way [25 p. 86]:
Rf = R + /, R Π I = 0, where / is the ring of integers. i? is an ideal
in Rf and since rR{R) = ZΛ(JB) = {0} it follows that rΛ^(i2) Π R = lR>(R)Γi
R= {0}. Thus, R is embeddable in R'/rB,(R) = R". One shows easily
that rR,{R) = lR,(R). If we identify R with its image in R" we obtain
that R is an ideal in R" and rR,,(R) = {0}. Hence by Theorem β we
obtain:
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THEOREM 8. If R is a ring without nonzero nilpotent elements
and satisfies 9£OT, then R is embeddable in a ring with 1 which satisfies

If R is an integral domain then the ring R" obtained above is
also an integral domain. Thus, we have:

COROLLARY. If R is an integral domain which satisfies 9iw then
R is embeddable in an integral domain with 1 which satisfies ϋftw.

Note that this result enables us to simplify the proof in [4, Theo-
rem 7] taking t — 1.

Now, if R is a ring with 1 and satisfies %lm then R has no non-
zero nilpotent elements since rR{R) — {0}. Let C be the center of R
and assume that the nonzero elements of C are regular in R. Thus,
we may embed R in the ring R' = {ac~ι\ae R,0 Φ ceC} whose center
is the quotient field of the commutative integral domain C. If B =
(bij) e R'm then it is possible to write its entries with a common de-
nominator: bij — due*1, da e R, 0 Φ c e C, 1 ^ i, j ^ m. Let A = (α^ ) e
Rm then Be = A. If B is nilpotent then A is also nilpotent and since
R satisfies %w we have Am = 0. It follows that Bmcm = (Bc)m = 0 and
so B" = 0 since cm is a unit in R'. We have proved:

THEOREM 9. If R is a ring with 1 which satisfies 9ΐw emcϊ αW
the elements of its center C are regular, then R is embeddable in a
central K-algebra which satisfies Sflm9 K the field of fractions of C.
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