MATRIX RINGS OF FINITE DEGREE OF NILPOTENCY

Abstract

Abraham A. Klein

The degree of nilpotency of a ring R is defined to be the supremum of the orders of nilpotency of its nilpotent elements and it is denoted by $\nu(R)$. We consider the degree of nilpotency of the ring of $m \times m$ matrices R_{m} over a ring R. We obtain given results concerning the degrees $\nu\left(R_{m}\right)$ for distinct m 's, in the case R has no nonzero two-sided annihilators. It is shown that if $\nu\left(R_{n}\right)=m$ for some m, and if R^{\prime} is a ring containing R as an ideal such that R^{\prime} has no nonzero two-sided annihilators of R, then $\nu\left(R_{m}^{\prime}\right)=m$. An application of this result is given.

R will always be a nonzero associative ring. If $a \in R$ is nilpotent, we denote its order of nilpotency by $\nu(a)=\min \left\{k \mid a^{k}=0\right\}$, and if a is not nilpotent we put: $\nu(a)=0$. The degree of nilpotency $\nu(R)$ of R is defined by

$$
\nu(R)=\sup _{a \in R} \nu(a)
$$

If R is a ring without nonzero nilpotent elements then $\nu(R)=\nu(0)=$ 1 , and we shall soon see that the ring R_{m} of $m \times m$ matrices over R satisfies $\nu\left(R_{m}\right) \geqq m$ (Lemma 1).

There exist rings R satisfying $\nu\left(R_{m}\right)>m$ and in [3] was shown that such an R may even be a (noncommutative) integral domain. The object of this paper is to deal with rings R which satisfy $\nu\left(R_{m}\right)=$ m for some m. We denote this condition by \mathfrak{N}_{m}. First we shall consider the degree of nilpotency of matrix rings over rings without nonzero two-sided annihilators. Then we give some conditions equivalent to \mathfrak{R}_{m}. Our main result is: If a nonzero ideal in an integral domain R satisfies \mathfrak{R}_{m} then R itself satisfies \mathfrak{R}_{m}. This implication resembles the following one: If a nonzero ideal in an integral domain R is embeddable in a field then R itself is embeddable in a field [1]. This result together with other results obtained in [4], lead us to the conjecture: "The conditions $\mathfrak{N}_{m}, m=1,2, \cdots$, are sufficient for embedding an integral domain in a field.

Our result is applied to prove that a ring which has no nonzero two-sided annihilators and satisfies \mathfrak{N}_{m} is embeddable in a ring with an identity which satisfies \mathfrak{N}_{m}.

I wish to thank G. M. Bergman for his suggestions and comments on this paper.
2. Rings without nonzero two-sided annihilators. The following notations will be used later.

If $a \in R$ then we denote by $a E i j$ the matrix with a in its (i, j) position and 0 elsewhere.

If $A=\left(a_{i j}\right) \in R_{m}$ and r is an integer $\geqq 1$, we denote the (i, j) entry of A^{r} by $a_{i j}^{(r)}$. Since $A^{r} A^{s}=A^{r+s}$ we have:

$$
\begin{equation*}
\sum_{k=1}^{m} a_{i k}^{(r)} a_{k j}^{(s)}=a_{i j}^{(r+s)} \tag{1}
\end{equation*}
$$

Lemma 1. If R is not nilpotent then $\nu\left(R_{m}\right) \geqq m$ for each $m \geqq 1$.
Proof. The result is trivial for $m=1$, so let $m \geqq 2$. Since $R^{m-1} \neq$ 0 , there exist $a_{1}, \cdots, a_{m-1} \in R$ such that $a_{1} \cdots a_{m-1} \neq 0$. Hence the matrix $A=\sum_{i=1}^{m-1} a_{i} E_{i, i+1}$ satisfies $A^{m-1}=a_{1} \cdots a_{m-1} E_{1 m} \neq 0$ and $A^{m}=$ 0 . Thus, $\nu\left(R_{m}\right) \geqq \nu(A)=m$.

Corollary. For rings R without nonzero nilpotent elements, the condition \mathfrak{N}_{m} is inherited by (nonzero) subrings.

Indeed, if R^{\prime} is a subring of R then $\nu\left(R_{m}^{\prime}\right) \geqq m$ since R^{\prime} is not nilpotent. If R satisfies \mathfrak{R}_{m} then since R_{m}^{\prime} is a subring of R_{m} we have $\nu\left(R_{m}^{\prime}\right) \leqq \nu\left(R_{m}\right)=m$.

If S is a nonempty subset of R, we denote its right (left) annihilator in R by $r_{R}(S)\left(l_{R}(S)\right)$. Clearly $r_{R}(S) \cap l_{R}(S)$ is the set of twosided annihilators of S in R.

Note that if R is a (nonzero) ring such that $r_{R}(R) \cap l_{R}(R)=\{0\}$ then R is not nilpotent.

The proof of our next result is similar to that of [4, Lemma 9].
Lemma 2. If $r_{R}(R) \cap l_{R}(R)=\{0\}$ and $A \in R_{m}$ is nilpotent of order h, then there exist a matrix $B \in R_{m+1}$ which is nilpotent of order $h+1$.

Proof. If $h=1$ then $A=0$ and the result is trivial. If $h \geqq 2$ then $A^{h-1} \neq 0$ and there exist p and $q, 1 \leqq p, q$, $\leqq m$, such that $a_{p q}^{(h-1)} \neq$ 0 . Since $r_{R}(R) \cap l_{R}(R)=\{0\}$, there exists an element $b \in R$ such that either $b a_{p q}^{(h-1)} \neq 0$ or $a_{p q}^{(h-1)} b \neq 0$. Assume that we have $a_{p q}^{(h-1)} b \neq 0$ (the other case is treated similarly). Let A_{1} be the matrix of R_{m+1} obtained from A by adjoining a row and a column of zeros and let $B=A_{1}+$ $b E_{q, m+1}$. The powers of B are given by

$$
B^{k}=A_{1}^{k}+\sum_{i=1}^{m} a_{i q}^{(k-1)} b E_{i, m+1}, k \geqq 2 .
$$

Since $A_{1}^{h}=0$ and $a_{p q}^{(h-1)} b \neq 0$ we obtain $B^{h} \neq 0$ and $B^{h+1}=0$.
This immediately yields:
Theorem 3. Let R be a ring such that $r_{R}(R) \cap l_{R}(R)=\{0\}$. If $\nu\left(R_{m}\right) \geqq h$ then $\nu\left(R_{m+r}\right) \geqq h+r$ for each $r \geqq 1$, and if $\nu\left(R_{m}\right) \leqq h$ then $\nu\left(R_{m-r}\right) \leqq h-r$ for each $r=1,2, \cdots, m-1$.

Theorem 4. If $r_{R}(R) \cap l_{R}(R)=\{0\}$ and R satisfies \mathfrak{R}_{m} for some m, then it also satisfies \Re_{k} for $k=1,2, \cdots, m-1$. In particular it follows that R has no nonzero nilpotent elements.
3. Conditions equivalent to \mathfrak{N}_{m}.

THEOREM 5. Let m be a fixed integer >1. The following conditions are equivalent for rings R without nonzero nilpotent elements.
(i) $\mathfrak{N}_{m}: \nu\left(R_{m}\right)=m$
(ii) For all $C \in R_{m}, C^{m+1}=0$ implies $C^{m}=0$.
(iii) For all $A, B \in R_{m},(A B)^{m}=0$ implies $(B A)^{m}=0$.

Proof. It is clear that (i) implies (ii). If (ii) holds and $(A B)^{m}=0$ then $(B A)^{m+1}=B(A B)^{m} A=0$, hence $(B A)^{m}=0$ and (iii) holds.

Assume (iii) holds and we proceed to prove (i). Since R has no nonzero nilpotent elements $r_{R}(R)=l_{R}(R)=0$, so $\nu\left(R_{m}\right) \geqq m$. Let $C=$ $\left(c_{i j}\right) \in R_{m}$, we have to prove that $\nu(C) \leqq m$. Assume $\nu(C)=h>m$ and let $c_{p q}^{(h-1)} \neq 0$. We define two matrices $A=\left(a_{i j}\right) \in R_{m}$ and $B=\left(b_{i j}\right) \in R_{m}$ as follows:

$$
\begin{array}{rlr}
a_{i j} & =\left\{\begin{array}{l}
c_{p j}^{(i j}, i=1, \cdots, m-1 \\
c_{p j}^{(h-1)}, i=m
\end{array},\right. & j=1, \cdots, m \\
b_{i j} & =c_{i q}^{(h-j)}, & i, j=1, \cdots, m
\end{array}
$$

Using (1) we obtain for $j=1, \cdots, m$

$$
\begin{aligned}
& \sum_{k=1}^{m} a_{i k} b_{k j}=c_{p q}^{(h+i-j)}, \quad i=1, \cdots, m-1 \\
& \sum_{k=1}^{m} a_{m k} b_{k j}=c_{p q}^{(h+h-1-j)}
\end{aligned}
$$

Since $C^{h}=0$, it follows that $C^{h+r}=0$ and $c_{p q}^{(h+r)}=0$ for each $r \geqq 0$. Hence the (i, j) entry of $A B$ is 0 for $i \geqq j$, and it is $c_{p q}^{(h-1)}$ for $j=i+$ $1, i=1, \cdots, m-1$. This implies that $(A B)^{m-1}=\left(c_{p q}^{(h-1)}\right)^{m-1} E_{1 m}$ and $(A B)^{m}=0$. Since (iii) holds we have $(B A)^{m}=0$. But

$$
(B A)^{m}=B(A B)^{m-1} A
$$

and its (i, j) entry is $b_{i 1}\left(c_{p q}^{(h-1)}\right)^{m-1} a_{m j}=0$. Taking $i=p$ and $j=q$ we obtain $\left(c_{p q}^{(h-1)}\right)^{m+1}=0$ and since R has no nonzero nilpotent elements, it follows that $c_{p q}^{(h-1)}=0$, a contradiction. Hence $h \leqq m$ and R satisfies (i).
4. The main result. If $T \neq 0$ is an ideal in R and T as a ring satisfies $\mathfrak{\Re}_{m}$, then it does not follow that R satisfies \mathfrak{R}_{m}, even if R has no nonzero nilpotent elements. Indeed, R may be a direct sum of T and a ring R^{\prime} such that $\nu\left(R_{m}^{\prime}\right)>m$ and it is possible to choose
T and R^{\prime} without nonzero nilpotent elements. Clearly, here the twosided annihilator of T in R is not 0 . On the other hand we have:

Theorem 6. If T is an ideal in R such that $r_{R}(T) \cap l_{R}(T)=\{0\}$ and $\nu\left(T_{m}\right)=m$, then $\nu\left(R_{m}\right)=m$.

Proof. We have $r_{T}(T) \cap l_{T}(T) \cong r_{R}(T) \cap l_{R}(T)=0$ and $\nu\left(T_{m}\right)=m$, hence it follows by Theorem 4 that T has no nonzero nilpotent elements. Since R_{m} contains T_{m} we have $\nu\left(R_{m}\right) \geqq m$. Let $C \in R_{m}$, we have to prove that $\nu(C) \leqq m$. As in the proof of Theorem 5 , assume $\nu(C)=$ $h>m$ and $c_{p q}^{(h-1)} \neq 0$. Construct the same matrices A and B and take arbitrary elements $a, b \in T$. Then $A_{1}=a A$ and $B_{1}=B b$ belong to T_{m}. We have $A_{1} B_{1}=a(A B) b$, hence the (i, j) entry of $A_{1} B_{1}$ is 0 for $i \geqq j$ and it is $a c_{p q}^{c_{p} h-1} b$ for $j=i+1, i=1, \cdots, m-1$. From this it follows that $\left(A_{1} B_{1}\right)^{m-1}=\left(a c_{p q}^{(h-1)} b\right)^{m-1} E_{1 m}$ and $\left(A_{1} B_{1}\right)^{m}=0$. Since $A_{1}, B_{1} \in T_{m}$ and $\nu\left(T_{m}\right)=m$ it follows that $\left(B_{1} A_{1}\right)^{m}=0$. As in the proof of Theorem 5 we obtain that the (p, q) entry of $B_{1}\left(A_{1} B_{1}\right)^{m-1} A_{1}=0$ is

$$
c_{p q}^{(h-1)} b\left(a c_{p q}^{(h-1)} b\right)^{m-1} \alpha c_{p q}^{(h-1)}=0 .
$$

This implies that

$$
\left(b a c_{p q}^{(h-1}\right)^{m+1}=0,\left(a c_{p q}^{(h-1)} b\right)^{m+1}=0,\left(c_{p q}^{(h-1)} b a\right)^{m+1}=0 .
$$

Since T has no nonzero nilpotent elements it follows that

$$
b a i_{p q}^{(h-1)}=0, a c_{p q}^{(h-1)} b=0, c_{p q}^{(h-1)} b a=0 .
$$

This is true for all $a, b \in T$, hence $a c_{p q}^{(h-1)} \in r_{T}(T) \cap l_{T}(T)=\{0\}$ and $c_{p q}^{(h-1)} b \in r_{T}(T) \cap l_{T}(T)=\{0\}$ and this implies that $c_{p q}^{(h-1)} \in r_{R}(T) \cap l_{R}(T)=$ $\{0\}$; a contradiction. Hence $h \leqq m$ and $\nu\left(R_{m}\right)=m$.

If R is an integral domain and T a nonzero ideal in R, then it is clear that $r_{R}(T)=l_{R}(T)=\{0\}$, hence we obtain our main result which is:

Theorem 7. If R is an integral domain and $T \neq 0$ an ideal in R which satisfies \Re_{m}, then R also satisfies \Re_{m}.
5. Embedding. Let R be a ring without nonzero nilpotent elements. Embed R in a ring R^{\prime} with 1 in the usual way [2, p. 86]: $R^{\prime}=R+I, R \cap I=0$, where I is the ring of integers. R is an ideal in R^{\prime} and since $r_{R}(R)=l_{R}(R)=\{0\}$ it follows that $r_{R^{\prime}}(R) \cap R=l_{R^{\prime}}(R) \cap$ $R=\{0\}$. Thus, R is embeddable in $R^{\prime} / r_{R^{\prime}}(R)=R^{\prime \prime}$. One shows easily that $r_{R^{\prime}}(R)=l_{R^{\prime}}(R)$. If we identify R with its image in $R^{\prime \prime}$ we obtain that R is an ideal in $R^{\prime \prime}$ and $r_{R^{\prime \prime}}(R)=\{0\}$. Hence by Theorem 6 we obtain:

Theorem 8. If R is a ring without nonzero nilpotent elements and satisfies \Re_{m}, then R is embeddable in a ring with 1 which satisfies \mathfrak{N}_{n} 。

If R is an integral domain then the ring $R^{\prime \prime}$ obtained above is also an integral domain. Thus, we have:

Corollary. If R is an integral domain which satisfies \mathfrak{N}_{m} then R is embeddable in an integral domain with 1 which satisfies \mathfrak{n}_{m}.

Note that this result enables us to simplify the proof in [4, Theorem 7] taking $t=1$.

Now, if R is a ring with 1 and satisfies \Re_{m} then R has no nonzero nilpotent elements since $r_{R}(R)=\{0\}$. Let C be the center of R and assume that the nonzero elements of C are regular in R. Thus, we may embed R in the ring $R^{\prime}=\left\{a c^{-1} \mid a \in R, 0 \neq c \in C\right\}$ whose center is the quotient field of the commutative integral domain C. If $B=$ $\left(b_{i j}\right) \in R_{m}^{\prime}$ then it is possible to write its entries with a common denominator: $b_{i j}=a_{i j} c^{-1}, a_{i j} \in R, 0 \neq c \in C, 1 \leqq i, j \leqq m$. Let $A=\left(a_{i j}\right) \in$ R_{m} then $B c=A$. If B is nilpotent then A is also nilpotent and since R satisfies \mathfrak{N}_{m} we have $A^{m}=0$. It follows that $B^{m} c^{m}=(B c)^{m}=0$ and so $B^{m}=0$ since c^{m} is a unit in R^{\prime}. We have proved:

Theorem 9. If R is a ring with 1 which satisfies \mathfrak{N}_{m} and all the elements of its center C are regular, then R is embeddable in a central K-algebra which satisfies $\mathfrak{\Re}_{m}, K$ the field of fractions of C.

References

1. I. E. Burmistrovic. On the embedding of rings into fields, Sibirsk M. Z., 4 (1963), 1235-1240.
2. N. Jacobson, Lectures in Abstract Algebra I, Van Nostrand, 1951.
3. A. A. Klein, Rings nonembeddable in fields with multiplicative semigroups embeddable in groups, J. Algebra, 7 (1967), 100-125.
4. Necessary conditions for embedding rings into fields, Trans. Amer. Math. Soc., 137 (1969), 141-151.

Received February 25, 1970.
Tel-Aviv University
and
Yale University

