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MATRIX RINGS OF FINITE DEGREE OF NILPOTENCY

ABRAHAM A. KLEIN

The degree of nilpotency of a ring R is defined to be
the supremum of the orders of nilpotency of its nilpotent
elements and it is denoted by v(R). We consider the degree
of nilpotency of the ring of m X m matrices R,, over a ring R,
We obtain given results concerning the degrees v(R,) for
distinet m’s, in the case R has no nonzero two-sided annihi-
lators. It is shown that if v(R,) = m for some m, and if R’
is a ring containing R as an ideal such that R’ has no non-
zero two-sided annihilators of R, then v(R,) = m. An applica-
tion of this result is given,

R will always be a nonzero associative ring. If a e R is nilpotent,
we denote its order of nilpotency by v(a) = min {k|a* = 0}, and if a is
not nilpotent we put: v(a) = 0. The degree of nilpotency v(R) of R
is defined by

V(R) = sup,.z ¥{(a) .

If R is a ring without nonzero nilpotent elements then y(R) = v(0) =
1, and we shall soon see that the ring R, of m X m matrices over R
satisfies v(R,) = m (Lemma 1).

There exist rings R satisfying v(R,) > m and in [3] was shown
that such an R may even be a (noncommutative) integral domain.
The object of this paper is to deal with rings R which satisfy v(R,,) =
m for some m. We denote this condition by N,. First we shall con-
sider the degree of nilpotency of matrix rings over rings without
nonzero two-sided annihilators. Then we give some conditions equiva-
lent to 9,. Our main result is: If a nonzero ideal in an integral
domain R satisfies N, then R itself satisfies N,. This implication re-
sembles the following one: If a nonzero ideal in an integral domain
R is embeddable in a field then R itself is embeddable in a field [1].
This result together with other results obtained in [4], lead us to the
conjecture: “The conditions N,, m = 1,2, ..+, are sufficient for em-
bedding an integral domain in a field.

Our result is applied to prove that a ring which has no nonzero
two-sided annihilators and satisfies N, is embeddable in a ring with
an identity which satisfies %,,.

I wish to thank G. M. Bergman for his suggestions and comments
on this paper.

2. Rings without nonzero two-sided annihilators. The follow-
ing notations will be used later.
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If ae R then we denote by aFEij the matrix with a in its (¢, )
position and 0 elsewhere.

If A= (a;;)eR, and r is an integer =1, we denote the (7,7)
entry of A" by a{;'. Since A"A* = A" we have:

(1) S afaly = ali™ .
LEmMA 1. If R is not nilpotent then v(R,) = m for each m = 1.

Proof. The result is trivial for m = 1, so let m = 2. Since R™' #=
0, there exist a, -+-, a,_,€ R such that a,---a,_, # 0. Hence the
matrix A = "' a,E,; ;. satisfies A" =a, +++ @p_ K, 0 and A™ =
0. Thus, ¥(R,) = v(4) = m.

COROLLARY. For rings R without nonzero nilpotent elements, the
condition N, is inherited by (nonzero) subrings.

Indeed, if R’ is a subring of R then v(R,) = m since R’ is not
nilpotent. If R satisfies M, then since R, is a subring of R, we
have v(R}) < v(R,) = m.

If S is a nonempty subset of R, we denote its right (left) anni-
hilator in B by 7:(S)(1x(S)). Clearly 7,(S) N 1x(S) is the set of two-
sided annihilators of S in R.

Note that if R is a (nonzero) ring such that r (R) N lx(R) = {0}
then R is not nilpotent.

The proof of our next result is similar to that of [4, Lemma 9].

LEMMA 2. If rx(R) N Ix(R) = {0} and A€ R,, is nilpotent of order
h, then there exist a matriz Be R,,., which is nilpotent of order h + 1.

Proof. If h=1 then A =0 and the result is trivial. If A > 2
then A" = 0 and there exist p and ¢, 1 < p, 9, <m, such that a{:™ =
0. Since rx(R) N lz(R) = {0}, there exists an element be R such that
either bali™ = 0 or at b=+ 0. Assume that we have al’~Vb = 0 (the
other case is treated similarly). Let A, be the matrix of R,,, obtained
from A by adjoining a row and a column of zeros and let B = A4, +
bE, ... The powers of B are given by

Bf = Af + a0 e k= 2.
Since A} = 0 and a!,™"b = 0 we obtain B* = 0 and B** = 0.
This immediately yields:

THEOREM 3. Let R be a ring such that rx(R) N Ix(R) = {0}. If
v(R,) = h then Y(R,.,) = h + r for each r =1, and if v(R,) < h then
VR, y) < h—17 for each r=1,2, «++, m — 1.
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THEOREM 4. If rn(R) N Ilx(R) = {0} and R satisfies N, for some
m, then it also satisfies M, for k=1,2, <+, m — 1. In particular it
Jollows that R has no nonzero nilpotent elements.

3. Conditions equivalent to N,.

THEOREM 5. Let m be a fixed integer > 1. The following condi-
tions are equivalent for rings R without nmonzero nilpotent elements.

(i) N v(R,) =m

(ii) For all Ce R,, C™* = 0 implies C™ = 0.

(iii) For all A, Be R,,, (AB)™ = 0 implies (BA)™ = 0.

Proof. It is clear that (i) implies (ii). If (ii) holds and (AB)™ = 0
then (BA)"™ = B(AB)"A = 0, hence (BA)™ = 0 and (iii) holds.

Assume (iii) holds and we proceed to prove (i). Since R has no
nonzero nilpotent elements 7(R) = Ix(R) = 0, so y(R,) =m. Let C=
(ci;) € R,,, we have to prove that y(C) < m. Assume v(C) = b > m and
let ¢{i™" 0. We define two matrices A = (a;;) € R, and B = (b;;)e R,
as follows:

Cz(?i}"i: 17 "'ym—‘l

Ui = ’ lev""m'

(h—1)  __
eV i =m
— plh—j o
b = e, =1 eee,m.

Using (1) we obtain for 7 =1, .-+, m

m

— h+i—j "
k}]aikbkj—c;q“ , t=1,+,m—1.
=1
& h+h j

— —1—
kZ Cpibri = Cpyt N
=1

Since C* = 0, it follows that C"**" = 0 and ¢{,*” = 0 for each » = 0.
Hence the (4, j) entry of AB is 0 for 7 =7, and it is ¢:™ for j = ¢ +
1,2=1,---,m — 1. This implies that (AB)™* = (c{*")"'K, and
(AB)™ = 0. Since (iii) holds we have (B4)™ = 0. But

(BA)" = B(AB)"A

and its (7, j) entry is b, (ctt)"q,; = 0. Taking ¢ = p and 7 = ¢ we
obtain (¢{®™")™+' = 0 and since R has no nonzero nilpotent elements, it
follows that ¢{:™" = 0, a contradiction. Hence » < m and R satisfies (i).

4, The main result. If T+ 0 is an idealin R and T as a ring
satisfies N,, then it does not follow that R satisfies :,, even if R
has no nonzero nilpotent elements. Indeed, R may be a direct sum
of T and a ring R’ such that v(R}) > m and it is possible to choose



390 ABRAHAM A. KLEIN

T and R’ without nonzero nilpotent elements. Clearly, here the two-
sided annihilator of T in R is not 0. On the other hand we have:

THEOREM 6. If T is an ideal in R such that r(T) N L(T) = {0}
and v(T,) = m, then v(R,) = m.

Proof. We have r,(T)N1(T) S rx(T) N 1(T) = 0 and v(T,) = m,
hence it follows by Theorem 4 that T has no nonzero nilpotent elements.
Since R, contains T, we have v{R,) = m. Let Ce R,, we have to
prove that v(C) < m. As in the proof of Theorem 5, assume v{C) =
h > m and ¢,,7" = 0. Construct the same matrices 4 and B and take
arbitrary elements a,be T. Then 4, = a4 and B, = Bb belong to T,,.
We have A,B, = a(AB)b, hence the (i, 5) entry of 4,8, is 0 for ¢ =j
and it is acli™b for j =4+ 1,7 =1, ---, m — 1. From this it follows
that (4,B)"" = (acl;™"b)"'HK,, and (4,B)" = 0. Since A, B,e T, and
v(T,) = m it follows that (B,4,)” = 0. As in the proof of Theorem 5
we obtain that the (p, q) entry of B(A4,B)" A, = 0 is

el b(acy b)) " tacl ™ = 0 .
This implies that
(bacy, )" = 0, (acyb)™ " = 0, (¢hh Vba)™ " = 0 .
Since 7 has no nonzero nilpotent elements it follows that
bach™ = 0, ac Vb = 0, ¢t Vba = 0 .

This is true for all a,be T, hence acl'™er (T)NI{(T)= {0} and
e b er(T) N L(T) = {0} and this implies that ¢ e v, (T) N 1(T) =
{0}; a contradiction. Hence h < m and ¥(R,) = m.

If R is an integral domain and 7 a nonzero ideal in £, then it
is clear that »,(T) = [(T) = {0}, hence we obtain our main result
which is:

THEOREM 7. If R is an integral domain and T #+ O an ideal in
R which satisfies N,,, then B also satisfies N,,.

5. Embedding. Let R be a ring without nonzero nilpotent ele-
ments. Embed R in a ring R’ with 1 in the usual way [2, p. 86]:
R =R+ 1, RNI=0, where I is the ring of integers. R is an ideal
in R’ and since rx(R) = [,(R) = {0} it follows that »,(R)N R = [z (R)N
R = {0}. Thus, R is embeddable in R'/r,(R) = R”. One shows easily
that 7 (R) = lz(R). If we identify R with its image in £” we obtain
that R is an ideal in R” and 7.(R) = {0}. Hence by Theorem 6 we
obtain:
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THEOREM 8. If R is a ring without monzero milpotent elements
and satisfies N,,, then R is embeddable in a ring with 1 which satisfies
N

If R is an integral domain then the ring R" obtained above is
also an integral domain. Thus, we have:

COROLLARY. If R is an integral domain which satisfies N, then
R is embeddable in an integral domain with 1 which satisfies N,.

Note that this result enables us to simplify the proof in [4, Theo-
rem 7] taking ¢t = 1.

Now, if R is a ring with 1 and satisfies %, then R has no non-
zero nilpotent elements since r;(R) = {0}. Let C be the center of R
and assume that the nonzero elements of C are regular in R. Thus,
we may embed R in the ring R’ = {ac™'|aec R, 0 = c€ C} whose center
is the quotient field of the commutative integral domain C. If B =
(b;;) € R, then it is possible to write its entries with a common de-
nominator: b;; = a;;c, a; € R, 0#¢ceC,1<14,5<m. Let A= (a;) €
R, then Bc = A. If B is nilpotent then A is also nilpotent and since
R satisfies N,, we have A™ = 0. It follows that B™¢™ = (Bc)™ = 0 and
so B™ = 0 since ¢™ is a unit in R'. We have proved:

THEOREM 9. If R s a ring with 1 which satisfies N, and all
the elements of its center C are regular, then R is embeddable in a
central K-algebra which satisfies N,, K the field of fractions of C.
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