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A DECOMPOSITION THEOREM FOR TOPOLOGICAL
GROUP EXTENSIONS

ARNOLD J. INSEL

G. W. Mackey has developed a characterization of the
group of equivalence classes of extensions of a fixed group G
by a fixed abelian group A restricting all groups to be locally
compact second countable Hausdorff spaces. Calvin C. Moore
incorporated his results into a cohomology theory of group
extensions such that the second cohomology group, H\G, A),
coincides with Mackey's group of extension classes. The pur-
pose of this paper is to consider the special case in which G
and A are connected, A is a Lie group, G is locally arcwise
connected and locally simply connected. Under these condi-
tions G and A admit universal covering groups UG and UA.
Allowing τr(G) and π(A) to denote the fundamental groups of
G and A respectively (with basepoint the identity) any ex-
tension of G by A determines an extension of UG by UA and
an extension of π(G) by π(A) uniquely up to equivalence.
Hence there is a map Φ, in fact a homomorphism, constructed
from H%G,A) to H\UG, UA) 0 H2(π(G), π(A)). In this paper
H2(G, A) is determined as a direct sum of subgroups of
H\UG, UA) and H2(π(G), π(A)), and of a third group which is
computed.

Throughout all topological groups are assumed to be locally com-

pact, Hausdorff and second countable.

Let G and A be topological groups, A abelian. A is called a G-

module if there is given an action of G on A, t h a t is, a continuous

function from G x A into A, carrying (g, a) onto ga, such t h a t (i)

for any fixed g e G, the mapping of A into A determined by a > ga

is an automorphism, (ii) the automorphism t h u s determined by the

identity of G is the identity automorphism, and (iii) for any g and h

in G and aeAf (gh)a — g(ha). If A is a G-module then an extension

of G by A is an exact sequence

such that E is a topological group, i: A > i{A) is a homeomorphism

and E/i(A) is topologically isomorphic to G or equivalently, j is open,

and finally, the action of G on A defined by xa = i~1(xί(a)x~ί)coinciάes

with the given action of G on 4 . Sometimes, when G and A are

fixed, and when no confusion can arise, the extension D will be de-

noted by D(E, i,j). Two extensions D(E, i,j) and D'(E', i',j'), of G
by A are called equivalent if there is a topological isomorphism φ of
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E onto E' such that φi = ir and iV = j . Let Ext (G, A) denote the
family of equivalence classes of group extensions of G by 4 . The
problem of determining Ext (G, A) was essentially solved by G. W.
Mackey in [7] by applying certain results on Borel groups proved in
[6]. The solution involves the theory of analytic Borel spaces (c.f.
the introduction of [1]). We shall assume the definitions and results
of [1], One useful result is that for the exact sequence

to be an extension of G by the G-module A, the requirements on i
and j can be weakened to only require that i and j be continuous.
One proves that i is a homeomorphism of A onto ί(A) and j is open.
In [10] C. C. Moore incorporates Mackey's solution to the extension
problem into a cohomology theory of topological groups. In his theory
the second cohomology group of G with respect to A, H2(G, A), can
be put into a one-to-one correspondence with Ext (G, A). We shall
draw upon the results of [10] and identify Ext (G, A) with H2(G, A).

!• Construction of Φ. We fix topological groups G and A so
that A is a connected abelian Lie group with an action of G, and G
is connected, locally arc wise connected, and locally simply connected.
We fix an extension

of G by A.

PROPOSITION 1.1. j:E—+G is a locally trivial fibre space with
fibre A.

Proof. A is a product of a vector group Rm and an π-torus Tn,
and hence A is a covering group for Tm+n. Hence the result easily
follows from [3] and the fact that A acts on E as a group of trans-
formations by a(x) = i(a)x.

PROPOSITION 1.2. E is connected, locally arcwise connected and
locally simply connected. Hence E as well as G and, A admit uni-
versal covering groups.

Proof. E is connected since A and G are. By Proposition 1.1,
E is locally a product of A and G. Thus the other two properties
carry over from A and G to E. Thus A, E and G each more than
satisfy the conditions required to construct covering groups (e.g., see
[2]).



A DECOMPOSITION THEOREM 359

Let UA, UE1 and UG denote the respective universal covering groups
of A, Έ, and G, with respective projections plf p21 and ps. It is well
known that the kernel of each p,h is a closed, countable, discrete,
and central subgroup. Also the kernel of each p% can be considered
the fundamental group of .A, E, and G respectively, and is therefore
denoted by π(A), π(E), and π(G). Let ί19 ί2, and ΐ3 denote the inclusion
maps of π(A) into UA, etcβ Thus we obtain three exact sequences

i(UΛ, 2(σE, ί2, p2) and F3(UG, i3, p3)

Each Vi is an extension of the appropriate group by the appropriate
fundamental group, with trivial group action. Since UΛ, UE, and UG are
simply connected, the homomorphisms i and j lift to unique homo-
morphisms i from UA to UE and j from UE to UG such that φΛ — iply

and pzj = jp2. It is easily seen that i maps the kernel of px into
the kernel of p2 and that j maps the kernel of p2 into the kernel of
pz, yielding homomorphisms i$ and j \ with i2ifi = iiι and i3j^ = ji2.
Thus we obtain a 3 by 3 commutative diagram.

V V V

D 1

D 1
"

#

Uo >1

G > 1

1 1 1

DIAGRAM 1.

Let D# denote the top row and D, the middle row of Diagram 1. Of
course D, Vlf V2, and F 3 are exact sequences.

PROPOSITION 1.3. (1) Ώ% and D are exact sequences.
( 2 ) The induced action of UG on UA is compatible with the

given action of G on A. That is, for any x e UG and t e UA,

Pi(xt) - (PS(X))(PS))

Furthermore this action is the only action of UG on UΛ compatible
with the action of G on A.,
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(3) Z># and D are extensions of UG by UA and π(G) by π(A)
respectively, with the action of (2), of UG on UA, and trivial action
of π(G) on π(A).

Proof. First note that, by the construction of the universal
covering groups, i% and j \ are actually the standard morphisms induced
by the functor π = π19 operating on i and j . By Proposition 1.1 j :
E-~> G is a fibre space with fibre A and hence we obtain the exact
homotopopy sequence of the fibering (see [5], p . 152):

> π2(G) - ^ πi(A) - ^ πi(E) - A πi(G) - ^ πo(A) .

Since G is an inverse limit of Lie groups (e.g., see [9]) by [11],
π2(G) = 0. Since A is connected, πo(A) = 0. Hence D# is exact. Ex-
actness of D follows by standard diagram chasing (see [8], p. 51);
the needed condition ji is trivial holds, since ji maps the connected
group UA into the discrete group %(π(G)).

The first part of (2) follows simply from the commutativity of
diagram 1. For the second part let a and β be two actions of UG

on UA compatible with the action of G on A. Then for any x e UG

and te UA, Pί(a(x91)) = v^βix, t)) = (%>*{%))(%>&)). Define a function
F from UG x UA to UA by F(x, t) = a(x, t)(β(x, t))~ι. Then p,F is
trivial, and hence the range of F lies in iι(π(A))1 a discrete set. Con-
nectedness of UG x UA and continuity of F imply that a = β.

The proof of (3) is trivial once (1) and (2) are established.
Thus the extension D determines extensions D and D$. Now D

and D$ determine equivalence classes say

[D] e H\ Uo, UA) and [D,] e H\π(G), π(A)) .

PROPOSITION 1.4. Let D = D(E, ί, j) and ϋ = D'(E\ i\ jf) be two

extensions of G by A. Then if D is equivalent to D\ [D] = [&] and

[A] = im

Proof Let / be a topological isomorphism from E onto Ef such
that fi = ir and j'f = j . Then there exists a unique lifting f of f
from UE onto UE, such that / is a topological isomorphism from UE

onto UE.,Ji = ΐ ', and J'f = j . Hence / establishes an equivalence
between D and D'. Similarly on the homotopy level, /# is an isomor-
phism between π(E) and π(E'), and /*ΐ# = i\ and j'J^ = j \ . Hence

[A] = [A].
Thus as a result of Proposition 1.4 we define mappings ΦL and Φ2

each from H2(G, A) with Φ, going into H2(UG, UA) where the action
of UG on UA is the unique one compatible with the action of G on i ,
and Φ2 going into H\π(G), π(A)) where the action of π(G) on π(A) is



A DECOMPOSITION THEOREM 361

trivial, and where Φ1([JD]) = [D] and Φ2([D]) = [D*]. Since π(E) is
always abelian, Φ2 actually maps H2(G, A) into the subgroup of
H2{π(G), π(A)) of the classes of symmetric extensions which we denote
by Hϊ(π(G), π{A)). Combining Φγ and Φ2 we obtain a mapping

Φ = Φ, 0 Φ2: H\G, A) > H\Uβ, UA) 0 Hξ(π{G), π(A)) .

In § 2 we establish that Φ is a homomorphism. Before we do this we
make an observation about the above construction. Note that we
carefully choose the vertical extensions of Diagram 1 to be constructed
in a specified manner (e.g., see [2]). This is important since there
exist inequivalent extensions involving the universal covering group
of a given group. For example, consider the following two inequiv-
alent extensions of the 1-torus, Γ, by the integers Z. Letting R
denote the real numbers we have:

(1) 1 >Z-^->R^*T >1 and

( 2 ) 1 >Z-^> R^*T >1.

Here exp is the exponential map of R into T, i is the identity injec-
tion of Z into R, and — i sends an integer n into the real number
— n. Extensions (1) and (2) are inequivalent. The first extension is
the one obtained by following the procedures of [2]. One may ask
whether the substitution of inequivalent vertical extensions in Diagram
1 will give rise to inequivalent horizontal extensions. There can be
a certain ambiguity to the definition of Φ unless we specify how we
are to choose the vertical extensions. We do have one result, however,
which does simplify the problem and which will be useful in subsequ-
ent sections.

DEFINITION 1.5. Let E be a connected, locally arc wise connected,
and semi-locally simply connected group. Then the extension V(F, p, q)
is called a universal covering extension of E if F is a universal cover-
ing group for E with projection q.

PROPOSITION 1.6. Let V2'(F, p, q) be any universal covering ex-
tension of the group E in Diagram 1. Let K denote the domain of
p. Then there exist unique continuous homomorphisms r, s, h, and k
such that r: π(A) —> K s: ϋΓ—> τr(G), h: UA —> F, and k: F'—+ Uo, and
such that the new diagram obtained from Diagram 1 is commutative.
That is such that pr = hiu qh = ipλ, %s = kp, and jq = pzk.

Furthermore, defining

B2: 1 > π(A) -^K-^π(G) • 1
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and H,: 1 > UA ~^-> f Λ UG > 1

then Hι and H2 are extensions equivalent to D and D% respectively
(see Diagram 1).

Proof. Let us substitute VI for V2 in the construction of Diagram
1. Then repeating earlier arguments we see that ί and j induce
homomorphisms h: UΛ—>F and k:F~> UG, τ:π(A)—>K and s:K—>
π(G). Thus we obtain a new 3 x 3 commutative diagram which is
the required one for this proposition. Hι and H2 are seen automatic-
ally to be extensions. The uniqueness of h and k follow from the
type of topological argument involving connectedness and continuity
which we have already seen. The proofs that r and s are unique
involve simple algebraic arguments and are omitted. Hence we only
have left to prove the equivalence of Hι to D and H2 to D$. Since
F and UE are simply connected there exists a unique topological
isomorphism λ: UE —> F such that p2 = qX. Since p2i = ipί = qh, we
have that qXi = qh. Hence for all x e UA, q(xϊ(x)h(x~~1)) = 1 and
therefore Xi(x)h(xrι) e p(K), a discrete set. Hence Xi — h. Similarly
j — kX. Hence JH^ is equivalent to D. Next observe that Xi2(π(E)) a
p(K). Hence define λ = p~ιXi2. Then by a simple algebraic argument
it is seen that λ is an isomorphism from π(E) onto K and that λ^ = r
and sX = j \ . Hence H2 is equivalent to Ό>.

2. Φ is a homomorphism. The proof that Φ is a homomorphism
necessitates the examination of an equivalent method of summing
elements of H2(G, A) called the Baer sum. It involves the direct con-
struction of a new group extension from two given extensions. Ex-
tension equivalence is a congruence with respect to this binary opera-
tion and hence there is defined a binary operation on H2(G, A), the
Baer sum. This operation coincides with the group operation on
H2{G, A). Their equivalence is shown in [8] for the nontopological
case. For topological group extensions the same proof carries over,
but with the appropriate measure theoretical arguments, applying the
theory of Borel spaces. Since it is an integral part of our proof, we
shall briefly outline the construction. Let D^E^ fu gλ) and D2(E29 /2, g2)
be two extensions of G by A. Define

E - {(x, y) e E, x E2: ffl(x) - gz(y}} -

Define a map j : E—> G by j(x, y) = gL(x). Then letting i denote /, > t
we obtain an extension

D 1 ->A x A-^->E-^G >1
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of G by A x A, where G acts o n i x i pointwise. Next define A A c
A x A by A A = {(α, α"1): α e i } . Then z/A is invariant under the action
of G. Hence we may 'divide' the extension by A obtaining a new
extension

V π.-r

1 > A x A/AA > E/i(AA) -^-> G > 1

where V and i are the cannonical maps obtained from i and j as a
result of taking quotients. Finally let ΘA: A —• A x A) A A be the
isomorphism defined by taking the element a into the coset (α, I) A A.
Note that θ^((ay h)AA) — ab. Now define i — i'θA. Then we obtain
an extension

1 > A -i-> E/ϊ(AA) -i-> G > 1

of G by A. This extension is the required one whose equivalence class
is the sum of [Dλ] and [D2], Naturally the same method of summing
may be applied to compute sums for H2(UG, UA) and H2{π(G),π(A)).

Our plan is to apply the method of construction simultaneously to
the sum of two extensions of G by A and to the sum of each pair if
images under Φx and Φ2. Consider the extensions Dι and D2 above.
For each of these extensions we obtain a 3 x 3 commutative diagram
as in Diagram 1. If we take the product of these two diagrams we
obtain a new diagram, Diagram 2.

•π{A) x π(A) - ^ I Γ _ ^ π(El) x π(EJ -^-^π(G) x π(G) »1

Ui X ti \ϊ2 X ίg' U3 X is

' ^ x UA —1—— z—> UEl x UEl

 0ι*92 > ί7G x UG > 1

I pi X p i I p2 X Pg' U>3 X P3

1 1 1

DIAGRAM 2.

If we now continue the process of simultaneously constructing the
Baer sum in each of the three rows we obtain groups 7r(ϋ7), UE and
E defined by

π{E) = {(a, b) e τr(^) x π(E2): gφ)

TΓE = {(x, y) e UEl x UE.: gx{x) = g2(y)} ,
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and E, defined as in the beginning of this section. Then also as in

the beginning of this section we obtain maps, i, i, and i#, j , j , and
j \ . Then it is easily seen that, referring to Diagram 2,

Pi x Pί'(U2 c E

and i'2 x i"(π(E)) c UE. In fact it is easily seen that

% x i" p'2 x p'J _

is an exact sequence and hence an extension. We thus obtain a
commutative 3 x 3 diagram with the above sequence, W, as the
middle vertical sequence, V3 (see Diagram 1) as the right most vertical
sequence, and the left vertical sequence coinciding with the left most
vertical sequence of diagram 2. Next observe that ίx x ix{Δπ(A)) c Δ UA

and PJ_ x pγ(Δ UA) c ΔA. Hence ίx x i t induces a homomorphism ΐj from
π(A) x 7r(A)/zί7r(A) to ί7^ x UJΔUA. Also note that i[θrΛA) = ^ ^ ί l β

Similarly we obtain a homomorphism pj such that θApι = p[θUΛ. Now
if we devide the horizontal sequences by the appropriate Δ's and
substitute the extension V1 of diagram 1 for the left most vertical
extension we obtain a 3 x 3 diagram

> π(A) — π(E)/i,(Δπ(A)) — π(G)

UA — * L/E/Ϊ(JUΛ) - ^ UG

ϊPί . i
A -i-> Eli(ΔA) -?-+

1 1 1

DIAGRAM 3.

where p and q are induced from i[ x i'2 and p( x p[ by taking quotients
of π{E) by h(Δπ(A)) and C/̂  by ϊ(ΔUA). It should be verified that
the middle vertical sequence of diagram 3 is exact and that the entire
diagram is commutative. We now need a few facts concerning topo-
logical properties of the middle vertical sequence.

PROPOSITION 2.1. UE/i(ΔUA) is simply connected and p embeds
π(hi)lί$(Δπ(A)) as a discrete subgroup. Hence the middle vertical se-
quence of Diagram 3 is a universal covering sequence for E/i(ΔA).
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Proof. By a repetition of the argument of Proposition 1.1 it is
easily seen that J: UE/ϊ(AUA)-^ UG is a fibre space with fibre UA.
Hence applying the homotopy sequence of a fibre space [5] and the
fact that UA and UG are simply connected we obtain the first result.
The second assertion follows from the fact that π(E)/i$(Aπ(A)) is itself
discrete and p embeds this discrete group homeomorphically into
UEli{ΔUA). Hence the final result follows.

We are now prepared for the main result.

THEOREM 2.2. Φ19 Φ2 and hence Φ are homomorphίsms.

Proof. Given the extensions A and A above, follow the construc-
tion outlined above to obtain Diagram 3. Then we obtain three
horizontal extensions, the lowest belonging to the class [A] + [D2], the
middle belonging to class ΦX([A]) + $i([A])> and the top belonging to
the class Φ2([Dί]) + Φ2([D2]). However by Propositions 1.6 and 2.1 the
middle horizontal extension belongs to {^([DJ + [A]) and the top
horizontal extension belongs to class

[AD .

Hence Φ19 Φ21 and Φ are homomorphisms.

3* The range of Φ. We have seen previously the range of Φ2

is contained in H2

8(π(G), π(A)). We now attempt to find the range of
Φx. To begin with, observe that since UG acts on UA we may define
an action of π(G) on UA by mapping (g, t) into %(g)t for g e π(G) and
teUA.

LEMMA 3.1. The action of π{G) on UA defined above is trivial.

Proof. Let D(E1i1j) be any extension of G by A (e.g., the
trivial semidirect product). Then since the action of UG on UA is
independent of the extension D it suffices to show that π(G) acts
trivially on UA for this extension. Repeat the construction of § 1 and
obtain Diagram 1. Now let aeπ(G). Choose a beπ(E) such that
j\(b) — a. Then it is clear by commutativity that for t e UΛ,

iz(a)t = ?-1(i,(δ)?'(ί)i2(δ"1)) = t

since i2(π(E)) lies in the center of UE. Hence the result follows.

In the following lemmas we make use of the notation of Diagram
1.
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LEMMA 3.2. Let D be an extension of G by A. Let a: π(G) —> π(E)
be any cross section of j i carrying the identity into the identity.
Then there exists a Borel cross section β: UG —> UE of j such that

Proof. First choose any Borel cross section βr of j . Then define
β: Ua - UE by

( 1 ) for x e Uπ(G)) β(x) = Lxi?(x)
(2) otherwise define β(x) = βf{x).
Then it is clear that β is Borel and satisfies the conditions of the

lemma.

DEFINITION 3.3. (1) Let Z;(i3, U09 UA) denote the subgroup of
Z2(Ua, UA) consisting of all 2-cocycles σ such that

o{iz{g)y x) = σ{x, %{g))

for all g e π(G) and x e UG.
(2) Let Hc(i39 UG, UA) be the subgroup of H2{UG, UΛ) obtained

as the image of Zl(iz, UG1 UA) under the quotient homomorphism,
mapping Z\UG, UA) onto Z*(UG, UΛ)/B*(UG, UA) = H\UG, UΛ).

LEMMA 3.4. Let D be an extension of G by A. Let D be the
resulting extension of UG by UA obtained in Diagram 1. Then there
exists a Borel cross section β: UG —* Un of j such that the 2-cocycle
obtained from β, v, defined by v(x, y) = i~ι(β(x)β(y)β(xy)~ι) lies in
Zϊ(is, UG, UA).

Proof. Let D^ be the resulting extension of π{G) by π(A) and
let a be a cross section of j \ mapping the identity into the identity.
Then by Lemma 3.2 there exists a Borel cross section β: UG —> UE of
j such that i2a — βi2. Then observe that since i2{π(E)) lies in the
center of UE that

βis(g)β(χ) = i&{9)β{χ) = β(Φ2Φ) - β(χ)βh(g)

for all xeUG and geπ(G). Hence since i3(π(G)) lies in the center of
UG it is easily seen that v(i3(g), x) = v(x, iz{g)) for all xe UG and ge
π(G). This proves the result.

COROLLARY 3.5. Φγ(H\G, A)) c Hl(iz, UG, UA) and hence

Φ(H2(G, A)) c H!(ίz, Ua, UΛ) 0 Hl{π(G), π(A)) .

We reserve the remainder of § 3 for the argument asserting the
converse of Corollary 3.5. We fix for the rest of the section extensions
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H, and H2 such that [fΓJ e Hϊ(ί3, Uβ, UA) and [H2] e H!(π(G), π(A)).
Suppose H, — H^F, h, k) and H2 = H2(K, r, s). Since

[ffj € W(i» UG, UA)

we can and do choose a Borel cross section β of k so that the cocycle
v determined by β lies in Zf.(iz, UG, UA). Next we choose any cross
section a of s carrying the identity into the identity and let

μeZϊ(π(G),π(A))

be the cocycle determined by a. Then rμ(a, b) = a(a)a(b)a(ab)"v for
a and 6 in π(G) and Λυ(α;, 2/) = β(x)β(y)β(xy)"1 for cc and y in Z7G. We
wish to put the extensions Hλ and H2 together to construct an ex-
tension of G by A. Our approach is to construct a homomorphism
p: K—+ F which embeds K into F as a discrete central subgroup. By
taking quotients we then obtain the required extension. The homo-
morphism p is constructed in considerably more generality than is
necessary. This is to allow for certain applications in the § 4.

Let Hom(ττ(G), UA) denote the set of all group homomorphisms
from π(G) into UA.

THEOREM 3.6. Let 0eHom(τr(G), UA). Define p:K-*F by

p(x) = hii^ixiasix^^θsix^βhsix) .

Then
(1) pr = Mi, A p = i8s,
(2) pa(a) = hθ(a)β%(a) for αeττ(G),
( 3 ) ixμ{a, b) = v(%(a), ΐ3(6)) /or α αwd b in π(G),
( 4 ) p is an injective homomorphism, and
( 5 ) p(i£") is a central subgroup of F if and only if the action

of UG on θ(π(G)) is trivial.

Proof. (1) and (2) follow by direct computation. A proof of (3)
follows easily from (2) and (1) and the fact that each element of
βiz(π(G)) commutes with each element of h{UA) (see Lemma 3.1). To
prove (4) observe by computation (we omit the details), applying
Lemma 3.1 when required, that

p(xy) = h(iλμ(s(x)y s(y))v(%s(x), izs{y))ι)p{x)p{y) .

That p is a homomorphism then follows from the above equation and
(3). To show that p is injective let x lie in the kernel of p. Then
kp(x) — %s{x) — 1. Hence since % is injective s(x) — 1. Hence for
some ae τc(A), r(a) = x. Then 1 = pr(a) — hi^a). Since h and iL are
each injective the result follows. For the proof of (5) we first establish
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the following two lemmas.

LEMMA 1. βi3(π(G)) lies in the center of F.

Proof. First let xeUG and aeπ(G). Then by hypothesis

v(ii(a), x) = v(x, %(a)) .

Hence βiz(a)β(x) = β(x)β%(a). Now let teF. Then t{βi{t))~ι e h(UA)
and hence by Lemma 3.1 commutes with β%{a) for any aeπ(G). Fin-
ally

βi3(a)t = βίMitiβmy^βkit) = {t{βk{t))-ι)βi,{a)βk{t)

= {t{βk{t))~ι){βk{t))βiz{a) = tβUa) .

LEMMA 2. The action of UG on UA is trivial on i^πiA)). Hence
hix(π(A)) lies in the center of F.

Proof. First observe that ix(π{A)) is invariant with respect to
this action. For let geUG and aeiι(π(A)). Then

PI(QCL) = Pz(g)p1(d) = 1 .

Next fix any aeiι{π{A)). Then g—> ga is a continuous function of
connected set UG into discrete set iy{π{A)). Since a lies in the range
of this function the result follows. The second statement then follows.

The proof of (5) now follows from Lemmas 1 and 2 and the fact
that the action of UG on θ(π{G)) is trivial if and only if hθ(π(G)) lie
in the center of F.

We are now prepared to put the extensions Hι and H2 together
to obtain the required extension. In what follows we choose

0eHom(τr(G), UA)

so that UG acts trivially on θ(π(G)). (For example let θ be the trivial
homomorphism.) Then by Theorem 3.6 we obtain an injective homo-
morphism p of K into the center of F such that pr = hily and kp ~
izs. Let q: F~> F/p(K) be the natural quotient homomorphism. As
a quotient space F/p(K) inherits both a topological and a Borel struc-
ture from F, and q is both continuous and Borel. Now since

hiλ{π{A)) c p(K) and kp(K) c %(π{G)) ,

p and k induce unique homomorphisms i and j from A to F/p(K) and
from F/p(K) to G respectively such that ipλ = qh and jq = p^k. It
is also clear that i and j are continuous and Borel. Thus we obtain
a sequence
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D: 1 > A -^-> F/p(K) -*-» G > 1 .

We are now prepared to formulate the main result of this section.

THEOREM 3.7. (1) D is an extension of G by A.

(2) Φ&D]) = [fl-J
( 3 ) Φ2([D]) = [H2].

Hence Φ maps H*(G, A) onto H;(i3, UG, UA) φ H2

8(π(G), π(A)).

Proof. By the above we obtain a 3 x 3 commutative diagram
whose top row is H2, whose middle row is H19 and whose bottom row
is D. It is a simple matter, by chasing around this diagram, to
verify that D is exact. Since i and j are continuous to show that D
is an extension of G by A it suffices to show that F/p(K) is a locally
compact second countable Hausdorff space. This is true if and only
if p{K) is a closed subgroup of F. Thus it suffices to show that
F/p(K) is an analytic Borel space (see [1, p. 16]). (Note that the
action of UG on UA will uniquely determine the action of G on A and
hence we are guaranteed the correct action automatically). Since each
of A and G are analytic Borel spaces it suffices to produce a bijective
Borel map of A x G onto F/p(K) whose inverse is also Borel. Let
χ be a Borel cross section of ps carrying the identity into the identity.
Define 7: G —> F/q(K) by 7 = qβχ. Then it is easily verified that 7
is a Borel cross section of j carrying the identity into the identity.
Now define λ: A x G —> F/p(K) by λ(α, g) = i(a)y(g). Then λ is clearly
Borel. It is also clear that λ is bijective and in fact

Clearly λ"1 is also Borel. Hence we conclude that D is an extension
of G by A. Next note that since F is simply connected and K is
discrete, the sequence

1 >K >F >F/p(K) >1

is a universal extension of F/p(K). Finally by the above, making
use of Proposition 1.6 we conclude the theorem.

4. The kernel of Φ. It is not always the case that Φ has
trivial kernel. Let SL2(R) be the special linear group on R2. Then
it can be shown that Φ(H2(SL2(R), T) — 0 where the action is trivial.
In fact H2(SL2(R), T) ~ T. Our task is to compute the kernel of Φ
in general. Consider any extension D of G by A such that Φ([D]) — 0..
Now apply the techniques of § 1 to D to obtain Diagram I. Then
the extensions D and Ώ% split. Hence there exist Borel cross sections
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a and β of j \ and j such that a and β are each homomorphisms.
Now for any x e π(G), i2a{x){β%{x))-1 lies in the kernel of j . Hence
define θ(x) = i~\i2a{x)(β%{x)yι). It is clear that θ e Hom(π(G), UA).
Now by an argument similar to that used in Lemma 1 within the
proof of Theorem 3.6 it is easily seen that β%(π(G)) lies in the center
of UE. Also %2{π(E)) lies in the center of UE. Hence the range of
iO lies in the center of UE. Hence the action of UG on the range of
θ is trivial.

DEFINITION 4.1. Let Horn (π(G), UA)UG be the subgroup of Horn
(π(G), UA) consisting of all elements θ such that the action of UG on
ΰ(x) is trivial for each xeπ(G).

DEFINITION 4.2. Let 0eHom(τr(G), UA)UG. Define ρ(θ) e kernel Φ
according to the following construction in the course of which we
make use of the notation and results of Theorems 3.6 and 3.7. Let
Hx and H2 be trivial extensions of UG by UA and π(G) by π(A). Let
a and β be splitting homomorphisms associated with s and k. Then
by Theorems 3.6 and 3.7 ^ determines an extension D such that

= 0 and Φ2([D]) = [H2] = 0 .

Thus [D]e kernel Φ. Then define ρ(θ) - [D].

PROPOSITION 4.3. ( 1 ) The definition of ρ(θ) is independent of
the choice of splitting homomorphisms a and β.

( 2 ) p is a homomorphism of Horn (π(G), UA)UG onto the kernel
•of Φ.

Proof. Let χ: G —> UG be a Borel cross section of p3 carrying the
identity into the identity. Let η e Z2(G, π(G)) be the cocycle associated
with this cross section, i.e., η(x, y) — i^L(χ(x)χ(y)χ(xy)~1) for all x and
y in G. We first establish the following lemma.

LEMMA. Let σ = pβη~ι. Then σ e Z2(G, A) and in fact σ belongs
to the cohomology class determined by p(θ).

Proof. We continue to use the notation of Theorems 3.6 and 3.7.
Define 7: G —> F/p(K) by 7 = qβ%. Then 7 is a Borel cross section
•of j carrying the identity into the identity. Now define

σ(x, y) = i-ι{Ί(x)Ί{y)Ί{xy)-1) .

Then clearly σ e Z2(G, A) and belongs to the cohomology class de-
termined by p{θ). We shall show that σ coincides with the expression
stated in the lemma. For x and y in G,
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iσ(x, y) = Ί{x)Ί{y)i{xy)~ι = qβi3y](x, y)

= q{hθ{ψι{x, y))paη{x, y)) by Theorem 3.6—(2)

= qhθψ\x, y) = ipλθψ\x, y) .

Hence σ(x, y) = pγΘψι(x, y).
We now proceed with the proof of the proposition. Define a map

O: Horn (π(G), UA)UG —> ^ 2 (G, A) by p{Θ) — σ where σ is as in the above
lemma. Then by the result of the lemma it is easily seen that p is
a homomorphism. Let v\ Z\G, A) —> H2(G, A) be the natural quotient
map. Then the composition vp is a homomorphism and is identical to
p. Also by the equation of the lemma it is clear that p is independent
of a and β. Finally the proof that p is onto follows easily from the
introductory remarks of this section. For suppose [D] e kernel Φ.
Repeating the arguments at the beginning of this section we obtain
trivial extensions D and Zλ and splitting homomorphisms a and βt

and #eHom (π(G), UΛ)UG such that ΐθ(x)βi3(x) = i2a(x) for all xeπ(G).
Next it is easily seen that if we construct the function p: π(E) -^ UE

using a, β and θ and the definition of p given in Theorem 3.6 that
p = i2. Hence p(θ) = [D]. This shows that p is onto.

Horn (π(G), UA)UG is a vector group and hence is divisible. The
homomorphic image of a divisable group is divisible and hence the
kernel of Φ is divisible. Thus we obtain

COROLLARY 4.4. H2(G, A) s Hl{%, UG, UA) 0 H2

${π{G), π{A))&
kernel Φ.

We now compute the kernel of p. Consider the extensions Vt

and Vz in Diagram 1. Applying [10] we obtain a commutative diagram
with rows and columns exact, Diagram 4.

Horn (π(G), π{A)f

m ϋ β 9 c ^ J5L=lϊUHom(7r(G), UAf — B'(G, UA)r
Hι{U0,A) — -*Έom{π(G),A)a —^H(G,A)

la.

DIAGRAM 4.

Since π(G) acts trivially on π(A), UA, and A the functor H1 re-
duces to Horn in the appropriate column. Next observe that since
Uo is simply connected and π(A) is discrete, H2( UG, π(A)) = 0. Now
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let χ be as before, a Borel cross section of p3 in extension V3, such
that χ carries the identity into the identity. Let η e Z2(G, π(G)) be
the cocyle determined by χ. Then as a 2-cocycle rj determines the
extension V3. Then by [10, p. 53] we have an explicit representation
of d2:Hom(ττ(G), UA)

G — H2(G, UA) in terms of cocycles. For

θeϊlom(π(G), UA)
G

and x and y in G, the cocycle taking (x, y) into θ{η(x, y)~ι) belongs to
the cohomology class dj.β). Consequently, by the lemma in the proof
of Proposition 4.3 we have immediately (referring to Diagram 4)

PROPOSITION 4.5. p = pλ*d2 = d2pι* on Horn (π(G), UA)UG.

We now establish a few more preliminaries before obtaining our
final result.

PROPOSITION 4.6. Referring to Diagram 4.

Horn (τr(G), UA)
G = Horn (π(G), UA)UG .

Proof. First note that since π(G) acts trivially on UA, the action
of UG on £7̂  determines an action of G on UΛ. For # e Horn (ττ(G), C7J
and g eG g acts on θ in the following manner. For a e π(G) {gθ)(a) =
g{θ(g~ιa)). But π(G) is central in UG and hence the action of G on
π(G) is trivial. Hence (flr̂ )(α) = g(θ(a)). Hence c/61 = θ for all ί/eG
if and only if x acts trivially on the range of θ for all x e UG. The
result follows.

THEOREM 4.7. The kernel of p is

v(Hom (^(G), τr(A))) 0 i*(Hι( UG, UA)) .

kernel Φ S
UG, UA))

Proof. First note that since UG acts trivially on π(A) so does G.
Hence since G acts trivially on π(G),

Horn (τr(G), π{A))G = Horn (τr(G), τr(A)) .

Hence by exactness and commutativity of Diagram 4 and by Lemma
4.6 it is clear that the kernel of p contains the sum. Now let ae
kernel p. Then by Proposition 4.5 d2p^(a) = 0. Then by a suitable
argument involving chasing around Diagram 4 it is a simple matter
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to show that a lies in this sum. This completes the proof.

5* Special cases* We now proceed to compute H2(G, A) in the
light of the above structure theory under certain circumstances.

PROPOSITION 5.1. If G is compact or if π(G) is a torsion group
the kernel of Φ is 0.

Proof. If G is compact H2(G, UA) = 0, since UA is a vector group
(see Moore [10]). Hence by Proposition 4.5, p is trivial. Since p is
surjective onto the kernel of Φ the result is assured.

If π(G) is torsion then Hom (π{G), UA) = 0, since UA is a vector
group. Hence again by Proposition 4.5 p is trivial and the result
follows.

The following generalizes Theorem A of [10].

PROPOSITION 5.2. / / G is simply connected then

Pi,: H\G, UA) > H\G, A)

is an isomorphism.

Proof. By Proposition 5.1 the kernel of Φ is 0. Clearly

Hϊ(π(G), π(A)) = 0 .

Since i3 is trivial, H?(i3, UG, UA) = H2(UG, UA). Hence Φ is an isomor-
phism from H2(G, A) onto H2(UG, UA). Now since G is simply con-
nected p3 is an isomorphism, and hence pf:H2{G, UA) —> H2{UG, UA) is
an isomorphism. Hence the composite pt~ιΦ is an isomorphism. We
show that the inverse of this isomorphism is pλ*. Let D(E, i, j) be
any extension of G by A. Then Φ([D]) = [D] (using the usual nota-
tion of Diagram 1). Let β: UG~^ UE be a Borel cross section of j
carrying the identity into the identity. Then define 7: G —> E by 7 =
Ί>2βΊ>ϊ1 Then 7 is a Borel cross section of j carrying the identity into
the identity. Define σ and v by the equations

σ(x, y) = i

v(x, y) = i-1(β(χ)β{y)β(χy)~1) .

Then σ and v are the cocycles which determine the extensions D and
D respectively. It is easily verified that o{pz{x), p3(y)) = pxv{x, y) for
all x and y in UG. Hence on the cohomology level, p*([σ]) = Pi+([v])
But [v] = Φ([σ]). Hence p^Φ = pf. Hence we obtain Diagram 5,
with lower right part commutative, as is the entire diagram excluding
Φ.
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H2(G, UA)
 V-1—» H2(G, A.)

pi\ ^ Φ A

DIAGRAM 5.

Now let XeH2(G, UA). Then p^Φp^X) = pjp^iX) = p^pffa). Hence
ΦpΓ*(X) — pf(X) lies in the kernel of pλ*: H2(UG, UA) —> H2(UG, A). Since
ί7ί; is simply connected and ττ{A) is discrete, H2(UG, π(A)) = 0 and hence
by [10] 3V has trivial kernel. Hence the upper left-hand part of
Diagram 5 is commutative and result follows.

PROPOSITION 5.3. / / G is compact H2(i37 UG, UA) = 0 and hence
Φ: H\G< A) ~ H!(π(G), π(A)).

Proof. Since G is compact and H\π{G), UΔ) is a vector group,
Hι(G, Hι{π{G), UA)) = 0 by [10]. Hence again by [10, p. 47] the
sequence

H2(G, UA)-^>H2(UG1 UA)-^->H2(π(G), UAf

is exact. Again by [10] since G is compact H2(G, UA) = 0. Hence if
is injective. In particular the subgroup H;{iz, UG, UA) injects by i*
into H2(π(G), UA). However observe that the image under if of an
element of H;(i3, UG, UA) actually lies in H;(π(G), UA), the family of
classes of symmetric extensions of π(G) by UA. This is so since the
action of ττ(G) on UA is trivial. But UA is divisable and hence any
abelian extension of π(G) by UA splits. Since π(G) is discrete any such
extension will automatically be topological. Hence H2(π(G), UA) = 0.
We conclude that H2(i31 UG, UA) = 0. The result now follows from
Proposition 5.1.

We now further investigate the relationship between He%, U(:, UA)
and H\UG, UA).

DEFINITION 5.4. Fix veZ2(Ua, UA). For aeπ{G) and xe UG

define L(y)Jx) = v{i3(a), x)v(x, i3(a))~\

THEOREM 5.5. ( 1 ) For each a e π(G) and v e Z2( UGJ UA), L(v)a e

Z\Ua, UΛ).
( 2 ) Define L(v)a to be the cohomology class to which L(v)a be-

longs. Then L(v) is a hoπiomorphism of π{G) into Hι(UG, UA).
( 3 ) L is a homomorphism from Z2( UG, UA) into

Hom(ττ(G), H\UC, UA)) ,
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and B2(UG, UA) lies in the kernel of L.
( 4 ) Hence L determines a homomorphism T of H2(UG, UA) into

Hom(τr(G), Hι(Uβ, UA)).
( 5 ) The kernel of T is precisely H2(i3, UG9 UA).

Proof. We omit most of the computational details necessary to
establish the theorem. The reader is referred to the identity (2) of
p. 171 of G. W. Mackey [7] and the fact that π(G) acts trivially on
UA. From these facts the following identities can easily be derived:
For veZ2(UG, UA), aeπ(G) and x and y in UG:

( 1 ) L{v)a{xy) = (L(vUx))(xL(i>)a(y))
( 2 ) L(v)ab(x) = L(vUx)L{v)b(x)(xvlis{a), Ub)))v(is(a)> %(b))-\

Part 1 then follows immediately from equation (1) above. Since the
mapping taking xeUG into xv(iB(a)9 i3(b))v(i3(a), ^(δ))"1 belongs to
Bι(UG, UA) it easily follows from identity (2) above that L(v) is a
homomorphism. This proves 2. It is a trivial matter that L is a
homomorphism. Next let Θ be any Borel mapping from UG to UA

carrying the identity into the identity. Then θ determines a cobound-
ary η0 satisfying equation (3) of [7, p. 172]. Then for aeπ(G) and
xe UG it is easily seen that L{ηQ)Jx) — θ(iz(a))(xθ(iz(a)))~ι and hence
L(7jo)a lies in Bι(UG, UA). Hence L{η0) = 0. This proves 3. The proof
of 4 is now immediate, T being the obvious induced mapping on the
quotient.

We now establish 5. Let \eH2

c(%, UG, UA). Then there exists
an element veZ2

c(i3, Uβ, UA) such that v e λ . Hence

v(i*(a), x)v{x, iz{a))~ι = 1

for all aeπ(G) and xe UG. Hence T(X) = 0. Conversely suppose λ e
kernel T. Choose a cocycle v in λ. Then L(v): π(G)-* B\UG, UA).
Hence for each a e π(G) there exists a tae UA such that

L(v)a{x) = {xta)t~ι

for all x e UG. Thus a-+ta determines a map from π(G) into UG, and
it can be taken so that tΣ = 1. This map can then be 'extended' to
a Borel function ψ from UG into UA satisfying the condition that
Φ{i*{a)) = ta for all aeπ(G). Then φ determines a coboundary δφ e
B\Uβ, UA). Let v' = v + δφeZ\U0, UA). Then

1 = xta{ta)~ιta{xtar
ι = 1 .

Hence v'(%(a), x) = v{x, %(a)). Hence vf e Z2

C{%, UG, UA). Hence

[v'] = [v] = XeHϊ(i,, Uβ, UA).

COROLLARY 5.6. / / π{G) is a torsion group then Hϊ(i3, UG, UA) -
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H\UG, UA).

DEFINITION 5.7. An abelian group H is almost torsion if the
quotient group if/torsion H is cyclic.

LEMMA 5.8. / / π(G) is almost torsion then L(v)a(iz(b)) = 1 for
all veZ2(UG1 UA) and a and b in π(G).

Proof. Fix a veZ2(UG1 UA) and a and b in π(G). Then there
exist elements r, s, and t in 7r(G) such that s and ί are torsion ele-
ments and there exist integers m and n such that a — rms and b —
rnt. Then L(v)a = £(v)rms = mL{v)r + L(i ), = mh(v)r since s is torsion
and H^Uβ, UA) is torsion free.

Now ΐ3 induces a map on the cohomology level it: Hι(UG, UA) —>
H\π(G), UΛ). Now since π(G) acts trivially on UAi Bι{π{G), UA) = 0
and Zι{π{G), UA) is Hom(τr(G), UA), the group of homomorphisms.
Consequently the composition L(v)r% is a homomorphism. Hence

L(v)a{i,φ)) = (mL(v)r)(i,φ)) = (mL(v)r)(Urnt))

- (mL(v)r)(Ur*)) = (mnL(v)r)(Ur)) .

But (mnL(v)r)i3(r) = (v(i3(r), i3W)^(^(^), ^O*))"1)7™ = 1. Hence the re-
sult.

THEOREM 5.9. If π(G) is almost torsion and G is compact T =
0 and hence H2

c{izi Uβ9 UA) = H*{Uβ, UA) = 0.

Proof. Fix veZ2(UG, UA). Then by Lemma 5.8, ΐ3*L(^) is trivial.
Now by [10] the sequence

0 > H\G, UA) - ^ ίί^f/,, C7̂ ) — ^ ( ^ ( G ) , ί7Jff

is exact and hence L(v) lies in the image of p3*. But since G is
compact and UA is a vector group Hι(G, UA) — 0 by [10]. Hence
L(v) is trivial. We conclude that T is trivial and hence the result
follows.

The following theorem which we state for central extensions does
not seem to generalize for arbitrary topological extensions.

THEOREM 5.10. Suppose the action of G on A is trivial. Then
if G is semisimple

Hϊ(it, UG, UA) = H2(UG1 UA) .
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Proof. Let veZ2(UG, UA). Then since the action of UG on UA

is trivial L(ιήa is a homomorphism of UG into UA for each aeπ(G).
Now since G is semisimple so is UG. Hence L(v)a is trivial for each
veZ2(UG1 UA) and for each aeπ(G). Hence T is trivial and the re-
sult follows.

Recall by Proposition 5.3 that if G is compact

Φ: H*(G, A) ~ H!(π(G), π(A)) .

Now π(A) is a finite product of copies of the integers, Z and hence
H2

s{π{G), π{A)) is a finite product of copies of H!(π(G), Z).

PROPOSITION 5.11. If π(G) is finitely generated then

H2(π(G), Z) = Hϊ(π(G), Z) = {torsion π(G)Γ ,

the Pontryagin dual of the torsion subgroup of π(G).

Proof. Since π(G) is finitely generated π(G) ~ F φ K where F
is free and K is the torsion part of π(G). Then by [8] H2(F, Z) = 0
and H2(K, Z) = K. From the exactness of the sequence,

we obtain, assuming that all group actions are trivial,

> Horn (π(G), Z) -^U Horn (F, Z) JL*H2(K, Z)

Next note that since K is torsion ί* is an isomorphism. Thus we
obtain the exactness of the sequence

0 - ^ H2(K, Z) -il> H2(π(G), Z) > 0 .

Hence j * is an isomorphism and we conclude that H2(π(π(G), Z) = K.
Next observe that H2(K, Z) = H2

S{K, Z). For let

be any central extension K by Z. Let σ: K x K-^ Z be any cocycle
associated with this extension. Fix a e K. Then define

La(x) = σ(a, x)σ(x, a)'1

for xeK. Then La:K—*Z is a homomorphism. Hence since K is
torsion and Z is free, La is trivial for all ae K. Hence σ is symmetric
and therefore H\K, Z) = HΪ(K, Z).
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Finally i* maps symmetric cohomology classes onto symmetric
classes and hence since j * is an isomorphism,

H2(π(G), Z) = Hϊ(π(G), Z) .

The author wishes to express his appreciation to Prof. C. C. Moore
under whose direction this research was done.
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