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A DECOMPOSITION THEOREM FOR TOPOLOGICAL
GROUP EXTENSIONS

ARNOLD J. INSEL

G. W. Mackey has developed a characterization of the
group of equivalence classes of extensions of a fixed group G
by a fixed abelian group A restricting all groups to be locally
compact second countable Hausdorff spaces. Calvin C., Moore
incorporated his results into a cohomology theory of group
extensions such that the second cohomology group, H*G, A),
coincides with Mackey’s group of extension classes, The pur-
pose of this paper is to consider the special case in which G
and A are connected, A is a Lie group, G is locally arcwise
connected and locally simply connected. Under these condi-
tions G and A admit universal covering groups Uz and U,.
Allowing 7n(G) and =(A) to denote the fundamental groups of
G and A respectively (with basepoint the identity) any ex-
tension of G by A determines an extension of Uz by U, and
an extension of 7n(G) by n(A) uniquely up to equivalence.
Hence there is a map @, in fact a homomorphism, constructed
from H*G, A) to H¥(Ug, Uy @ H¥=(G), n(4)). In this paper
H*G, A) is determined as a direct sum of subgroups of
H2(Ug, Us) and H2%(z(G), =(A)), and of a third group which is
computed.

Throughout all topological groups are assumed to be locally com-
pact, Hausdorff and second countable.

Let G and A be topological groups, A abelian. A is called a G-
module if there is given an action of G on A, that is, a continuous
function from G x A into A, carrying (g, @) onto ga, such that (i)
for any fixed g € G, the mapping of A into A determined by a — ga
is an automorphism, (ii) the automorphism thus determined by the
identity of G is the identity automorphism, and (iii) for any ¢ and %
in G and ac A, (gh)a = g(ha). If A is a G-module then an extension
of G by A is an exact sequence

Dil—Ad— g l.6—1

such that E is a topological group, i: A — i(A) is a homeomorphism
and E/i(A) is topologically isomorphic to G or equivalently, j is open,
and finally, the action of G on A defined by xa = ¢ '(xi(a)x")coincides
with the given action of G on A. Sometimes, when G and A are
fixed, and when no confusion can arise, the extension D will be de-
noted by D(E, 4, 5). Two extensions D(E, ¢, j) and D'(E’, 7, j’), of G
by A are called equivalent if there is a topological isomorphism ¢ of
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E onto E’ such that ¢7 = ¢’ and j'¢ = 5. Let Ext (G, A) denote the
family of eguivalence classes of group extensions of G by A. The
problem of determining Ext (G, A) was essentially solved by G. W.
Mackey in [7] by applying certain results on Borel groups proved in
[6]. The solution involves the theory of analytic Borel spaces (c.f.
the introduction of [1]). We shall assume the definitions and results
of [1]. One useful result is that for the exact sequence

Dil—dA—sEB .61

to be an extension of G by the G-module A, the requirements on %
and j can be weakened to only require that ¢ and 5 be continuous.
One proves that ¢ is a homeomorphism of A onto i(4) and j is open.
In [10] C. C. Moore incorporates Mackey’s solution to the extension
problem into a cohomology theory of topological groups. In his theory
the second cohomology group of G with respect to 4, H*G, A), can
be put into a one-to-one correspondence with Ext (G, A). We shall
draw upon the results of [10] and identify Ext (G, A) with H*G, A).

1. Construction of @. We fix topological groups &G and A so
that A is a connected abelian Lie group with an action of G, and G
is connected, locally arcwise connected, and locally simply connected.
We fix an extension

Dil—A B .61

of G by A.

ProrosiTiON 1.1. j: E— G is a locally trivial fibre space with
fibre A.

Proof. A is a product of a vector group K™ and an n-torus 77,
and hence A is a covering group for 7™ ". Hence the result easily
follows from [3] and the fact that A acts on E as a group of trans-
formations by a(x) = i(a)x.

ProrosITION 1.2. E 1s connected, locally arcwise conmected and
locally simply connected. Hence E as well as G and A admit uni-
versal covering groups.

Proof. E is connected since 4 and G are. By Proposition 1.1,
E is locally a product of A and G. Thus the other two properties
carry over from A and G to E. Thus A, E and G each more than
satisfy the conditions required to construct covering groups (e.g., see

[2D-
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Let U,, Uz, and U, denote the respective universal covering groups
of A, E, and G, with respective projections »,, »,, and p,. It is well
known that the kernel of each p;, is a closed, countable, discrete,
and central subgroup. Also the kernel of each p, can be considered
the fundamental group of A, E, and G respectively, and is therefore
denoted by n(4), z(F), and 7n(G). Let i, 1,, and 7, denote the inclusion
maps of 7(A) into U,, etc. Thus we obtain three exact seyuences

ViUy 3, 2), Vo Up, 15, po)  and - Vy(Us, 45, Do)

Each V, is an extension of the appropriate group by the appropriate
fundamental group, with trivial group action. Since U,, U, and U, are
simply connected, the homomorphisms 7 and j lift to unigque homo-
morphisms ¢ from U, to U, and j from U, to U, such that p,i = ip,,
and p,J = jp,. It is easily seen that ¢ maps the kernel of p, into
the kernel of p, and that 5 maps the kernel of p, mto the kernel of
P;, yielding homomorphisms 4, and j, with 4,2, = - 74, and 4y, = Ji,
Thus we obtain a 3 by 3 commutative diagram.

Vi Ve Vs
1 1 1

D1 — 7(A) — 2(B) 25 2(G) — 1

i1 12 s
;
Dt—b U, — U, — U, —1
D1 2 3

DiaGraM 1.

Let D, denote the top row and D, the middle row of Diagram 1. Of
course D, V,, V,, and V, are exact sequences.

PROPOSITION 1.3. (1) D, and D are exvact sequences.
(2) The induced action of U, on U, is compatible with the
given action of G on A. That s, for any xe U, and te U,,

p.(@t) = (ps(2))(p.(D)) .

Furthermore this action 1is the only action of U, on U, compatible
with the action of G on A.
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(3) D, and D are extensions of U; by U, and 7(G) by w(A)
respectively, with the action of (2), of U, on U,, and trivial action
of (@) on w(A).

Proof. First note that, by the construction of the universal
covering groups, 7, and j, are actually the standard morphisms induced
by the functor = = 7, operating on 7 and j. By Proposition 1.1 j:
E— G is a fibre space with fibre A and hence we obtain the exact
homotopopy sequence of the fibering (see [5], ». 152):

7(G) ~% 1(A) 5 7(B) L 16) —Z 7 (4)

Since G is an inverse limit of Lie groups (e.g., see [9]) by [11],
7,(G) = 0. Since A is connected, 7,(4) = 0. Hence D, is exact. Ex-
actness of D follows by standard diagram chasing (see [8], p. 51);
the needed condition 77 is trivial holds, since j¢ maps the connected
group U, into the discrete group :(z(G)).

The first part of (2) follows simply from the commutativity of
diagram 1. For the second part let « and 8 be two actions of Uj
on U, compatible with the action of G on A. Then for any xz ¢ U,
and te U,, p(a(z,t) = p.(B(x, t)) = (ps(x))(p.(t)). Define a function
F from U; x U, to U, by F(x,t) = a(z, t)(8(x, t))"*. Then p F is
trivial, and hence the range of F' lies in 7,(w(4)), a discrete set. Con-
nectedness of U, x U, and continuity of F' imply that o = g.

The proof of (3) is trivial once (1) and (2) are established.

Thus the extension D determines extensions D and D,. Now D
and D, determine equivalence classes say

[Dle H¥(U,, U,) and [D.]e H¥x(G), =(4)) .

ProrosiTioN 1.4. Let D = D(E, ,37) and D' = D'(E’, 7, 7') be two
extensions of G by A. Then if D is equivalent to D', [D] = [D'] and
[D.] = [Di].

Proof. Let f be a topological isomorphism from E onto E’ such
that fi =4’ and j’f = j. Then there exists a unique lifting f of fF
from U, onto U, such that f is a topological isomorphism from U,
onto Uy, fi =1, and 7°f = 7. Hence f establishes an equivalence
between D and D’. Similarly on the homotopy level, £, is an isomor-
phism between n(E) and n(E’), and f.i, =i and j.f, = j.. Hence
[D.} = [Di].

Thus as a result of Proposition 1.4 we define mappings @, and @,
each from H*G, A) with @, going into H*U,, U,) where the action
of U; on U, is the unique one compatible with the action of G on A4,
and @, going into H*(n(G), ©(A)) where the action of 7(G) on 7w(4) is
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trivial, and where 9,([D]) = [D] and @,(D]) = [D,]. Since #(E) is
always abelian, @, actually maps H*G, A) into the subgroup of
H*n(G), 7(A)) of the classes of symmetric extensions which we denote
by HX(7(G), w(4)). Combining @, and @, we obtain a mapping

Q= 0, P 0, H(G, A) — H¥U; U,) @ H:(x(G), 7(4)) .

In § 2 we establish that @ is a homomorphism. Before we do this we
make an observation about the above construction. Note that we
carefully choose the vertical extensions of Diagram 1 to be constructed
in a specified manner (e.g., see [2]). This is important since there
exist inequivalent extensions involving the universal covering group
of a given group. For example, consider the following two inequiv-
alent extensions of the 1-torus, 7, by the integers Z. Letting R
denote the real numbers we have:

(1) 1 zZ—>R=22

1 exp

(2) 1 Z—>R

T 1 and
T 1.

Here exp is the exponential map of R into 7, 7 is the identity injec-
tion of Z into R, and —7 sends an integer n into the real number
—n. Extensions (1) and (2) are inequivalent. The first extension is
the one obtained by following the procedures of [2]. One may ask
whether the substitution of inequivalent vertical extensions in Diagram
1 will give rise to inequivalent horizontal extensions. There can be
a certain ambiguity to the definition of @ unless we specify how we
are to choose the vertical extensions. We do have one result, however,
which does simplify the problem and which will be useful in subsequ-
ent sections.

DEFINITION 1.5. Let E be a connected, locally arcwise connected,
and semi-locally simply connected group. Then the extension V(F', p, q)
is called a universal covering extension of E if F is a universal cover-
ing group for K with projection q.

PROPOSITION 1.6. Let V,(F, p,q) be any universal covering ex-
tension of the group E in Diagram 1. Let K denote the domain of
p. Then there exist unique continuouws homomorphisms r,s, h, and k
such that r:7w(A)— K s: K— (@), h: U,— F, and k: F— U, and
such that the new diagram obtained from Diagram 1 is commutative.
That is such that pr = hi,, qh = i1p,, 1,8 = kp, and jq = p.k.

Furthermore, defining

r 8

H;: 1— () - K25 2(6) — 1
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and H,: 1 PN TN R

then H, and H, are extensions equivalent to D and D, respectively
(see Diagram 1).

Proof. Let us substitute VJ for V, in the construction of Diagram
1. Then repeating earlier arguments we see that 7 and ;7 induce
homomorphisms h: U,— ¥ and k: F— U,, mn(4)— K and s: K—
7(G). Thus we obtain 2 new 3 x 3 commutative diagram which is
the required one for this proposition. H, and H, are seen automatic-
ally to be extensions. The uniqueness of & and % follow from the
type of topological argument involving connectedness and continuity
which we have already seen. The proofs that » and s are unique
involve simple algebraic arguments and are omitted. Hence we only
have left to prove the equivalence of H, to D and H, to D,. Since
F and U, are simply connected there exists a unique topological
isomorphism »: U, — F such that p, = ¢\. Since p,i = ip, = ¢qh, we
have that g\ = gh. Hence for all we U,, q\i(z)h(z~)) =1 and
therefore ni(x)h(z~') e p(K), a discrete set. Hence \i = h. Similarly
J = kxn. Hence H, is equivalent to D. Next observe that Ny (m(R)) <
»(K). Hence define X = p~'\i,. Then by a simple algebraic argument
it is seen that X is an isomorphism from 7(E) onto K and that Xi, = »
and s\ = j,. Hence H, is equivalent to D..

2, @ is a homomorphism. The proof that @ is a homomorphism
necessitates the examination of an equivalent method of summing
elements of H*G, A) called the Baer sum. It involves the direct con-
struction of a new group extension from two given extensions. KEx-
tension equivalence is a congruence with respect to this binary opera-
tion and hence there is defined a binary operation on H*G, A), the
Baer sum. This operation coincides with the group operation on
H*G, A). Their equivalence is shown in [8] for the nontopological
case. For topological group extensions the same proof carries over,
but with the appropriate measure theoretical arguments, applying the
theory of Borel spaces. Since it is an integral part of our proof, we
shall briefly outline the construction. Let D (¥, f,, 9.) and Dy(E,, /3, 9.)
be two extensions of G by A. Define

E={x,yeE x E:g() = 0.0} .

Define a map j: E — G by j(¢, ¥) = ¢.(¥). Then letting ¢ denote f, > 7
we obtain an extension

b l—sAxA—b Bl G—1
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of G by A x A, where G actson A x A pointwise. Next define 44
A X Aby 44 = {(a, a™): a € A}. Then 44 is invariant under the action
of G. Hence we may ‘divide’ the extension by A obtaining a new
extension

1— A x AJJA - BT (4A) 2 G —1

where i’ and j are the cannonical maps obtained from 7 and 7 as a
result of taking quotients. Finally let 6,: A— A x A/4A be the
isomorphism defined by taking the element a into the coset (a, 1)4A.
Note that 67'((a, b)4A) = ab. Now define ¢ = ¢'d,. Then we obtain
an extension

1 A BT (A 26— 1

of G by A. This extension is the required one whose equivalence class
is the sum of [D,] and [D,]. Naturally the same method of summing
may be applied to compute sums for H*(U, U,) and H*w(G), m(4)).

Our plan is to apply the method of construction simultaneously to
the sum of two extensions of G by A and to the sum of each pair if
images under @, and @,. Consider the extensions D, and D, above.
For each of these extensions we obtain a 3 x 3 commutative diagram
as in Diagram 1. If we take the product of these two diagrams we
obtain a new diagram, Diagram 2.

1 1 1
1 — 2(4) x 2(4) L8, (B % 2(B) L 2(6) x 7(G) — 1
71 X 11 lt; X 1 13 X 13
1— U, x U, 228 p, v, 2%, U, x U, —1
P1 X P1 1p§ X py’ P3 X P3
1— AxA I, mByEm 2%, GxG¢ —1
1 1 1
DIAGRAM 2.

If we now continue the process of simultaneously constructing the
]iaer sum in each of the three rows we obtain groups n(E), U, and
F defined by
T(E) = {(a, b) e 7(E) X w(E,): gu(a) = gx(D)} ,
U ={(z,y) e UE,_ X UEZ: g.() = ()},
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and E, defined as in the beginning of this section. Then also as in

the beginning of this section we obtain maps, 7,7, and T 7, 7, and
J:» Then it is easily seen that, referring to Diagram 2,

vy x pY(U) C E
and i, x i)/(w(E)) c U,. In fact it is easily seen that

N2 <1y ’ r
U XY Py XDy

w: 1 w(E) U, E 1

is an exact sequence and hence an extension. We thus obtain a
commutative 3 x 3 diagram with the above sequence, W, as the
middle vertical sequence, V, (see Diagram 1) as the right most vertical
sequence, and the left vertical sequence coinciding with the left most
vertical sequence of diagram 2. Next observe that i, x 7,(47(A)) c 4U,
and p, x p,(dU,) < 4A. Hence 7, X ¢, induces a homomorphism 7, from
n(A) x w(A)/dr(A) to U, x U,/4U,. Also note that (0., = 0,,1.
Similarly we obtain a homomorphism p] such that 6,p, = pif,,. Now
if we devide the horizontal sequences by the appropriate 4’s and
substitute the extension V, of diagram 1 for the left most vertical
extension we obtain a 3 x 3 diagram

1 1 1

1 —— 7(4) — TE) fis(dn(A)) 2 7(G) — 1

71 P 3

i J

1— U, — U 1(4U) — U, —1
P1 q ps
1—s A s Eli(44) - ¢ —1

1 1 1
DIAGRAM 3.

where p and ¢ are induced from 7, x 7, and p| x p, by taking quotients
of T(E) by i, (dn(A) and U, by 2(4U,). It should be verified that
the middle vertical sequence of diagram 3 is exact and that the entire
diagram is commutative. We now need a few facts concerning topo-
logical properties of the middle vertical sequence.

PROPOSITION 2.1. U,/1(4U,) is simply connected and p embeds
(&) [1.(dn(A)) as a discrete subgroup. Hence the middle vertical se-
quence of Diagram 3 is a universal covering sequence jor E/i(4A4).
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Proof. By a repetition of the argument of Proposition 1.1 it is
easily seen that j: Up/t(4U,) — U, is a fibre space with fibre U,.
Hence applying the homotopy sequence of a fibre space [5] and the
fact that U, and U, are simply connected we obtain the first result.
The second assertion follows from the fact that w(E)/i,(4m(4)) is itself
discrete and p embeds this discrete group homeomorphically into
Tg/1(4U,). Hence the final result follows.

We are now prepared for the main result.
THEOREM 2.2. @,, @, and hence @ are homomorphisms.

Proof. Given the extensions D, and D, above, follow the construc-
tion outlined above to obtain Diagram 3. Then we obtain three
horizontal extensions, the lowest belonging to the class [D,] + [D.], the
middle belonging to class @,([D,]) + @,([D,]), and the top belonging to
the class @,([D,]) + @,(D,]). However by Propositions 1.6 and 2.1 the
middle horizontal extension belongs to @,([D,] + [D.]) and the top
horizontal extension belongs to class

o,([D.] + [Dy]) -

Hence 9,, @,, and & are homomorphisms.

3. The range of ®. We have seen previously the range of @,
is contained in Hi(z(G), ©(4)). We now attempt to find the range of
®,. To begin with, observe that since U, acts on U, we may define
an action of 7(G) on U, by mapping (g, t) into 4;(9)¢t for g e #(G) and
te U,.

LemMA 3.1. The action of n(G) on U, defined above is trivial.

Proof. Let D(E,1,j) be any extension of G by A (e.g., the
trivial semidirect product). Then since the action of U, on U, is
independent of the extension D it suffices to show that =(G) acts
trivially on U, for this extension. Repeat the construction of § 1 and
obtain Diagram 1. Now let aen(G). Choose a ben(E) such that
Ji(d) = a. Then it is clear by commutativity that for te U,,

i@t = 17 (1,(0)T(1)i,(07) = ¢

since 7,(7(&)) lies in the center of Up. Hence the result follows.

In the following lemmas we make use of the notation of Diagram
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LEMMA 3.2. Let D be an extension of G by A. Let a: n(G) — n(K)
be any cross section of Jj. carrying the identity into the identity.
Thew there exists a Borel cross section G: U,— U, of j such that
T = B,

Proof. First choose any Borel cross section 8" of 7. Then define
8:U,— U, by

(1) for zei(x(G) B = @)

(2} otherwise define B(x) = 8'(z).

Then it is clear that g is Borel and satisfies the condltlons of the
lemma.

DEerFiNITION 3.3, (1) Let ZXi, U, U, denote the subgroup of
ZX (U, U,y consisting of all 2-cocycles ¢ such that

o{1(¢), ) = olw, 1(9))

for all gen(G) and z ¢ U,.

{(2) Let Hi; Uz U, be the subgroup of H*(U,, U, obtained
as the image of Z:(i, U;, U, under the gquotient homomorphism,
mapping Z*(U;, U,) onto Z*(U;, U,)/B*(Us, Uy = HY(U;, U)).

LEMMA 3.4. Let D be an extension of G by A. Let D be the
resulting extension of U, by U, obtained in Diagram 1. Then there
evists a Borel cross section G: Uz — Ug of j~ such that the 2-cocycle
obtained from B, v, defined by v(x, y) = 1-(B@)BW)BEY)™") lies in
Z3 (s Usy Uy

Proof. Let D, be the resulting extension of 7(G) by z(4) and
let @ be a cross section of j., mapping the identity into the identity.
Then by Lemma 3.2 there exists a Borel cross section g: U, — U, of
7 such that i,x = 8i,. Then observe that since i,(w(E)) lies in the
center of U, that

Bis(9)B(x) = 1.2(9)B(x) = B(w)i.n(9) = B(x)Bi(9)

for all v e U, and gen(G). Hence since 7,(z(G)) lies in the center of
U, it is easily seen that v(i,(g), x) = v(x, 15(g)) for all xe U, and g¢
7(G). This proves the result.

COROLLARY 3.5. @,(H¥G, A)) C Hi(i,, Uy Uy and hence
D(HXG, A) c H(, U, Uy @ Hiw(G), m(4)) -

We reserve the remainder of 33 for the argument asserting the
converse of Corollary 3.5. We fix for the rest of the section extensions



A DECOMPOSITION THEOREM 367

H, and H, such that [H]e HXi, U Uy and [H,)] € HiAx(G), w(4)).
Suppose H, = H,(F, h, k) and H, = H,(K, r,s). Since

[H.] e His, Usy Ul

we can and do choose a Borel cross section 5 of & so that the cocycle
v determined by g lies in ZX(4,, U U,). Next we choose any cross
section « of s carrying the identity into the identity and let

re z;(n(G), ©(A))

be the cocycle determined by «. Then rp(a, b) = a(a)ad)a(ad)™ for
a and b in 7(G) and hv(z, y) = B(x)B(Y)B(xy)~" for z and y in U,. We
wish to put the extensions H, and H, together to construct an ex-
tension of &G by A. Our approach is to construet a homomorphism
p: K — F which embeds K into F' as a discrete central subgroup. By
taking quotients we then obtain the required extension. The homo-
morphism p is constructed in considerably more generality than is
necessary. This is to allow for certain applications in the § 4.

Let Hom (7(G), U,) denote the set of all group homomorphisms
from 7#(G) into U,.

THEOREM 3.6. Let 6 € Hom (n(G), U,). Define p: K— F by

p) = h(ir(@(as))™)0s()) Bis(@) -

Then

(1) pr = hi, kp = 1ss,

(2) pa(a) = hb(a)Bi(a) for aen(G),

(3) dpa, b) = v{is(a), i5(0)) for a and b in n(G),

(4) p is an injective homomorphism, and

(5) »(K) is a central subgroup of F if and only if the action
of U; on 0(x(G@)) is trivial.

Proof. (1) and (2) follow by direct computation. A proof of (3)
follows easily from (2) and (1) and the fact that each element of
Bi(mr(G)) commutes with each element of A(U,) (see Lemma 3.1). To
prove (4) observe by computation (we omit the details), applying
Lemma 3.1 when required, that

pey) = h(ip(s(x), s(@)r(i:s(x), s(y)) ) p@)P(Y) -

That p is a homomorphism then follows from the above equation and
(3). To show that p is injective let z lie in the kernel of ». Then
kp(x) = i,s(x) = L. Hence since ¢, is injective s(x) = 1. Hence for
some a € w(A), 7(a) = x. Then 1 = pr(a) = hi,(a). Since & and 7, are
each injective the result follows. For the proof of (5) we first establish
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the following two lemmas.
LEMMA 1. Biy(w(G)) lies in the center of F.

Proof. First let xe U, and aen(G). Then by hypothesis
Y(is(a), x) = v(, i5(a)) .

Hence pi(@)B(x) = B(x)Bi(a). Now let te F. Then #(8i(t))e h(U,)
and hence by Lemma 3.1 commutes with 8i,(a) for any a € 7(G). Fin-
ally

Bis(@)t = Biy(a)(E(Bk(t) ) BE() = ((Bk(2)™)B1i:(a) Bk (t)
= (t(Bk(©)™)(BE(t))Bis(@) = tBis(a) .

LEMMA 2. The action of Uz on U, is trivial on i,(x(A)). Hence
hi(w(A)) lies in the center of F'.

Proof. First observe that 7, (w(A4)) is invariant with respect to
this action. For let ge U; and ac,(7(A)). Then

p.(90) = pPs(9)p.(@) = 1.

Next fix any a€i,(w(A)). Then g— ga is a continuous function of
connected set U, into discrete set i,(m(A4)). Since @ lies in the range
of this function the result follows. The second statement then follows.

The proof of (5) now follows from Lemmas 1 and 2 and the fact
that the action of U, on 6(n(G®)) is trivial if and only if 26(zx(G)) lie
in the center of F.

We are now prepared to put the extensions H, and H, together
to obtain the required extension. In what follows we choose

0 € Hom (#z(G), U,)

so that U, acts trivially on 6(z(G)). (For example let 6 be the trivial
homomorphism.) Then by Theorem 3.6 we obtain an injective homo-
morphism p of K into the center of F' such that pr = ht, and kp =
1,8. Let q¢: F— F/p(K) be the natural quotient homomorphism. As
a quotient space F/p(K) inherits both a topological and a Borel struc-
ture from F, and ¢ is both continuous and Borel. Now since

hi(m(A) c p(K) and kp(K) Ciy(n(G)) ,

p and %k induce unique homomorphisms 4 and j from A to F/p(K) and
from F/p(K) to G respectively such that ip, = ¢k and jq = pk. It
is also clear that ¢ and j are continuous and Borel. Thus we obtain
a sequence
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D: 1— A5 F/p(K) 2> G—1.
We are now prepared to formulate the main result of this section.

THEOREM 3.7. (1) D is an extension of G by A.
(2) (D)) = [H]
(3) O([D]) = [H].
Hence ® maps HG, A) onto H:(i,, U, U, @ H:(w(G), ©(A)).

Proof. By the above we obtain a 3 x 3 commutative diagram
whose top row is H,, whose middle row is H,, and whose bottom row
is D. It is a simple matter, by chasing around this diagram, to
verify that D is exact. Since 7 and j are continuous to show that D
is an extension of G by A it suffices to show that F/p(K) is a locally
compact second countable Hausdorff space. This is true if and only
if p(K) is a closed subgroup of F. Thus it suffices to show that
F/p(K) is an analytic Borel space (see [1, p. 16]). (Note that the
action of U; on U, will uniquely determine the action of G on A and
hence we are guaranteed the correct action automatically). Since each
of A and G are analytic Borel spaces it suffices to produce a bijective
Borel map of A X G onto F/p(K) whose inverse is also Borel. Let
Y be a Borel cross section of p, carrying the identity into the identity.
Define v: G — F/q(K) by v = qBx. Then it is easily verified that v
is a Borel cross section of j carrying the identity into the identity.
Now define »: 4 X G— F/p(K) by Ma, 9) = 4(a)¥(g). Then \ is clearly
Borel. It is also clear that ) is bijective and in fact

AT @) = (@O @) )T, @)

Clearly ' is also Borel. Hence we conclude that D is an extension
of G by A. Next note that since F' is simply connected and K is
discrete, the sejuence

1 K F F/p(K)— 1

is a universal extension of F/p(K). Finally by the above, making
use of Proposition 1.6 we conclude the theorem.

4, The kernel of @. It is not always the case that @ has
trivial kernel. Let SL,(R) be the special linear group on R:. Then
it can be shown that @(H*(SLy,(R), T) = 0 where the action is trivial.
In fact H¥SL,(R), T) = T. Our task is to compute the kernel of @
in general. Consider any extension D of G by A such that @([D]) = 0.
Now apply the techniques of §1 to D to obtain Diagram I. Then
the extensions D and D, split. Hence there exist Borel cross sections
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a and g of j, and 7 such that a and B are each homomorphisms.
Now for any xe n(G), i,2(x)(Ri,/x))~" lies in the kernel of 7. Hence
define 0(z) = i7'(i,0(x)(B1s(x))""). It is clear that 6e Hom(x(G), U,).
Now by an argument similar to that used in Lemma 1 within the
proof of Theorem 3.6 it is easily seen that B7,(z(G)) lies in the center
ﬂgf Ug. Also i,{m(E)) lies in the center of U,. Hence the range of
10 lies in the center of U,. Hence the action of U, on the range of
4 is trivial.

DErFINITION 4.1. Let Hom (z(G), U,},, be the subgroup of Hom
(7(G), U,) consisting of all elements # such that the action of U, on
f(x) is trivial for each xe 7(G).

DEFINITION 4.2. Let 6 € Hom (7(G), U,)y,. Define o(0) ¢ kernel @
according to the following construction in the course of which we
make use of the notation and results of Theorems 3.6 and 3.7. Let
H, and H, be trivial extensions of U; by U, and 7(G) by 7(4). Let
« and B be splitting homomorphisms associated with s and .. Then
by Theorems 3.6 and 3.7 0 determines an extension D such that

o([D]) = [H] =0 and O [D]) =[H]=0.
Thus [D] € kernel @. Then define p(6) = [D].

PROPOSITION 4.3. (1) The definition of p(0) is independent of
the choice of splitting homomorphisms « and .

(2) p is a homomorphism of Hom (n(G), Uyy, onto the kernel
of @.

Proof. Let y: G— U, be a Borel cross section of p, carrying the
identity into the identity. Let e Z%G, n(G)) be the cocycle associated
with this cross section, i.e., 7(x, ¥) = 7' (x@)x(¥)x(xy)™") for all x and
y in G. We first establish the following lemma.

LEMMA. Let 0 = p,0y~'. Then o¢c Z*G, A) and in fact o belongs
to the cohomology class determined by p(0).

Proof. We continue to use the notation of Theorems 3.6 and 3.7.
Define 7: G — F/p(K) by v = qgB). Then v is a Borel cross section
of j carrying the identity into the identity. Now define

oz, y) = (@ @)rey)”) .

Then clearly oe¢ Z*%G, A) and belongs to the cohomology class de-
termined by ©(f). We shall show that ¢ coincides with the expression
stated in the lemma. For z and v in G,
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10(x, y) = Y@YW (Yy) T = 9BLN(w, Y)
= q(h0(~(z, y))par(x, y)) by Theorem 3.6—(2)
= qhOy\(x, y) = 10,07 (%, ) .

Hence o(z, y) = p.077'(x, y).

We now proceed with the proof of the proposition. Define a map
0: Hom (7(G), Uy, — Z*G, A) by p(f) = 0 where o is as in the above
lemma. Then by the result of the lemma it is easily seen that p is
a homomorphism. Let v: Z%G, A) — H*G, A) be the natural quotient
map. Then the composition v9 is a homomorphism and is identical to
0. Also by the equation of the lemma it is clear that o is independent
of o and B. Finally the proof that o is onto follows easily from the
introductory remarks of this section. For suppose [D]e kernel @.
Repeating the arguments at the beginning of this section we obtain
trivial extensions D and D, and splitting homomorphisms « and g,
and 6 € Hom (n(G), U,)y, such that 10(x) Bis(x) = t.aix) for all ze n(G).
Next it is easily seen that if we construct the function p: n(E)— U
using «, 8 and @ and the definition of p given in Theorem 3.6 that
» = 1. Hence p(d) = [D]. This shows that p is onto.

Hom (7(G), Uy, is a vector group and hence is divisible. The
homomorphic image of a divisable group is divisible and hence the
kernel of @ is divisible. Thus we obtain

COROLLARY 4.4. H*(G, A) = H:(, Us;, U,y © HIw(G), n(4)) P
kernel @.

We now compute the kernel of p. Consider the extensions V,
and V, in Diagram 1. Applying [10] we obtain a commutative diagram
with rows and columns exact, Diagram 4.

Hom (n(G), n(A))*¢

inl*

HY(U,, U,) 252", Hom (z(G), U,)* -2 H*G, U,)

b e |

res =

H{(U,, 4) "%, Hom (@), 4)° -2 HG, A)

lal

H*Us, w(4)) = 0

DI1AGRAM 4.

Since 7(G) acts trivially on w(4), U,, and A the functor H' re-
duces to Hom in the appropriate column. Next observe that since
U, is simply connected and 7(A) is discrete, H*(Us, 7(4)) = 0. Now
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let ¥ be as before, a Borel cross section of p; in extension V;, such
that y carries the identity into the identity. Let ne Z*G, n(G)) be
the cocyle determined by y. Then as a 2-cocycle 7 determines the
extension V,. Then by [10, p. 53] we have an explicit representation
of d,: Hom (n(G), U,)¢ — H¥G, U,) in terms of cocycles. For

f € Hom (n(G), U,)°

and z and y in G, the cocycle taking (x, ) into 0%(x, y)~') belongs to
the cohomology class d,{0}. Consequently, by the lemma in the proof
of Proposition 4.3 we have immediately (referring to Diagram 4)

PROPOSITION 4.5. 0 = p.d, = d,p. on Hom (n(G), Uyy,.

We now establish a few more preliminaries before obtaining our
final result.

PROPOSITION 4.6. Referring to Diagram 4.

Hom (7(G), U,)¢ = Hom (7(G), Uy, -

Proof. First note that since 7(G) acts trivially on U,, the action
of U, on U, determines an action of Gon U,. For 8 e Hom (z(G), U,)
and ge G g acts on # in the following manner. For a e (G) (90)(a) =
9{0(9~'a)). But #{G) is central in U, and hence the action of G on
7(G) is trivial. Hence (96)a) = g(6(a)). Hence g0 = 6 for all ge G
if and only if x acts trivially on the range of 0 for all xe U,. The
result follows.

THEOREM 4.7. The kernel of o0 s
1-(Hom (7(G), ©(A))) B 1 (H (U, Uy) .
Hence

Hom (#(G), U,)°

Kermel? = 3 (Hom (7(G), =(4)) & i (H( U,y U)

Proof. First note that since U, acts trivially on 7(4) so does G.
Hence since G acts trivially on n(G),

Hom (7(G), n(A))° = Hom (7(G), ©(A4)) .

Hence by exactness and commutativity of Diagram 4 and by Lemma
4.6 it is clear that the kernel of o contains the sum. Now let ae
kernel p. Then by Proposition 4.5 d,p..{(a) = 0. Then by a suitable
argument involving chasing around Diagram 4 it is a simple matter
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to show that a lies in this sum. This completes the proof.

5. Special cases. We now proceed to compute H*G, A) in the
light of the above structure theory under certain circumstances.

ProrosiTiON 5.1. If G ts compact or if n(G) is a torsion group
the kernel of @ is 0.

Proof. If G is compact H*G, U,) = 0, since U, is a vector group
(see Moore [10]). Hence by Proposition 4.5, o is trivial. Since p is
surjective onto the kernel of @ the result is assured.

If #(G) is torsion then Hom (n(G), U,) = 0, since U, is a vector
group. Hence again by Proposition 4.5 o is trivial and the result
follows.

The following generalizes Theorem A of [10].

PrROPOSITION 5.2. If G s stmply connected then

pt HYG, U,) — H¥G, A)

18 an 1somorphism.

Proof. By Proposition 5.1 the kernel of @ is 0. Clearly
H}7@(G), m(4)) = 0.

Since ¢, is trivial, H?(%,, U, U,) = H¥U,, U,). Hence @ is an isomor-
phism from H*G, A) onto H*U; U,). Now since G is simply con-
nected p, is an isomorphism, and hence p;: H¥G, U,) — H*( U, U, is
an isomorphism. Hence the composite p;~'@ is an isomorphism. We
show that the inverse of this isomorphism is p.. Let D(E,i,j) be
any extension of G by A. Then @([D]) = [D] (using the usual nota-
tion of Diagram 1). Let 3: U,— U, be a Borel cross section of j
carrying the identity into the identity. Then define v: G — E by v =
2.,8p5*. Then 7 is a Borel cross section of j carrying the identity into
the identity. Define ¢ and v by the equations

o(@, y) = 1 (v(@)7(y)r(xy)™)
Y@, y) = 17(B@)BY)BEY) ) .

Then ¢ and v are the cocycles which determine the extensions D and
D respectively. It is easily verified that o(ps(x), p(y)) = piz, y) for
all x and v in U,. Hence on the cohomology level, p¥([a]) = 2.([¥])-
But [v] = &{[c]). Hence p.0 = pf. Hence we obtain Diagram 5,
with lower right part commutative, as is the entire diagram excluding
d.
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HYG, U) ——“ HYG, 4)

| — .
2y 0 v}
Y ».. \
HY U, Uy) ———— HYUg A) .
DiAGRAM 5.

Now let e H¥G, U,). Then p.@p.\) = pip.(\) = p.-p;(\). Hence
Dp.(x) — pi(n) lies in the kernel of p.: H¥ U, U, — H*U,, A). Since
U, is simply connected and n{A) is discrete, H¥ U,, 7(A)} = 0 and hence
by [10] p,- has trivial kernel. Hence the upper left-hand part of
Diagram 5 is commutative and result follows.

ProOPOSITION 5.3. If G 1s compact H1, U, U,) = 0 and hence
0: H G, A) = HYx(G), T(A)).

Proof. Since G is compact and H'(z(G), U,) is a vector group,
HYG, H(z(G), Uy)) = ¢ by [10]. Hence again by [10, p. 47] the
sequence

HHG, U) 25 B (U, U) 2 H(G), U

is exact. Again by [10] since G is compact H*G, U,) = 0. Hence 1]
is injective. In particular the subgroup HZX%,, U, U,) injects by i
into H*#{G@), U,;. However observe that the image under ¢} of an
element of H1,, U,, U, actually lies in HXx(G), U,), the family of
classes of symmetric extensions of 7(G) by U,. This is so since the
action of 7#{(G) on U, is trivial. But U, is divisable and hence any
abelian extension of 7(G) by U, splits. Since 7(G) is discrete any such
extension will automatically be topological. Hence HXzw(G), U, = 0.
We conclude that HZi,, Ug U, = 0. The result now follows from
Proposition 5.1.

We now further investigate the relationship between H,i., U., U,)
and H¥ U, U,.

DEFINITION 5.4. Fix ve Z¥U,, U,;. For acexiG) and we U,
define L(v),/x) = v{i(a), x)v(x, 1:{a)) .

THEOREM 5.5. (1) For each ac (@) andye ZXU;, U,), L{y), €
ZN Uy, Uy).

(2) Define L(v), to be the cohomology class to which L{v), be-
longs. Then L(Y) is a homomorphism of n(G) into HY(U,, U,).

(3) L is a homomorphism from Z* U U,) into

Hom {TC(G), Hl( Uay UA> y
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and BXU,, U,) lies in the kernel of L.

(4) Hence L determines a homomorphism T of H¥ U, U,) into
Hom (n(G), H'(Us, Uy)).

(5) The kernel of T is precisely Hi(is, Ug U).

Proof. We omit most of the computational details necessary to
establish the theorem. The reader is referred to the identity (2) of
p- 171 of G. W. Mackey [7] and the fact that 7(G) acts trivially on
U,. From these facts the following identities can easily be derived:
For ve Z%(U,, U,), acw(G) and x and y in Uy

(1) LE)(ovy) = (LE) @) (@Lv).y)

(2) L¥)w() = L)) LY)(x)(@v{isa), is(b)))r{is(a), 15(D)) "

Part 1 then follows immediately from eguation (1) above. Since the
mapping taking xe U, into av(is(a), i;(b))v(i(a), 15(0))™" belongs to
BY{U,, U,) it easily follows from identity (2) above that L{v) is a
homomorphism. This proves 2. It is a trivial matter that L is a
homomorphism. Next let ¢ be any Borel mapping from U, to U,
carrying the identity into the identity. Then 6 determines a cobound-
ary 7, satisfying equation (3) of [7, p. 172]. Then for aen(G) and
xe Uy it is easily seen that L(79).(x) = 6{i{a))(x0(i;{a)))™ and hence
L(7,), lies in B (U, U,). Hence L{y) = 0. This proves 3. The proof
of 4 is now immediate, T being the obvious induced mapping on the
quotient.

We now establish 5. Let ne HXt,;, U; U,). Then there exists
an element ve Z%,, U U,) such that vex. Hence

v“s("’): W)V(x, is(a))—l =1

for all aew(G) and xe U,. Hence T(\) = 0. Conversely suppose \€
kernel 7. Choose a cocycle v in A. Then L(v): n(G) — BYU,, U,).
Hence for each ae n(G) there exists a ¢,€ U, such that

L(y),(») = (at )t

for all xe U,. Thus a — ¢, determines a map from 7(G) into U,, and
it can be taken so that ¢, = 1. This map can then be ‘extended’ to
a Borel function ¢ from U, into U, satisfying the condition that
#(i5(@)) = t, for all aen(G). Then ¢ determines a coboundary d¢ e
B¥Ug U,). Let v =v + d¢ec Z¥U; U,. Then

L)u(®) = L(v)o(x)p(15(a))(@8(25(@))) ™ = wt,(ts) ta(wty)™ =1 .
Hence v'(i5(a), ©) = v{x, i5(a)). Hence v’ € Z(is, U, U,). Hence
[l)'] = [”] = )\:GHf(’ig, Us, Uy .

COROLLARY 5.6. If 7(G) is a torsion group then H:(i, U, U,) =
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H*(U;, U).

DEFINITION 5.7. An abelian group H is almost torston if the
quotient group Hjtorsion H is cyclie.

LEMMA 5.8. If w(G) is almost torsion themn L(v),(t4(b)) =1 for
all ve Z¥(Ug, U, and a and b tn w(G).

Proof. Fix a ve Z¥U; U,) and o and b in 7n(G). Then there
exist elements 7,s, and ¢ in 7(G) such that s and ¢ are torsion ele-
ments and there exist integers m and » such that o = »™s and b =
. Then L(v), = L(¥),m, = mLY), + L), = mL(v), since s is torsion
and H'(U;, U, is torsion free.

Now %, induces a map on the cohomology level i H (U, U, —
HY(n(@), U,). Now since 7(G) acts trivially on U,, B (n(G), Uy) =0
and ZY7(G), U, is Hom (n(G), U,), the group of homomorphisms.
Consequently the composition L(V),i; is a homomorphism. Hence

L©)a(i5(0)) = (mL(),)(%(0)) = (mL(),)(i(r"t))
= (mL),)(is(r") = (mnL(),)(i(r)) .
But (mnL(v),)is(r) = ©((7), 15(r)v(is(r), 15(r))")"" = 1. Hence the re-

sult.

THEOREM 5.9. If w(G) is almost torsion and G s compact T =
0 and hence H:(iy, Ug, U, = H¥ (U, Uy = 0.

Proof. Fix ve Z¥U,, U,). Then by Lemma 5.8, i} L(v) is trivial.
Now by [10] the sequence

0 — HYG, Uy -5 H(U,, U,) o H'(7(@Q), U,°

is exact and hence L(v) lies in the image of pf. But since G is
compact and U, is a vector group H' (G, U,) =0 by [10]. Hence
L(v) is trivial. We conclude that 7 is trivial and hence the result
follows.

The following theorem which we state for central extensions does
not seem to generalize for arbitrary topological extensions.

THEOREM 5.10. Suppose the action of G on A is trivial. Then
if G is semisimple

ch(iay UG? UA) = HZ(UGv UA) .
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Proof. Let ve Z* U, U,. Then since the action of U; on U,
is trivial L(v), is a homomorphism of U; into U, for each ac n(G).
Now since G is semisimple so is U,. Hence L(v), is trivial for each
ve ZUs U, and for each aem(G). Hence T is trivial and the re-
sult follows.

Recall by Proposition 5.3 that if G is compact

0: HYG, A) = H:x(G), (4)) .

Now 7(A) is a finite product of copies of the integers, Z and hence
Hin(G), m(A)) is a finite product of copies of Hi(7w(G), Z).

ProrosiTiON 5.11. If 7(G) is finitely generated then
HYn(G), Z) = HX(%(G), Z) = (torsion 7(F)",

the Pontryagin dual of the torsion subgroup of w(G).
Proof. Since n(G) is finitely generated 7n(G) = F & K where F
is free and K is the torsion part of 7#(G). Then by [8] H*(F, Z) =0

and H¥K, Z) = K. From the exactness of the sequence,

s F (@) 2 K — 1

we obtain, assuming that all group actions are trivial,

s Hom (z(G), Z) — Hom (F, Z) 2> HY(K, Z)
2 H(w(@), Z) — 0 .

Next note that since K is torsion ¢* is an isomorphism. Thus we
obtain the exactness of the sequence

0-%, oK, 7) 25 H(2(G), Z) — 0.

Hence j* is an isomorphism and we conclude that H*(z(x(G), Z) = K.
Next observe that H*K, Z) = HXK, Z). For let

l—z—p It k1

be any central extension K by Z. Let 0: K x K— Z be any cocycle
associated with this extension. Fix ae K. Then define

L,(x) = o(a, x)o(x, @)™

for ¢ K. Then L, K— Z is a homomorphism. Hence since K is
torsion and Z is free, L, is trivial for all a € K.. Hence o is symmetric
and therefore H*(K, Z) = HXK, Z).
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Finally j* maps symmetric cohomology classes onto symmetric
classes and hence since j* is an isomorphism,

H(=(G), Z) = H{(G), Z) .

The author wishes to express his appreciation to Prof. C. C. Moore
under whose direction this research was done.
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