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VOLTERRA TRANSFORMATIONS OF THE WIENER
MEASURE ON THE SPACE OF CONTINUOUS

FUNCTIONS OF TWO VARIABLES

WILLIAM N. HUDSON

The transformation of Wiener integrals over the space C2

of continuous functions of two variables by a Volterra operator
T is investigated. The operator T is defined for functions
xeC2 by

Tx(s, t) = x(s, t) + fTiΓfa, v)x(u, v)dudv ,

where the kernel K(u, v) is continuous. A stochastic integral
analogous to K. Ito's is defined and used to determine a
Jacobian J(x) for T such that if F{x) is a Wiener measurable
functional, Γ a Wiener measurable set, and m Wiener measure,

f F(x)dm = [ F(Tx)J(x)dm.
JΓ JT~1(Γ)

Let C2 be the collection of real valued functions / defined on ΰ =

[0,1] x [0, 1] such that /(0, t) = f(s, 0) = 0. The space C2 is topologized

by the sup-norm. In [3], Yeh defined a measure m on C2 over the

Borel σ-algebra and extended it to the Caratheodory σ-algebra relative

to m. It is the purpose of this paper to investigate the transforma-

tion of the measure m when the elements of C2 are transformed by a

Volterra integral operator of the second kind. The effect of such

transformations in the Wiener space of continuous functions of one

variable was studied by Cameron and Martin in [Γ].

Let 0 = s0 < sλ < < sm <: 1 and 0 = t0 < tλ < < tn ^ 1 and let

E be a ^^-dimensional Borel set. We denote by %(slf , sm, tlf , tn)

the σ-algebra of sets of the form {xe C2: [x(sίy ί̂ , ••, x(sm9 tn)] e E}

and let g 0 — U^( sn * •> sm9t19 , tn) where the union is over all such

partitions of D. The measure m is given on %(sl9 , sn9 tl9 , tn) by

m{x e C2: [x(sί9 ί j , , x(smy tn)] e E}

• I (mn) I W(sly , sm9 t19 , tn9 ulί9 , umn)duny , dumn ,

w h e r e

•••» smy tί9 •• , ίΛ)

335
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W \Sly , Sm, tu , tn, Un, , Umn)

and uOpi — ui>0 = 0. Yeh showed that m was a probability measure
over (C2, go) and considered the Caratheodory extension g of the algebra
go relative to m. It is well known that g contains the Borel σ-algebra.

We consider the stochastic process X(s, t, x) = x(s, t),xe C2. X(s, t)

is analogous to ordinary Brownian motion and proceeding accordingly,

we define a stochastic integral analogous to Ito's and denote such in-

tegrals of a process f(s, t, x) on C2 by \ f(s, t, x)dX.

Next, the Volterra operator T defined by

(1.2) (Tx)(s, t) = x(s, t) + (TίΓ(w, v)x(u, v)dudv
J o j o

is considered. The kernel K(s, t) of T is assumed to be continuous
over the unit square D. It is well-known that T is a one-to-one map
of C2 onto C2 with a bounded inverse. We can now state our main
results.

2* Statement of main results*

THEOREM 1. Let F(x) be bounded and continuous on C2 and vanish
outside a bounded subset of C2. Let K(s, t) be continuous over the
unit square D. Then

(2.1) ί F(x)dm{x) = [ F(Tx)J(x)dm(x)

S
srt

\ K(u, v)x(u, v)dudv, xe C2 and J(x) is
o j o

given by the formula

(2.2) J(χ) = e x p { - [ K(u, v)X(u, v)dX - —[ K(u, v)*x(κ, vfdudv] .
I JD 2 JD )

The first integral in the expression for J(x) is the stochastic integral
of the process K(s, t)X(s, t, x) with respect to the process X(s, t, x) =
x(s, ί).

THEOREM 2. Let T and J{x) be as in Theorem 1. Then for
every Γ e g, T~ι(F) e g and T(Γ) e g and

(2.3) m(Γ) = [ J(x)dm(x) and
JT-1(Γ)
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(2.4) m(T(Π) = \j(x)dm(x) .

Furthermore, if F(x), x e C , is measurable with respect to %, then

(2.5) \ F(x)dm(x) = \ F(Tx)J(x)dm(x)

(2.6) ί F(x)dm(x) = \ F(Tx)J(x)dm(x)
JT(Γ) JΓ

in the sense that the existence of one side implies the existence of the
other and the equality of the two.

3* Definition of the stochastic integral* In this section the
basic definition of the stochastic integral is given and some funda-
mental properties are listed. The proofs are omitted since they are
strictly analogous to those of K. Itδ in [2].

Let (Ω, S3, P) be a probability space and let {X{s, t): s, te [0, 1]} be
a stochastic process with two time parameters defined over (Ω, SB, P) .
If for any pair (m, n) of positive integers, and any set S — {aly αw,
δi, , δm, Ci, , cn, dL, , dn} of real numbers in [0, 1] such that
αx < &! ^ α2 < 62 <; <£ am < bm and cλ < c£: ^ c2 < d2 ^ g cw < dn,
the "increments" X(δί? dό) — X(α^, d̂  ) — Xφi, Cj) + X(αi? c5 ) ί = 1, , m,
i = 1, •••, ̂  are independent random variables, the process X(s, t) will
be called biadditive. If a biadditive process X(s, t) is Gaussian and
has the additional properties that for all (s, t) e D E(X(s, t)) = 0,
var (X(s, t)) = st, and X(0, t) = X(s, 0) = 0, then X(s, t) will be said
to be a generalized Brownian motion. The process X(s, t, x) = x(s, t),
xeC2 defined on (C2, %, m) is an example of a generalized Brownian
motion.

Now let X(s, t) be a fixed generalized Brownian motion and denote
the increments X(b, d) — X(a, d) — X(b, c) + X(a, c) by J(α, c, 6, d).
Let ® denote the Borel subsets of D. For each choice of (s, ί) e i),
let Sί(s, ί) be a sub σ-algebra of S3 which contains σ{X(u, v): u ^ s
and v ^ ί}, the cr-algebra generated by X(s, t) up to (s, ί), and which
is independent of tf{//(s, t, u, v): u^ s or ί ;> v}. Assume also that if
s ^ s' and ί ^ t\ U(s, ί)cU(s', ί') Let 39? denote the class of stochastic
processes f(s, t, ω) defined on (Ω, S3, P) with domain of definition D
which satisfy

( i ) /(s, t, ω) is ® x S3 measurable and
(ii) f(s,t, •) is ll(s, £) measurable.
Sϋlo will denote the subset of -Ml such that if f(s, t, ω) e 2K0, there

are real numbers 0 = aQ < at < < am = 1 and 0 = /50 < βx < < βn = 1
such that /(s, ί) = /(a^, βk^) whenever α'y_! ^ s < <x, and /Ŝ -i ^ t < βk

Έiι will denote the subset of SJi such that f(s, t, ω) e fΰtt whenever
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(f(u, v, aήfdP x / < co where / denotes two dimensional Lebesgue
DXΩ

measure. 9K2 will denote the set of all fe Wl such that for almost

all ωeΩ, \ f(u, v. o))2d/< co. We define the stochastic integral suc-

cessively for fe 3K0, then for fe 2^, and finally for fe 9K2.

DEFINITION. For f(s, t) e 2K0, the stochastic integral of f(s, t) with

respect to X(s9t) is denoted by ί \fdXj(s, t) and is defined by

fdx)(s, t) = Σ Σ / K - n βq-d^P-i, βq-i, <*p, βq)
/ l

+ Σ /K-l . A~l)^K-l, ft-!, ^ , t)
p = l

j f e - l

+ Σ /(«;-!> /9,_i)^(«i-i, /Sff-i, s, /Sρ)

g = i

+ /(«i-i, βk-ddiotj-!, βk-i, S, ί) .

where the α's and /S's are taken as in the definition of WlQ.

The following properties follow from this definition for fe 9K0 in
the same way as for the usual stochastic integral.

THEOREM 3.1. I//e3K 0 , then (\fdX\(s,t) has the following

properties.
( 1 ) For f,ge 3fto> ω0 e β, i / /(s, ί, α>0) = βr(s, t, α>0) o^ D,

, ί, ω0) - (J^dx)(s, ί, α>0) o^ D.

( 2 ) For f, ge SK0, α, β real numbers, (s, ί ) e ΰ

(s, ί) = α(j/dx)(s, ί) + ββgdXys, t).

(3) For almost every ω, (\fdXj(s, t, ω) is continuous over D.

( 4 ) #[7ί/ώX)(s, ί)l = 0 for all (s, t) e D and

( 5 ) v a r [ ( j / d x ) ( β f ί ) ] = ll/lli., wλβrβ ||/||i f ί

= ( f(8', V, oSfd/ x P .

As in the one variable case, 3K0ΓΊ2Ki is dense in •3Jl1 with respect
to the Hubert norm on L2(D x Ω). Denoting this norm by |j || and
using property (5) above, we make the following definition for fe Wt^

DEFINITION. For fe SK̂  the stochastic integral of / is defined to be
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, t) = lim (\fndX)(s, t)

where the limit on the right is that of convergence in the norm of
L2(Ω) and {/J is any sequence of functions in SK0 Π 9KL such that

The following properties hold for functions in SK:.

THEOREM 3.2. Let f and g be in Ttlm The following statements
are true.

( 1 ) If f(s,t,ω) = g(s,t,ω) on D for ω e Ae*®, then(\fdX\(s, t, ω) =

(\gdX)(s, t, ω) for ωeAQc:A where AQe%5 and P(AQ) = P(A).

(2) If a and β are any two real numbers and (s, t) e D then
almost surely

, t) = αQ/<θr)(s, t) + /S^ώXJ(s, t) .

( 3 ) For every point (s, t) in D, var (\fdXj(s91) = | | / | | β > ί and

] - 0.

Let %[o,%](0 denote the indicator function of [0, n], i.e., χ[0,%](ί) = 1
if 0 ίg ί ^ n and %|0,W](0 = 0 otherwise. In order to define the stochastic

integral for a function feWl,, we observe that I pd/^n implies
JD

S -ict
\ f2(u, v)dudv ^ n for all t e [0,1] and so f(s, t, (o) ~ fn+m(sy t, co) for

O j G

/r ip \

m = 0, 1, 2, where /Λ(s, ί) = χ[0,n]( /2(w, v)dudv)f(s, t). Let i ^ =
VJoJo /

lω: \ fd/^ n). Then Fne^& and ^ c ^ c ^ c ••• and from the de-
finition of 2W2, P(UΓ Fn) = 1. Using property (1) of the last theorem,
we see that there is a set Fn)OaFn such that Fn>oe%5, P(FnJ = P(Fn)
and for ω e Fn>0J (s, ί) e D,

(s, t,ω) = l \fn+ndX)(s, t,ω) m = 1, 2,

DEFINITION. Let / be a function in 9K2. The stochastic integral
of / is defined to be

8, ί, α>) - (j/ ndx)(s, ί, ω) if

and is defined to be zero if ω 0 (JΓ=i ^,o
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The next theorem gives easy properties of such integrals.

THEOREM 3.3. Let f and g be in SK2. The following statements
hold for stochastic integrals of f and g.

( 1 ) Iff(s, t, co) = g(s, t, (o) on D for ω e A e S3, then (\fdXj(s, t, ω) =

(\gdXj(s, t, ω) on D for ω e i o e S where AQczA and P(A0) = P(A).

(2) If a and β are real numbers, then

(\(af+ β9)dx)(s, t) = α(j/dx)(β, t) + β(^gdX)(s, t)

holds almost surely.

4* Lemmas for Theorem 2.1. Let Ki3 = K((i/ri), (j/ri)) where
K(s, t) is a real-valued continuous function on D and define the trans-
formation Tn: C2 —> C2 by

(τ%x)(8, t) = χ(s, t) + \Σ! Σ ^ - ^ - -
n ^ in ^ i=i \ w n

n '\ n

n n J\ n

K x([ns]

F o r s = {/In), t = (k/n), w e h a v e f o r s, k = 1,2, •••, n

A) = x (/A) J( 4 . 2 ) ( » ( ) ( ) Σ Σ « f ,
\n n/ \n n/ n *=i i=i \n n

LEMMA 1. Let H(ηn, -- ,ηnn) be a real-valued bounded and con-
tinuous function on Rn2 and let G(x), xe C2, be defined by

(4.3) G(x) = H(X(—, -

V \n n / \n n
then

\ G(x)dm = \
Jc2 i i=ι j=i \ n n

(4.5)

2 *=i J=
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, = J±, i.) _ JIZLL, L) - x(±, 1±1.) + x(±^±, Lzlλ.

Proof. From the definition of m, we have

\ G{x)dm = (2π~2n)-
JC2

( 4 6 ) f ^

. exp ^ - — - Σ Σ (Va - Vi-u ~ Vi.i-1 + J?i-w-i)

Let Sn denote the linear transformation of Rn2 onto itself defined by

Vij = ί<y + Λ - Σ Σ iΓmZίm, i , i = 1,2, . . . , n .
^ 2 m = l ^ = i

The Jacobian of Sw is equal to 1. Applying Sn to the right side of
(4.6) we obtain

ί G(x)dm = (2π~2n)-n212

JC2

(4.7) , , χ ..,,_, .
• M ξ l l f , ξnn + -V Σ Σ ί« f« U.(f ii, . fjdfii, , df«.

J-ffi" \ re2 < = ι i=i /

where

= exp j - Σ Σ Ki-u-gi-ui-tin - fwj - fi,,.! + fi-Li-OJ

I i=l j=i J

• exp { —i-Σ Σ Ή-i.;-i£U;-Λ " ί Σ Σ (f *y - f *-i,i ~ £ * j-i
I 2 i y i ^ 2 2 i i

On the other hand,

Mz) = H(TJK λ),..., τj»-, *.)

= HUL, λ),.., A J5L) + J ^ Σ Σ KfJ±, i.)) .
\ \n n/ \n n/ n2 * =i i=i \n nJJ

Again from the definition of m, we see that the right side of (4.7) is
equal to

( G(Tnx) exp { - Σ Σ ̂ -1,y-^(-^^-, -ΐ-^-ίW
Jc 2 I i=i i=i \ W W /

- i-Σ Σ κu,^
2 <=i i=i

which is precisely the right side of (4.5).



342 WILLIAM N. HUDSON

LEMMA 2. Let X be a random variable on a probability space
(Ω, 33, P) which is distributed normally with mean 0 and variance v.
Let Y be a random variable on (Ω, 33, P) which is measurable with
respect to a σ-algebra Sic S3. If the σ-algebra σ{X}c33 generated by
X and the σ-algebra 31 are independent, then

(4.8) #(exp IXY - —v Y2\ | 3l) = 1 .

Proof. To prove the lemma we show that for every A e 31

( exp \XY - ±-vY2\dP = [ dP .

Let P% be the restriction of P to 31. Let us write σ{M} to mean
the σ-algebra generated by a collection of sets 9ft. Consider the trans-
formation T of the measure space (Ω9 S3) into the measure space
(R1 x Ω, (xJSS1 x SI}) defined by T(ω) = (X(ω), ω). This is a measurable
transformation since T'^a^d1 x 31}) - σlT-1^1 x SI)} which is con-
tained in S3 since ^"'(SS1 x SI) is. Let U be the transformation of
(R'xΩ, σjS^xSI}) into (R1, S31) defined by

U(ξ, ω) = exp{f Y(ω)-l/2Y2(ω)} .

This too is a measurable transformation since Y is 3I-measurable.
Let Pτ be the probability measure on σ^S1 x 33} induced by T.

For B e S31 and A e 33, we have from the independence of σ{X) and 31

PT(B xA) = P(T^(B x A)) = P{Xe B}P{A) = PX{B)P%{A)

where Px is the probability measure on S31 induced by X, i.e., the
normal distribution with mean 0 and variance v. Thus Pτ is the
product measure of Px and Psί.

Now for A e SI we have by Tonelli's Theorem

exp \XY - —vY2\dP = \ (UT)(ω)dP = \ U(ξ, ω)dPτ
4 I 2 ) JΩ JRixA

= j
This completes the proof of the lemma.

LEMMA 3. Let X(s, t, x) be the stochastic process on the probability
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space (C2, g, m) and the domain of definition D = [0,1] x [0,1] de-
fined by X(s, t, x) — x(s, t) for xeC2 and (s, t) e D. Let g(s, t) be a
real valued function on D and let fn(s, t, x) be a stochastic process on
(C2, S, m) and D defined by

(4.9) Ms, t, x) = g(iϋi, M - U i M , M . ) fOr xeC2.
\ n n / \ n n J

Then the stochastic integral (\fndX](s, t, x) of the process fn(s, t, x)

with respects to the generalized Brownian motion X(s, t, x) satisfies

(4.10) #[exp {(j/.dx)(l, 1, x) - \\f{s, ί,

Proof. Since fn is a stochastic step function,

i, l) = Σ Σ /.
i i ^ n

where

\n ns \ n n/ ^n n

Let

T - f ( i ~ ~ 1
 J L I J L \ Λ - λ f t f i - 1 X z J L Λ x

V n n ' 2 \ n n / n
Since

n y n

— exp
i 3 Λ

Σ Σ τ,λ.
3> = 1 9 = 1 J

Let Sί̂  denote the σ-algebra o{X(s, t): s ^ i/n or ί^ j/n}. Then
/n(i — 1)M, (j — 1)M is Sl^i, ̂ -measurable for i, j = 1, 2, , n. The
random variable Ji3- is normally distributed with mean 0 and variance

Furthermore o{Δi3) and Sli-i^-i are independent. By Lemma 2

(4.11)

To prove the lemma, we must show that EZn — 1. Now for
m = 1, .w. X(m - 1)M, 0) = 0 and hence fn(m - ΐ)/n, 0) - 0 and Γwl = 0.
We have Znl — exp {Σ?=i Γpi} = l The proof will proceed by induction.
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Consider E(Z%ti.v exp { Σ U Tmj\). If k = 1

#(£„,_ ! exp {Tu}) = E\E(Z%,^ exp

Since .£„,,•_! is 2ίo,j-i-πieasurable

n,^ exp {Tu }) =

by (4.11). Now suppose that

n,^ exp {

Then

Since ^,y_! exp (Σ»=i Γmίj is Sί^^-measurable

ntύ_x exp I Σ t Γ«i} I Sί*,, -i] = ^.,ί-i exp

By the induction hypothesis, we have

In particular for k = n, Znj = Zw, i_1 exp {Σm=i Tmj) and J5Zwi = EZn>ύ_x.
It follows that £?ZΛW = Enl = 1.

Let L% be the transformation of C2 into C2 defined for (s, t) e
[(i - l)/w, i/n] x [(j - ϊ)/n, j/n] by

a i — , — 11 s —
n2 i ^n n /\ n /\ n

n

n n /\ n /\n

n n J\n

Clearly

(4.13) infi l l = max \x(—,3-
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(4.14) lim|||L.α; - »||| = 0 .

Then for T and Tn denned by (1.2) and (4.1) respectively, we have

(4.15) \im\\\LnTax-Tx\\\ = 0.

This follows from

\{\LnTnx - Tx\\\ g \\\LΛTnx - L%Tx\\\ + \\\L%Tx - Tx\\\

where

\\\LnTnx - LnTx\\\ ^ \\\Tnx - Tx\\\ by (4.13), lim\\\Tnx - Γa;||| = 0

from the uniform continuity of K(s, t) on D, and ]imn^\\\LnTx— Tx\\\ = 0
by (4.14).

LEMMA 4. Let X(s, t, x), g(s, t) and fn(s, t, x) be as defined in
Lemma 3. Then the random variables Zn(x), n — 1, 2, , on (C2, $, m)
defined by

(4.16) Zn - exp {(JΛdx)(l, 1) - \ft(s, t)dή

are uniformly integrable on C2. // g(s, t) is bounded on D, then for
every 5 ^ 0 , the random variables YJx), n = 1, 2, , defined by

(4.17) Yn(x) = χro,BJ(|||LΛa; |||) exp {(j/%dx)(l, 1)}

are uniformly integrable on C2.

Proof. For M > 0 let AM,n = {x e C2: ZΛ(a;) > Jkf}. To show the
uniform integrability of Zn, n = 1, 2, , we show that for every
ε > 0 there exists M > 0 independent of w such that

I Zn(x)dm < ε n = 1, 2,

According to Lemma 3 applied to 2/n, ̂ (Z^) = 1 and so choosing
Λί > 1/e, we have

ί Zn(x)dm g ί J-Z%

2(a;)dm ^ -±- < ε
J^M,n UMtn M M

proving the uniform integrability of Zn, n = 1, 2, .
Suppose g(s, t) is bounded on D. Now

= max
(s,t)eD

χ
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and so if xe Ct, \\\Lnx\\\ ̂  B, and B > 0, then | | | / . | | | ^ B\\\g\\\ and

( Ms, t)d,£ B'\\\g\\\\ Letting 7 = exp {|||sr|||2B2} we have
JD

YΛx) = χ[0,β](|||L^||)^(α;)exp{^Λ2(s, t)d,} £ ΎZn(x) .

For K > Ύe-1

\ Yn(x)dm <: 71 Zn(x)dm < εΎ n = 1, 2,

proving the uniform integrability of Y%y n = 1, 2, .

LEMMA 5. If xeC2 and for some M>0 | | | L ^ | | | > ikfexp {|||-SL|||},

then \\\LnTnx\\\ > M.

Proof As in the Volterra integral theory one can show that T,,
defined by (4.1) transforms C2 onto C2 in a one-to-one manner, Tn and
T~ι are bounded linear operators, and 11 T̂ r111 ^ exp {|||^|||}.

Now for any xeC2 which satisfies | | |g | | | > ilίexp {||| JBΓ|||} for some

M>0, we have | p | | | > Λ f | | Γ - 1 | | . If \\\Tnx\\\ ̂  M,

M\\ T " 1 ! ! <^ \\\τ\\\ — III T ~ ι T r i l l < II T ~ ι \ \ I I I T Ή I I < I I T ~ γ II M

a contradiction. Thus for any xeC2, if 111 x \ \ \ > M\ | T~ι \ \ then
|||Γ«aj|||>ilf. In particular | | |L^ | | |>Mexp{ | | | iΓ | | | } implies ||| TnLnx\\\>M.
But (4.1) and (4.12) imply that TnLnx = LnTnx and hence \\\LnTnx\\\>M.

5. Proof of Theorem 1. Since Lnx, xeC2, is determined by
the values of x on the lattice points (i/n,jfn) i,j = l,2, 9n, we
may define a function H on Rn2 by

H(ηn, •• , ^ ) = F(Lnx)

where ηiS — x(i/n,j/ri). The continuity of F and Ln implies the g-
measurability of F°Ln. If Rn2 is topologized according to the sup-
norm, it is easy to see that H is continuous. Since F is bounded, so
is H. Let

G(y) = F{Lny) = #(>(-!, ! ) , . . . , (
\ \n n/ \n n

Then G(Tny) — F(LnTny) and according to Lemma 1

ί F(Lnx)dm = \ F(LnTnx)

" 1-ΣΣ z(i^ί,i^X-iz
n

exp L 2 <«i i=i V n n ' \ n n / n2 )
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Since lim^^ \\\Lnx — x\\\ = 0 and F is continuous, lim^oo F(Lnx) = F(x).
Since F is bounded,

(5.2) lim \ F(Lnx)dm = ί F(x)dm .
n-*°= JC2 JC2

We now show that the integral on the right side of 5.1 converges to

\ F(Tx) exp {-\ F(Tx) exp { A # ( s , £)X(s, ί)dX)(l> 1) ~ —

which will complete the proof. Since F vanishes off a bounded set,

there exists M > 0 such that if | | |g | | | > M then F(x) = 0. Let N =

Λfexp {IHtfHI}. Then

(5.3) ί F(LnTnx)Jn(x)dm = \ χ[Ofm(\\\Lnx\\\)F(LnTnx)Jn(x)dm
JC2 JC2

( ) ( \
JC2 JC2

where

Jn(x) = exp I - Σ Σ κ(J—±, LZ±\X(2JZ±, IΞLLΛA

2 <=i J=I \ t^ ^ / \ tι n y n2)

Since iΓ(s, ί) and α?(s, t) are continuous on J9

n

= exp I \ Kz(s, i)x2(s, t)ds\ .
I 2 JD )

Let

and /(s, ί) = K(8, t)X(s, t). Then

Σ Σ u - (ί«χ)α.

By Theorem 3.2, since fn e SPΐi and .

£\_E(fn-f)'ds= I I Λ - Λ

Now
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1(8, t) - E
n n

/ Γ

M ) -
n n

Using the continuity of X(s, t) and K(s, t) on D and the fact that
X(s, t) — X([ns]/n, [nt]/n) is normally distributed with mean 0 and
variance st — ([ns]/n) ([nt]/n) it is easy to see that lim^^H/,, — f\\ = 0.

It follows that ( \fndX)(l, 1, x) converges in m-measure to (\fdX)(l, 1, x)

and hence

exp {-Σ Σ
I i i

)
n n J \ n n

converges in m-measure to exp j — (\K(s, t)x(s, t)dXj(l, l)i.

The integrand on the right side of (5.3) converges in m-measure to

χl0,N](\\\x\\\)F(Tx)expί[-(^K(s, t)X(s, t)dX){l, 1)

This follows from the above and the fact that |||LΛίc||| ^ | | |x|| | and
lim^oo 111 Lna? — x\\\ = 0, which implies

Since for each n = 1, 2, •••, the integrands on the right side of (5.3)
are bounded in absolute value by

Lemma 4 implies that the integrands are uniformly integrable justi-
fying the taking of limits inside the integral. Thus

limί F(LnTnx)Jn(x)dm - lim \ χί0,N](\\\Lnx\\\)F(LnTnx)Jn(x)dm
n~*o° JC2 n^co JC2

where

J(x) = exp {-(\κ(s, t)X(s,

Now |||ίc||| > N implies |||Γίc||| > M and hence F(Tx) = 0. We get
finally
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lim ί F(LnTnx)Jn(x)dm = \ F{Tx)J{x)dm

which upon substitution into (5.1) proves Theorem 1.
The proof of Theorem 2 is proved using Theorem 1 in exactly the

same way as Theorem III is proved from Theorem II in [4] by J.
Yeh and is therefore omitted.

The author wishes to thank Professor J. Yeh for suggesting this
problem.
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