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REGULAR ELEMENTS IN P.I-RINGS

I. N. HERSTEIN AND LANCE W. SMALL

It follows from the proof of Posner’s theorem that
half-regular elements are regular in prime rings satisfying
a polynomial identity (prime P. I.-rings). In this paper we
extend these results to semi-prime rings and present counter-
examples to several avenues of further generalization,

Throughout this paper all rings will be algebras over a commutative
ring. We further assume that the polynomial identities which occur
have at least one invertible coefficient. If T is a subset of a ring R
then I(T) (»(T)) will denote the left (right) annihilator of 7. The
word “ideal” will mean two-sided ideal. Finally, we recall that if R is
semi-prime and if U is an ideal of R then I[(U) = »(U). In this case
we write I(U), unambiguously, as Ann(U).

2. We begin with a mild generalization of a result due to
Amitsur [1].

LEMMA 1. Let R be a ring such that Ra satisfies o polynomial
identity; them, if l(a) = 0, Ra contains a nonzero ideal of R.

Proof. Among the left ideals Ra’ suppose that Ra* satisfies an
identity of lowest degree. We may assume that this identity is
multilinear and has form

Q(wl' M) xn) = Q1(x17 Tty x'lb-—-l)x/n, + QZ(xu M) x’n)

where ¢, is of lower degree than g and where x, does not occur as the last
variable of any monomial of ¢,. Substitute r;a** for «; for j=1, -+, n—1
and r,a* for «, where », .-, 7, are arbitrary elements of R, in
q(x,, +++, x,). Since Ra* c Ra*, Ra* satisfies ¢ and, by our choice of
k, no identity of lower degree. Therefore there exist »,, ++-, 7,_, in R
such that q/(r.a*, ---, r,_,a*) = 0. Freeding this into our identity ¢
we obtain

¢,(ra®, o oo, v @0t = —qy(ra®, -, v, 0%, rat)

which is contained in Ra* from the form of ¢,. Since l(a) = 0 this
yields g (r.a%*, «««,r,_,a™®)r, € Ra*. In short, q,(r,a*, ---,r,_a*) RcC Ra*,
hence the nonzero ideal Rq,(r,a*, ---, r,_,a*)R is contained in Ra*, and
80, in Ra. This proves the result.

The plan now is to study Ra by looking at the ideals of R con-
tained in it. The crucial step is
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THEOREM 2. Swuppose that R is a semi-prime ring; if a € R is such
that l(a) = 0 and Ra satisfies a polynomial identity then Ra contains
an ideal of R whose annihilator is zero.

Proof. Let U be the sum of the ideals of R which are contained
in Ra. We claim that Ann(U) = 0. If not, let W = Ann(U) = 0, and
V = Ann(W). Pass tothe ring R= R/V. Ifz& = 0in R thenzac V
hence Wxa = 0; since I(a) = 0 this gives Wx = 0, and so, ze V, Z = 0.
Thus l(@) = 0. Clearly Ra satisfies a polynomial identity. Therefore
Ra contains a nonzero ideal T of R; the inverse image T of T thus lies
in Ra + V. Since T+ 0, T ¢ V therefore 0 WT < Ra + WV. But
WV = 0. Consequently WT is a nonzero ideal of R lying in Ra. As
such, it must be contained in U. But WU = 0, so (WT)* c W*T = 0.
Thus semi-primeness of R then forces the contradiction WT = 0. With
this, the theorem is proved.

From Theorem 2 many good things flow.

THEOREM 3. Suppose that R is a semi-prime P.I.-ring. If ac R
satisfies l(a) = 0 then

1. r(@)=20

2. Ra 1is essential.

Proof. 1. Let U be the ideal in Ra of Theorem 2. If ax =0
then Uz = 0, which is not possible unless = 0. Thus »(a) = 0.
2. If I is a nonzero left ideal then 0« UIc UN Ic Ra N I.

A ring R is said to be von Neumann finite if for x,ye R, xy =1
implies yx = 1. If R, is v. N. finite for all », we call R N-finite.

COROLLARY. A P. L.-ring is N-finite.

Proof. The result follows easily from the following two observa-
tions:

1. if R is a P. I.-ring then R, is a P. L.-ring [3].

2. R is v. N. finite if and only if R/J(R) is, where J(R) is the
Jacobson radical of R.

Hence we can reduce to the semi-simple (and so, semi-prime) case.
If vy =1 then [(x) =0 where, by Theorem 3, #(z) =0. Since
21 — yx) =0 we get yx = 1.

Theorem 2 also tells us something about the nature of the iden-
tities satisfied by R and Ra.

THEOREM 4. If R is a semi-prime ring and if ac R satisfies
la) = 0 then R satisfies any polynomial identity satisfied by Ra.
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Proof. The argument follows one by Goldie [2]. Since R is semi-
prime, 0 = N P, where P, are prime ideals. Let U C Ra be an ideal of R
such that Ann(U) = 0. Now U P, for some prime ideal P;. Divide
the prime ideals of R into two parts: those which contain U and
those which do not. The intersection of the primes in the first part
contains U and is annihilated by the intersection of the primes in the
second part. But Ann(U) = 0, so this latter intersection must be 0.
Hence 0 = N P, where the P, are prime ideals and UZ P, for each 7.
We find, then, that R, = R/P, has a nonzero ideal (U + P,)/P, which
satisfies an identity. Since R, is prime, it satisfies the same
identity as (U + P,)/P, [1]. To finish up, we note that R is a sub-
direct sum of the R,, hence satisfies any identity of U, therefore any
identity of Ra.

3. In this section we present several counter-examples to possible
generalizations of the results in §2. We begin with examples to show
that “semi-prime” is needed in Theorem 3.

Let F' be a field and F'[x] the polynomial ring in « over . Form

the ring S® = <F [(g)c] §>’ where F[x] acts on F in the usual way

(identifying F' = F'[z]/(x) as an F'[x]-module). S" satisfies the identity
_ : xz 0\ _ x 0
{ab — ba)* = 0. It is easy to see that l( 0 1) = 0, but r( 0 1 >7&0.

Now form the ring S® = <F (gx] F [9%],) with the obvious actions
on Flz]. S® satisfies the same identity as S®. The element < a(c) (1)> is

regular in S® but(g g)S‘Z’ N < 8 0F> = O0—that is, the right ideal
g’ g )S‘z’ is not essential. We pause to note that this implies that
S® does not satisfy the right Ore condition. Yet S® possesses a ring
of left quotients which even is Artinian.

We conclude this section with a simple example of a right Noe-
therian ring which lacks a right ring of quotients. Let R be any
commutative Noetherian ring with the following property: there exists
an element a € R which is not regular but its image, @, is regular in
R = R/N where N is the nil radical of R. (An example of such is
M — 2 : 2) (R R)

@, o) where a = y + (2% 2y).) Our example is S® = 0 R

The element <‘g (1) > is quickly seen to be regular in S®. If the

right Ore condition were valid we would have an equation

(6 (6 8- %)
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where (g t§> was regular. This forces ¢ to be regular in R.

Writing the relations out explicitly, we have a@¢ = #, which means
that ac = ¢t + n where ne N. But ¢ is regular, hence ¢ + n is and
so ac is regular. This contradicts our choice of a.

4. To finish up, we present a result on the rank of free modules
over P. IL.-rings which, for commutative rings, is a well-known
theorem on homogeneous systems of linear equations. The proof we
give may be of additional interest in that we cannot, of course, use
determinants.

Denote by .R™ the external direct sum of » copies of ,R, that
is, the free module on n basis elements.

THEOREM 5. If R is a P. l.-ring, then R™ < R'™ implies n = m.

Proof. Suppose that n > m. First note that this forces B < R™
for arbitrary ¢. To see this, write B™ = R™ @ R" ™. We can find
a copy of R™ in the first summand, so R™ H R™“™ < R™. We
now repeat the process on the “new” R™. In particular, we obtain
R® < R™. This means that R contains a set, «,, «+-, &,,, of 2m
linearly independent elements. We can consider the a’s as 1 x m
row vectors and form the m x m matrices X and Y where the rows
of X are ¢, -+, «, and those of Y are a,.,, ++-, @,. In R, it is
immediate that {(X) = 0 and [{Y) = 0 since «,, - - -, &,, are independent.
But R, is a P. I.-ring, so by Lemma 1 R,X contains a nonzero ideal
U. Now, since I(Y) =0, UR,Y = 0 and is contained in R,X. This
yields nonzero matrices 4 and B such that AX = BY. Writing this out
explicitly gives a dependence relation among the «¢’s, a contradiction.
The proof is complete.
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