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ON IDEALS IN Ωl

LARRY SMITH

The objective of these notes is to study the relations
between and the structure of various ideals that occur in the
study of the complex bordism homology functor and actions
of abelian ^-groups on closed weakly complex manifolds.

Let us fix a prime integer p and denote by K(ZP, n) an Eilenberg-
MacLane space of type (Zp, n). Let

f:S* >K(Z9,n)

represent a generator of π
n
(K(Z

p1
 n)) — Z

p
 and set

We propose to study the annihilator ideal, A(an)c:Qv, of the E7-bor-
dism class σn. To this end let us denote by K the ideal which is
the kernel of the natural map

Φ{p)\Ωl >H*(BU;ZP) .

Thus the elements of K are those [/-manifolds all of whose Chern
numbers are congruent to zero mod p. The structure of the ideal K
is known as a consequence of the work of Milnor [8]. Namely, for
each nonnegative integer i, there exists a "Milnor" manifold V2pl~2,
of dimension 2p* — 2, such that

K = ( [ V ° ] , [ V * > - 2 ] , • • • ) •

The first elementary fact concerning the ideal A(σn) is the inclusion
A(σn) c K. Thus it makes sense to inquire into which of the Milnor
manifolds [V°], [F2p~2], , actually lie in A{σn). One of our objectives
in this note is to establish the following two results.

THEOREM A: A(σn) 3 p, [ V2p-2], , [ v2*"'1-2].

THEOREM B: A(σn) $ [ V2pn~2], , [ V2pn+m~2],

Thus we determine completely which of the Milnor manifolds an-
nihilate the class σn. While this does not determine the structure of
A(σn) it is a step towards that goal. The study of annihilator ideals
of spherical bordism classes has been a recurrent theme throughout
the investigations [5], [6], [10], [11] of the complex bordism of finite
complexes. The ideal A(σn) is in an appropriate sense a universal
example of such an ideal.
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528 LARRY SMITH

To connect up the study of the ideals A(σn) with the study of
free actions of abelian ^-groups on closed weakly complex manifolds
we introduce the infinite dimensional lens space L(ZP, oo) — K(ZPJ 1) =
BZP that classifies principal Zv bundles. (For p = 2 this may be
taken to be the infinite dimensional real protective space.) We let
7 G Ωτl(BZp) denote the class represented by the canonical map S1 —>
BZP. The exterior product

• BZP x x BZP

n-ίois

represents an n-dimensional bordism class that we denote by ®Λ 7 e
Ω%(BZP). With these notations fixed we introduce a trio of ideals:

An - A(®n 7) - {[M] e Ωl | [Λf ] ®» 7 = 0 e Ω%{BZ;)}

In: defined inductively by

70 - (0)

In = {[M] e Ωl I [M]y e In^Ωl(BZv)}

[M] 6 Ωιl I there exists a representative

M of [M] upon which Zp x x Zp acts
O-fois)

without stationary points .

(Note that each of these ideals depends on the prime p but that we
have supressed the dependence from our notation.) The ideals Jn

were introduced in [2] where the study of their structure was first
undertaken. In [6] E. E. Floyd computes both the ideals In and Jn

and shows that they coincide.
Among the elementary facts that one has is that each of the

above families of ideals forms an expanding sequence, viz.

(0) - Ao c A, c A2 c

(0) = 70 c 7X c 7a c •

(0) = Jo c Λ c Ja c •

where we have written Sn for A(σn). This suggests that we introduce
the stable ideals

The results relating all these ideals that we shall establish are
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THEOREM C: In = Jna An c Sn.

THEOREM D: I=J=A = S=K.

It is to be emphasized that the structure theorem of Floyd [6]
for the ideals In and Jn essentially contains all the information that
we require to establish Theorems A, C, and D. Our main contribution
is Theorem B. It follows from Floyd's work that

and hence Theorem A is an instant consequence of Theorem C. Thus
(i.e. from [6]) we see that

As noted previously the work of Milnor [8] shows

κ = ( [ H , [ ^ - 2 L •- , [ V 2 > m - * ] , • • • ) •

and thus Theorem D follows from the equality S — K (or the obser-
vation that Sn c K for all n >̂ 0) and Theorem C. The remainder of
these notes is devoted to the proof of Theorem B and the verification
of the necessary inclusion relations between the various ideals required
to prove Theorem C and complete the proof of Theorem D.

1* Preliminaries* The proof of Theorem B requires that we re-
view in some detail certain results of [5]. To this end let us denote
by M a closed weakly complex manifold. We continue to denote by
p a prime and we let

spi^(c) e H^~\M\ Zp)

denote the usual sω-symmetric function of the Chern classes of M [3]
[12]. Our purposes require that we have available a procedure for
evaluating the number

<α U V-i(c), [M]> eZp;ae H*(M, Zp) ,

in terms of "other" invariants of M. The required procedure consists
of a Wu type formula established in [5]. To describe this formula
we must collect some elementary facts concerning the Steenrod alge-
bra [7].

Recollections and Notations. Let Jϊf*(p) denote the mod p Steen-
rod algebra and &*(p) the algebra of reduced power operations, i.e.,



530 LARRY SMITH

where (β) denotes the two sided ideal generated by β. (Recall that
β = Sq1 when p = 2.)

According to Milnor [7] the dual Hopf algebra &J&) is given by

where

deg μ, = 2(p{ - 1)

and

with the convention that μQ = 1.
The duals of the classes {μt} are primitive elements of &**(p) which

may be defined inductively by the formulas

p i . 4 — 1

These formulas determine corresponding unique elements S{ e S*f*(p)
of degree 2{pι — 1) which are primitive provided that p Φ 2. (Recall
that for p = 2, P/ = Sg2.)

The following result may be found in [5; 1.2].

THEOREM 1.1. Let Mm be a closed weakly complex manifold of
dimension m and ae Hm"~2{pl~1)(M; Zp). Then with the preceeding no-
tations we have

p

<a U 8pi^(c)9 [M]> - < S Λ [M]> G Z

at least up to a unit in Zp. **

As an indication of how we intend to apply this theorem let us
suppose that we are given a closed [/-manifold Mm and a map

/: Mm > Sk:m- k = 2{pι - 1) ,

and a cohomology class a e Hk(M; Z) such that

/*(<) = Pa

where c e Hk{Sk; Z) is the fundamental class. Then according to Milnor
[8] and an elementary transverse regularity argument

[M,f] = [V^

(where σ e Ωι

k(Sk) is the fundamental bordism class) if and only if

U spΐ_1(c), [M]> ΞΞ p mod p2 .
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Now clearly this latter condition can hold if and only if

<α U spi_i(c), [M]> Φ 0 mod p .

In view of Poincare duality and Theorem 1.1 we thus obtain:

THEOREM 1.2. Suppose given a closed weakly complex manifold
Mm and a map

f: Mm > Sk: m - k = 2p* - 2 ,

together with a cohomology class a e Hk(M; Z) such that

Then

[M, f] = [ F*pί-2]<7 e i2^(SA)

i/ and only if

i.e., ΐ/ αTtc? owίτ/ i/

Si(a)Φ0eHm(Mm;Zp)

where we have written a for its own mod p reduction. Lj

2* The proof of Theorem B* We continue to denote by

f : S * >K(Z9,n)

a map representing a generator of πn(K(Zn, n)) — Zn. Let us introduce
the cofibration

K(Z9, n) - ^ K(Z9, h) U/ ^ —+ S^ .

We then have the following elementary result:

PROPOSITION 2.1. With the notations as above we have

[M] e A(σn)

if and only if

[M]in+1 e Im {(/*: ΩZ(K{ZP, , n) \Jf e^) > Ω*(S"+ι)} ,

where

in+1 = [S +1, id] 6 ΩZUSn+ι)

is the canonical class.

Proof. This results from the exact triangle
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ΩUK(ZP, n)) —-> Ω%{K(ZV, n)

\ K /
3\ /

upon recalling that d^in^ = [Sn, f] = σn. •

Notice the elementary fact that the sequence

0 = Hn+\Sn+ί; Z) < Hκ+ι(K(Zp, n); Z)

< H»+ι(K(Zp, n) U/ eB+1; Z) * Hn+1(S"+1; Z)

< H"(K(ZP, n); Z) = 0

is exact, not split, and has

Hκ+i(S"+1; Z)sZ= Hn+1(K(Zp, n) \Jfe
n+i; Z)

H^(K(ZP, n); Z) s Z, .

Therefore for an appropriate choice of generator

we have
g*(ή = pen+ί .

With these notations fixed we are now prepared to take up the proof
of Theorem B.

Proof of Theorem B. Let us suppose that

Then according to, and in the notation of, Proposition 2.1 we must have

f V^-*]in+ι € Im {</*: 3°(K(ZP, n) U/ e^) > ΩUSn+ί)} .

Let [M, φ] e Ωι;(K(Zp, n) \Jf en+1) be chosen with

g*[M,<p] = [V*>i'*]in+l.

Then of course

[M,gφ] = [ F 2 ^ - 2 R + 1 .

Recall that

g*(t) = pen+1 .

Thus by setting

a - φ*(en+ι) e £Γ*(ikf; Z)

we find that with this cohomology class and the map

gφ:M—->S>+1
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we may apply Theorem 1.2 to conclude that

<S,α, [M]> Φ 0 mod p.

Of course by naturality

(where we have written en+1 for its own mod p reduction). Now re-
call that the map

h*: H*(K(ZP, n) (J/ e^; Zp) > H*(K(Zpy n), Zp)

is an isomorphism for * > n + 1. As we have already observed that
p — [V°]e A(σn) we may as well assume that i > 0. It is now time
to note that h*{en+ι) = βθn, where θne Hn(K(Zp, n); Zp) is the funda-
mental class. Thus

h*Sten+1 = Siβθn .

Suppose now that i > n. Examination of the results of Cartan [1]
and Serre [9] reveal that for i > n

Siβθn = pv

where p is reduction mod p and ve H*(K(ZP, n); Z) an integral class.
Let u e H(K(ZP, n) \Jf en+i; Z) be an integral class with h*u = v. Thus
we have found

[ V*>*-*] e A(σn) — <9>*Siew+1, [M]> Φ 0 .

Since i > n the preceeding discussion shows

<9>*SΛ + 1, [M]> = <<p*pu,

= <pφ*U,

and since [M] is an integral class

<<P*Sten+1, [M\y = pζφ*u,

= p<U, φ*[M)> .

However, since H*(K(ZP, n) \Jfe
n+i; Z) is all torsion for * > n + 1 it

follows that the Kronecker index over the integers Z for K(ZP, n)\Jf en+1

is always zero for * > n + 1. Therefore

<u, ΨΛM]} = o

and hence

= 0

contrary to our previous calculation. This contradiction shows that
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[ V2pl~2] cannot belong to the ideal A(σn) for any ί > n which is the
desired conclusion. Π

3* Various inclusions* We collect here in this section the various
inclusion relations required to establish Theorem C and to complete
the proof of Theorem D.

The Inclusion An c An+1. Consider the exterior cross product

Ωl(BZ;) ®Ωυp

Let us suppose that [M] e An1 then by naturality of the cross-product
we find

[M] ®M+1 7 = [M] ®" 7 (g) 7 = 0 (g) 7 = 0

and hence [M] e An+ι which is the desired conclusion.

The Inclusion Sn c Sn+1. Introduce the map

un: ΣK(ZP, n) > K(ZP, n + 1)

that classifies the cohomology class

ΣΘHeH*+ι(K(ZP9n);Zp) .

It is easily checked that

(un)*(Σσn) = σn+1 .

Thus if [M] G A{σn) = Sn then by naturality and stability under sus-
pension we find

[M]σn+ί = (u%U(Σ[M]σn) - 0

and hence [M] e Sn+1 as required.

The Equality S = K. Consider the morphism of spectra

v:S >K(ZP)

that defines the unit of the latter. Its component morphisms are the

maps

f:S* > Λ Γ ( Z p , w ) : w = 0 , l , 2 , •••

and as

Sn - ker {/,: Ωζ(Sn) > ΩZ(K(Z9, n))}

we find

S = U Sn - ker K : ΩUS) > Ωl{K{Zv))}
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since both S and K(ZV) are convergent spectra.
Now ker v* may be given another interpretation as follows. Recall

that

Ωl{K{Zp)) = π%{MU A K(ZP)) = H*(MU; Zp)

Ωl(S) = Ωl ,

and under the identifications above we may view v* as the natural
map

φ{p) = v*: Ωl > H*(MU;ZP)

which by the Thorn isomorphism may be viewed as

where

<v*[M], cωy = cω[M]

for any monomial cωe H*(BU; Zp) in the mod p Chern classes. As

<, >: HΛBU; Zp) ® H*(BU: Zp) > Zp

is a dual pairing we find

ker v* = {[M] e Ω% \ cω[M] = 0 mod p: all ω) = K

and the desired equality follows.

The Inclusion InczAn. Let us consider first the case n = 1. We
find

I, = {[M] e Ωl I [M]7 = 0e Ω%(BZP)} - A, .

Thus Iι s Aj.. We may therefore proceed inductively and assume that
Im S Am for all m < n. We wish to conclude In £ An. We may as
well assume that n>l. Accordingly we consider the exterior product

xtf Ωl{BZp)

One readily sees that with the obvious abuse of notation that

0*- 1 7(g)7 = ®* 7

in ΩΎί(BZ;). Suppose that [Λf] e In. Then we have

[M]y e IU^ΩU

and thus

[M] = Σ

where

Vi] e /»_,, λ.; e Ω
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Thus we find

[M] ®% 7 = φ*- 1 7 ® [M]Ύ = 0*-1 7

= Σ[Ni] 0"- 17 ® λ,

by naturality. By our inductive assumption In^ £ Aw_! and hence

[JViJ φ - 1 7 = 0 e Ω%{BZ;-1) .

Therefore we find

[M] ®n 7 = JliVi] (gΓ-1 7 <g) λ< = 2Ό <g) λ< = 0

and hence [M] e An as was to be shown. Thus the inclusion In c An

is established inductively for all n Ξ> 0.

Inclusion 4 , c S r Consider the standard map

that classifies the cohomology class

θ, ® θγ 0 <g) ̂  e Hn(BZp

n; Zp) .

It is easily checked that

Suppose now that [M] e An. Then by naturality we find

[M]σn= (qn)ΛM]®nΎ = 0

and therefore [M] e Sn as desired. •

Closing Remarks. For n = 1 and 2 it may be shown by brute
force computational techniques that

Iu = A n = Sn: n=l,2.

In view of the work of Floyd [6] the structure of all these ideals
are then known. We conjecture more generally that this equality
holds for all n ^ 0, and in particular that
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