ON EXTENSIONS OF HOMEOMORPHISMS TO HOMEOMORPHISMS

Doron Ravdin

Abstract

Let $h ; P \rightarrow Q$ be a homeomorphism between two compact subsets of the topological spaces X and Y respectively.

Conditions on the decompositions of $X \backslash P$ and $Y \backslash Q$ are found such that there exists a homeomorphism H of X onto Y which is an extension of h.

It is shown that if P and Q are compact subsets of the one dimensional space R_{ω} consisting of all rational points of the Hilbert space l_{2} then any homeomorphism between P and Q can be extended to a homeomorphism of R_{ω} onto itself. Thus an example of a one dimensional space having a very high degree of homogenity is obtained.

A generalization of a theorem of B. Knaster and M. Reichbach (Reichaw) is also given.

Let $h: P \rightarrow Q$ be a homeomorphism between two compact subsets $P \subset X, Q \subset Y$ of the topological spaces X and Y. The problem of finding conditions under which there exists a homeomorphism $H: X \rightarrow Y$ which is an extension of h has been considered by a number of authors (see [7], [9]). It was shown ([7]) that one can extend homeomorphisms given between two compact subsets of the Cantor set to a self homeomorphisms of the Cantor set under certain conditions. There are other examples where one can extend homeomorphisms in totally disconnected spaces.

In this paper theorems on extensions of homeomorphisms between subsets of two topological spaces to a homeomorphism of the whole spaces are proved. Some results concerning the degree of homogenity of spaces are obtained. The theorems obtained here apply mostly to totally disconnected spaces.

In § 1 a generalizations of a theorem of B . Knaster and M . Reichbach (see [7]) from metric separable spaces to regular spaces is given. It is applied to extend homeomorphisms in a non separable lacunar subset of some Banach space.

In $\S 2$ a theorem an extension of homeomorphisms in metric spaces is proved. It is applied to the subspace R_{ω} of the Hilbert space l_{2} consisting of all points $x=\left\{x_{n}\right\}_{1}^{\infty}$ such that x_{n} is rational for each n. As was shown by P. Erdös (see [4] or [5] p. 13) R_{ω} has dimension 1. We show that every homeomorphism between two compact subsets of the space R_{ω} can be extended to a self homeomorphism of R_{ω}. Thus an example of a finite dimensional, but not zero dimensional space having a very high degree of homogenity is obtained. This result is
related to a problem posed by B. Knaster in [12]. At the end some problems concerning extensions of homeomorphisms in the KnasterKuratowski biconnected set ([8], or [5]) are posed.

Notation. In the sequel we use the logical connectives \vee (or) \wedge (and) \Rightarrow (implies). $\quad N$ denotes the set of natural numbers Z the set of integers and R the set of real numbers. card (A) or $\overline{\bar{A}}$ denotes the cardinality of A, nbd. stands for "neighborhood" and $S(p, \varepsilon)$ denotes the ball of radius ε and centre p in a metric space. Finally all homeomorphisms, are "onto".

1. In this section two theorems on extensions of homeomorphisms to homeomorphisms are proved. The first theorem generalizes Theorem 1 of [7] from separable metric spaces to regular spaces. The second theorem follows from the first one and is applied to extend homeomorphisms in lacunar ${ }^{1}$ subspace of some Banach space.

Definition 1.1. A directed set ${ }^{2} A$ will be called sequentially directed if $A=\bigcup_{i=1}^{\infty} A_{i}$ where A_{i} are disjoint and the ordering in A is defined by: Two elements of the same A_{i} are incomparable and if $\alpha^{\prime} \in A_{i} \alpha^{\prime \prime} \in A_{j}$ and $i<j$ then $\alpha^{\prime}<\alpha^{\prime \prime}$.

We note that in a sequentially directed set every non cofinal subset has an upper bound.

Definition 1.2. Let $A=\{\alpha \mid \alpha \in A\}, B=\{\beta \mid \beta \in B\}$ be directed sets. A map $f: A \rightarrow B$ will be called cofinality preserving if:
(i) $\alpha_{1} \neq \alpha_{2} \Rightarrow f\left(\alpha_{1}\right) \neq f\left(\alpha_{2}\right)$
(ii) for every cofinal subset $C \subset A, f(C)$ is a cofinal subset of B.
(iii) for every cofinal subset $D, D \subset f(A), f^{-1}(D)$ is a cofinal subset of A.
A map f satisfying conditions (i) and (ii) will be called semi cofinality preserving.

Lemma 1.1. Let A and B be directed sets. Let f and g be cofinality preserving maps $f: A \rightarrow B, g: B \rightarrow A$. Then there exists a bijection $k: A \rightarrow B$ such that k is also cofinality preserving and for every $\alpha \in A$ either $k(\alpha)=f(\alpha)$ or $k(\alpha)=g^{-1}(\alpha)$.

Proof. The proof is similar to the proof of the Cantor Bernstein theorem. The following lemma is trivial.

[^0]Lemma 1.2. Let A and B be two directed sets in which every non cofinal subset has an upper bound. If $f: A \rightarrow B$ is monotone and semi cofinality preserving then f is cofinality preserving.

Definition 1.3. Let $P \subset X$ be a compact subset of X. A decomposition of $X \backslash P$ is a family $\left\{X_{\alpha} \mid \alpha \in A\right\}$ such that $X \backslash P=\mathrm{U}_{\alpha \in A} X_{\alpha}$, where X_{α} are open, closed and disjoint subsets of X and A is a directed set of indices.

A decomposition $\left\{X_{\alpha} \mid \alpha \in A\right\}$ of $X \backslash P$ is called regular if the following conditions hold:
(1) for every $p \in P$ and every nbd. U_{p} of p there exists an α_{0} and a nbd. \widetilde{U} of $p, \widetilde{U} \subset U_{p}$, such that for $\alpha>\alpha_{0} X_{\alpha} \cap \widetilde{U} \neq \varnothing \Rightarrow X_{\alpha} \subset U_{p}$. (2) for every $p \in P$, every nbd. U_{p} of p and every α_{0} the set $U_{p} \backslash \cup\left\{X_{\alpha} \mid \alpha>\alpha_{0}\right\}$ is a nbd. of p.
(3) for every cofinal subset C of A there exists a point $p \in P$ and a cofinal subset $C_{p} \subset C$ such that for every nbd. U_{p} of p there exists α_{0} such that $U_{p} \cap X_{\alpha} \neq \varnothing$ for $\alpha \in C_{p} \wedge \alpha>\alpha_{0}$. (α_{0} depends on U_{p}).

Definition 1.4. Let $\left\{X_{\alpha} \mid \alpha \in A\right\}$ and $\left\{Y_{\beta} \mid \beta \in B\right\}$ be decompositions of $X \backslash P$ and $Y \backslash Q$ respectively. Let $h: P \rightarrow Q$ be a homeomorphism. We say (similarly to [7]) that $\left\{X_{\alpha}\right\}$ and $\left\{Y_{\beta}\right\}$ approach P and Q according to h if the following properties hold:
(4) There exists a cofinality preserving map $f: A \rightarrow B$ such that X_{α} is homeomorphic with $Y_{f(\alpha)}$.
(4a) There exists a cofinality preserving map $g: B \rightarrow A$ such that Y_{β} is homeomorphic with $X_{g(\beta)}$.
(5) for every pair of points (p, q) with $p \in P, q=h(p) \in Q$ and for every nbd. V of q there exists a nbd. U of p and α_{0} such that for $\alpha>\alpha_{0}$

$$
X_{\alpha} \cap U \neq \varnothing \Rightarrow Y_{f^{\prime}(\alpha)} \cap V \neq \varnothing
$$

(5a) for every pair of points (q, p) with $q \in Q, p=h^{-1}(q) \in P$ and for every nbd. U of p there exists a nbd. V of q and β_{0} such that for $\beta>\beta_{0}$.

$$
Y_{\beta} \cap V \neq \varnothing \Rightarrow X_{g(\beta)} \cap U \neq \varnothing
$$

Theorem 1.1. Let X and Y be regular spaces and let $h: P \rightarrow Q$ be a homeomorphism between compact subsets $P \subset X, Q \subset Y$. Let $\left\{X_{\alpha} \mid \alpha \in A\right\}$ and $\left\{Y_{\beta} \mid \beta \in B\right\}$ be regular decompositions of $X \backslash P$ and $Y \backslash Q$ respectively and let $\left\{X_{\alpha}\right\}$ and $\left\{Y_{\beta}\right\}$ approach P and Q according to h. Then there exists an extension of h to a homeomorphism $H: X \rightarrow Y$.

Proof. Let $\theta_{\alpha}: X_{\alpha} \rightarrow Y_{f(\alpha)} \psi_{\beta}: Y_{\beta} \rightarrow X_{g(\beta)}$ be the homeomorphisms given by (4) and (4a). Let k be the cofinality preserving map of A
onto B given by Lemma 1. Denote:

$$
A_{f}=\{\alpha \mid \alpha \in A \wedge k(\alpha)=f(\alpha)\}
$$

and

$$
A_{g}=\left\{\alpha \mid \alpha \in A \wedge k(\alpha)=g^{-1}(\alpha)\right\}
$$

Define H by:

$$
H(x)= \begin{cases}h(x) & x \in P \\ \theta_{\alpha}(x) & x \in X_{\alpha} \wedge \alpha \in A_{f} \\ \dot{\psi}_{\alpha}^{-1}(x) & x \in X_{\alpha} \wedge \alpha \in A_{g} \backslash A_{f}\end{cases}
$$

Clearly H is a one-to-one mapping of X onto Y. By the symmetry of our assumptions it suffices to prove that H is continuous. Continuity of H is obvious at every point $x \in X \backslash P$. We shall show that for every point $q \in Q$ and an arbitrary nbd. V of q there exists a nbd. U of $p=h^{-1}(q)$ such that $H(U) \subset V$.

Denote by \hat{H} the map H restricted to $X \backslash P$. It suffices to show that there exists a nbd. \hat{U} of p such that $\hat{H}(\hat{U}) \subset V$.

Let (1a) (2a) and (3a) denote properties obtained from (1), (2) and (3) by replacing X, p, P, U, α, C by Y, q, Q, V, β, D respectively. Let $\widetilde{V} \subset V$ be the nbd. of q given by (1a). By (5) there exists a nbd. \hat{U}_{1} of p contained in U such that

$$
\begin{equation*}
\alpha>\alpha_{0} \wedge X_{\alpha} \cap \hat{U}_{1} \neq \varnothing \Rightarrow \theta_{\alpha}\left(X_{\alpha}\right) \cap \widetilde{V} \neq \varnothing \tag{6}
\end{equation*}
$$

By (2) there exists a nbd. U_{1} of p such that

$$
\begin{equation*}
X_{\alpha} \cap U_{1} \neq \varnothing \Rightarrow \theta_{\alpha}\left(X_{\alpha}\right) \subset V \tag{7}
\end{equation*}
$$

If there are no sets X_{α} contained in U_{1} for which H is defined by ψ_{α}^{-1} then obviously H is continuous at p. Thus it remains to consider the case that there exist sets X_{α} satisfying:

$$
\begin{equation*}
X_{\alpha} \subset U_{1} \tag{8}
\end{equation*}
$$

(9) for X_{α}, H is defined by ψ_{α}^{-1}

$$
\begin{equation*}
H\left(X_{\alpha}\right) \not \subset V \tag{10}
\end{equation*}
$$

We denote these sets by \hat{X}_{α} and the set of their indices by $A^{\prime}=$ $A^{\prime}\left(U_{1}\right)$. We prove first the following proposition (*).
$\left(^{*}\right)$ The nbd. U_{1} can be chosen so that $A^{\prime}\left(U_{1}\right)$ is not cofinal.
Indeed, suppose that for some U_{1}, A^{\prime} is cofinal. By definition of \widetilde{V} there exists for this U_{1} a cofinal subset of indices α^{\prime} such that

$$
\begin{equation*}
\hat{X}_{\alpha}, \subset U_{1} \text { and } \psi_{\alpha^{\prime}}^{-1}\left(\hat{X}_{\alpha^{\prime}}\right) \cap \tilde{V}=\varnothing \tag{11}
\end{equation*}
$$

hence there exists a cofinal subset $A^{\prime \prime}=A^{\prime \prime}\left(U_{1}\right)$ of indices $\alpha^{\prime \prime}$ and a
point q_{1} such that (3a) is satisfied. Clearly $q_{1} \notin \tilde{V}$. By (3) there exists a cofinal subset $A^{\prime \prime \prime}=A^{\prime \prime \prime}\left(U_{1}\right)$ of indices $\alpha^{\prime \prime \prime}\left(A^{\prime \prime \prime} \subset A^{\prime \prime}\right)$ and a point p_{1} such that every nbd. U of p_{1} intersects all sets $\hat{X}_{\alpha^{\prime \prime \prime}}$ with $\alpha^{\prime \prime \prime}>\alpha_{0}^{\prime \prime \prime}$ $\left(\alpha_{0}^{\prime \prime \prime}\right.$ depends on U). By regularity of X and by $\hat{X}_{\alpha^{\prime}} \subset U_{1}$

$$
\begin{equation*}
p_{1} \in \bar{U}_{1}\left(\text { the closure of } U_{1}\right) \tag{12}
\end{equation*}
$$

By (5) and (5a) we have $h\left(p_{1}\right)=q_{1}$.
Indeed assume $h^{-1}\left(q_{1}\right)=p_{2} \neq p_{1}$. Let U_{1} and U_{2} be disjoint nbd's of p_{1} and p_{2} and let $\widetilde{U}_{1} \subset U_{1}, \widetilde{U}_{2} \subset U_{2}$ be the nbd's of p_{1} and p_{2} given by (1). There exists an index $\alpha_{0}^{\prime \prime \prime}$ such that for $\alpha^{\prime \prime \prime}>\alpha_{0}^{\prime \prime \prime}$ we have $\hat{X}_{\alpha}^{\prime \prime \prime} \cap \widetilde{U}_{1} \neq \varnothing$.

According to (5a) there exists for \widetilde{U}_{2} a nbd. V of q_{1} and a β_{0} such that for $\beta>\beta_{0}: Y_{\beta} \cap V \neq \varnothing \Rightarrow \hat{X}_{\alpha^{\prime \prime \prime}} \cap \widetilde{U}_{2} \neq \varnothing$ but this is impossible since $\hat{X}_{\alpha^{\prime \prime}} \subset U_{1}$ for $\alpha>\alpha_{0}^{\prime \prime \prime}$.

Suppose now to the contrary that (*) does not hold. Then for every U_{1} there exists a point $p_{u_{1}}$ and a point $q_{u_{1}}$ such that

$$
p_{u_{1}} \in \bar{U}_{1}, q_{u_{1}} \in \widetilde{V} \text { and } h\left(p_{u_{1}}\right)=q_{u_{1}} .
$$

But then the generalized sequence $\left\{p_{u_{1}}\right\}$ converges to p which contradicts the continuity of h at p. Thus (*) holds. Consider now the set $\hat{U}=U_{1} \backslash \cup\left\{\hat{X}_{\alpha} \mid \alpha \in A^{\prime}\right\} . \quad B y\left(^{*}\right) \quad A^{\prime}$ is not a cofinal subset of A. Thus by (2) \hat{U} is a nbd. of p and $\hat{H}(\hat{U}) \subset V$. Theorem 1 is proved.

From now on X and Y will denote metric spaces and the decompositions of $X \backslash P$ and $Y \backslash Q$ will be assumed to have sequentially directed sets of indices A and $B, A=\bigcup_{i=1}^{\infty} A_{i}, B=\bigcup_{i=1}^{\infty} B_{i}$.

Theorem 1.2. Let $h: P \rightarrow Q$ be a homeomorphism. The following conditions are sufficient for the existence of a homeomorphism $H: X \rightarrow$ Y which is an extension of h :
(13) for every $i, \overline{\bar{A}}_{i}=\overline{\bar{B}}_{i}=M$ where M is some fixed infinite cardinal.
(14) for every $\alpha \in A_{i}$

$$
\delta\left(X_{\alpha}\right)<\frac{1}{2^{i}}
$$

(14a) for every $\beta \in B_{i}$

$$
\delta\left(Y_{\beta}\right)<\frac{1}{2^{i}}
$$

(15) for every $\alpha \in A_{i}$

$$
d(i)<\rho\left(X_{\alpha}, P\right)<\frac{1}{2^{i-1}}
$$

(15a) for every $\beta \in B_{i}$

$$
d(i)<\rho\left(Y_{\beta}, Q\right)<\frac{1}{2^{i-1}}
$$

where $d(i)>0$.
(16) for every α, β there exists a homeomorphism

$$
h_{\alpha \beta}: X_{\alpha} \rightarrow Y_{\beta} .
$$

(17) for every $p \in P$ and $\varepsilon>0$ there exists an i_{0} such that

$$
\operatorname{card}\left\{\alpha \mid \alpha \in A_{i_{0}} \wedge X_{\alpha} \cap S(P, \varepsilon) \neq \varnothing\right\}=M
$$

(17a) for every $q \in Q$ and $\varepsilon>0$ there exists a j_{0} such that

$$
\operatorname{card}\left\{\beta \mid \beta \in B_{j_{0}} \wedge Y_{\beta} \cap S(q, \varepsilon) \neq \varnothing\right\}=M
$$

Proof. It suffices to show that all assumptions of Theorem 1 are satisfied. Clearly $\left\{X_{\alpha} \mid \alpha \in A\right\}$ and $\left\{Y_{\beta} \mid \beta \in B\right\}$ are regular decompositions of $X \backslash P$ and $Y \backslash Q$. To show that $\left\{X_{\alpha}\right\}$ and $\left\{Y_{\beta}\right\}$ approach P and Q according to h it suffices to construct (by the symmetry of our assumptions) a monotone semi-cofinality preserving map $f: A \rightarrow B$ such that (4) and (5) hold. Let us well order A_{i} and B_{i} into type $\omega(M)$ where $\omega(M)$ denotes the first ordinal of cardinality M.

Let $j: N \rightarrow N$ satisfy:

$$
\begin{gather*}
\frac{1}{2^{j(i)-1}}<\frac{d(i)}{2} \text { for all } i \in N \tag{18}\\
j(1)<j(2) \cdots<j(i-1)<j(i) \cdots \tag{19}\\
j(i)>j_{0} \text { where } j_{0} \text { satisfies (17a) with } \varepsilon=\frac{d(i)}{2} \tag{20}
\end{gather*}
$$

For every X_{α} (where $\alpha \in A_{i}$) there exists a point $p_{\alpha} \in P$ such that $\rho\left(X_{\alpha}, p_{\alpha}\right)=\rho\left(X_{\alpha}, P\right)$. Take the point $q_{\alpha}=h\left(p_{\alpha}\right) \in Q$. By (17a) and (20) there exists an injection $f_{i}: A_{i} \rightarrow B_{j i i)}$ such that,

$$
Y_{\beta(\alpha)} \cap S\left(q_{\alpha}, \frac{d(i)}{2}\right) \neq \varnothing
$$

The union $f=\bigcup_{i=1}^{\infty} f_{i}$ is a semi cofinality preserving monotone map $f: A \rightarrow B$ satisfying:

$$
\left\{\begin{array}{l}
\alpha \in A_{i} \Rightarrow f(\alpha) \in B_{j(i)} \tag{21}\\
\rho\left(Y_{f(\alpha)}, h\left(p_{\alpha}\right)\right)<\rho\left(X_{\alpha}, p_{\alpha}\right) .
\end{array}\right.
$$

Thus (4) holds. By (18), (19), (21) also (5) holds.
Let \mathscr{I}_{Σ} denote the Banach space of all bounded functions from an infinite set Σ to the reals,

$$
\mathscr{C}_{\Sigma}=\left\{f\left|f: \Sigma \rightarrow R, \operatorname{Sup}_{\sigma \in \Sigma}\right| f(\sigma) \mid<\infty\right\}
$$

with the norm $\|f\|=\sup _{\sigma \in \Sigma}|f(\sigma)|$.
Let W denote the subset of \mathscr{l}_{Σ} consisting of rational valued functions. Clearly W is a lacunar space. In the following theorem an application of Theorem 2 to extension of homeomorphisms in the space W is given

Theorem 1.3. Each homeomorphism $h: P \rightarrow Q$ between compact subsets of W has an extension to a self homeomorphism of W.

Proof. We shall write $W \backslash P(W \backslash Q)$ as union

$$
\cup\left\{X_{\alpha} \mid \alpha \in A\right\}\left(\cup\left\{Y_{\beta} \mid \beta \in B\right\}\right)
$$

where $X_{\alpha}\left(Y_{\beta}\right)$ are "cubes" such that all assumptions of Theorem 2 will be satisfied.

For every function $\alpha \in Z^{\Sigma}$ from Σ to the set of integers Z denote by X_{α}^{1} the cube:
(22) $X_{\alpha}^{1}=\{f \mid f \in W \wedge \sqrt{2}+\alpha(\sigma)<f(\sigma)<\sqrt{2}+\alpha(\sigma)+1$ for all $\sigma\}$. All such cubes are homeomorphic, mutually disjoint, closed and open subsets of W. Let $\mathscr{F}_{1}=\left\{X_{\alpha}^{1} \mid \alpha \in Z^{\Sigma}\right\}$. Clearly $\overline{\bar{F}_{1}}=2^{\overline{\bar{E}}}$. Define

$$
\begin{equation*}
A_{1}=\left\{\alpha \mid \alpha \in Z^{\Sigma} \wedge \rho\left(X_{\alpha}^{1}, P\right)>1\right\} \tag{23}
\end{equation*}
$$

Since P is bounded (as a compact set) we have also: $\overline{\bar{A}}_{1}=2^{\bar{j}}$. For every function $\alpha \in Z^{\Sigma}$ denote by X_{α}^{2} the cube:

$$
\begin{align*}
X_{\alpha}^{2}=\{f \mid f \in W \wedge \sqrt{2} & +\frac{\alpha(\sigma)}{6}<f(\sigma)<\sqrt{2} \tag{24}\\
& \left.+\frac{\alpha(\sigma)+1}{6} \text { for all } \sigma\right\}
\end{align*}
$$

Let $\mathscr{F}_{2}=\left\{X_{\alpha}^{2} \mid \alpha \in Z^{\Sigma} \wedge X_{\alpha}^{2} \subset W \backslash \bigcup_{\alpha \in A_{1}} X_{\alpha}^{1}\right\}$ and define

$$
\begin{equation*}
A_{2}=\left\{\alpha \left\lvert\, \alpha \in Z^{\Sigma} \wedge \rho\left(X_{\alpha}^{2}, P\right)>\frac{1}{6} \wedge X_{\alpha}^{2} \in \mathscr{F}_{2}\right.\right\} \tag{25}
\end{equation*}
$$

There exists for every $p \in P$ at least one cube $X_{\alpha_{0}}^{1}$ in \mathscr{F}_{1} such that $X_{\alpha_{0}}^{1} \cap P=\varnothing$ and $X_{\alpha_{0}}^{1} \cap S(p, 1) \neq Q$, (hence $\alpha_{0} \notin A_{1}$). The set $\left\{X_{\alpha}^{2} \mid X_{\alpha}^{2} \subset X_{\alpha_{0}}^{1} \wedge \alpha \in A_{2}\right\}$ has cardinality $2^{\bar{z}}$ and therefore also $\overline{\bar{A}}_{2}=2^{\overline{\bar{y}}}$. Thus (17) holds for $\varepsilon=1$ and $i_{0}=2$.

By induction we define sets A_{i} for $i=3,4 \cdots$ and sets of cubes $\left\{X_{\alpha} \mid \alpha \in A_{i}\right\}$ satisfying:

$$
A_{i}=2^{\frac{\tilde{z}}{2}} \quad(i=1,2 \cdots)
$$

$$
\begin{gather*}
\delta\left(X_{\alpha}\right)<1 / 6^{i-1} \quad \text { for } \quad \alpha \in A_{i} \tag{27}\\
\frac{1}{6^{i-1}}<\rho\left(X_{\alpha}, P\right)<\frac{2}{6^{i-2}} \quad \text { for } \quad \alpha \in A_{i} \tag{28}
\end{gather*}
$$

Obviously (26) (27) (28) imply (13) (14) (15). Taking $i_{0}=i+1$ for $\varepsilon>1 / 6^{i-1}(i=1,2, \cdots)$ one obtains that (17) holds with $M=2^{\overline{\overline{ }}}$. Also $W \backslash P=\cup\left\{X_{\alpha} \mid \alpha \in A\right\}$ where $A \bigcup_{i=1}^{\infty} A_{i}$.

Similarly $W \backslash Q$ can be decomposed into sets $Y_{\beta}, \beta \in B=\bigcup_{i=1}^{\infty} B_{i}$. Finally assumption (16) of Theorem 2 is satisfied since all the cubes X_{α} and Y_{β} are homeomorphic.
2. In this section a theorem on extension of homeomorphisms to homeomorphisms in metric spaces is proved. It is applied to extend homeomorphisms in the one-dimensional space R_{ω} of all points with rational coordinates in the Hilbert space l_{2}. We show that each homeomorphism between two compact subsets of R_{ω} can be extended to a self homeomorphism of R_{ω}. Thus an example of a finite dimensional but not zero dimensional space having a very high degree of homogenity is obtained.

Definition 2.1. Let $\left\{X_{\alpha} \mid \alpha \in A\right\}$ be a decomposition of $X \backslash P$. For every $\alpha \in A$ let $p_{\alpha} \in P$ be any point such that $\rho\left(X_{\alpha}, P\right)=\rho\left(X_{\alpha}, p_{\alpha}\right)$. The sets X_{α} will be called thin with respect to P if the following conditions hold:

$$
\begin{array}{ll}
\frac{1}{2^{i}}<\rho\left(X_{\alpha}, P\right)<\frac{1}{2^{i-1}} & \text { for } \quad \alpha \in A_{i} \quad(\text { for } \quad i=2,3 \cdots) \\
\frac{1}{2}<\rho\left(X_{\alpha}, P\right) & \text { for } \quad \alpha \in A \tag{29}
\end{array}
$$

(30) for every $p \in P$ and $\varepsilon>0$ there exists an $i_{0}=i_{0}(p, \varepsilon)$ and $\delta=$ $\delta(p, \varepsilon)>0$ such that

$$
i>i_{0} \wedge \alpha \in A_{i} \wedge S(p, \delta) \cap X_{\alpha} \neq \varnothing \Rightarrow p_{\alpha} \in S(p, \varepsilon)
$$

If moreover
(31) for every $i=1,2, \cdots \overline{\bar{A}}_{i}=M$ where M is an infinite cardinal and for every $p \in P$ and every $d>1 / 2^{i}$ there exist M indices α^{\prime} satisfying $\alpha^{\prime} \in A_{i}, \rho\left(p_{\alpha^{\prime}}, p\right)<1 / 4^{i}$ and $\rho\left(X_{\alpha^{\prime}}, P\right)<K d$ where $K>1$ is a fixed number then the sets X_{α} will be called M dense with respect to P.

Lemma 2.1. Let $\left\{X_{\alpha} \mid \alpha \in A\right\}$ and $\left\{Y_{\beta} \mid \beta \in B\right\}$ be decompositions of $X \backslash P$ and $Y \backslash Q$. Let $h: P \rightarrow Q$ be a homeomorphism. The following assumptions suffice for the existence of an extension of h to a homeomorphism $H: X \rightarrow Y$.
(32) The sets X_{α} are thin with respect to P.
(32a) The sets Y_{β} are thin with respect to Q.
(33) There exists an injection $\dot{\phi}: A \rightarrow B$ such that

$$
\alpha \in A_{i} \Rightarrow \dot{\phi}(\alpha) \in B_{i}
$$

(33a) There exists an injection $\psi: B \rightarrow A$ such that

$$
\beta \in B_{i} \Rightarrow \psi(\beta) \in A_{i}
$$

(34) There exist homeomorphisms $f_{\alpha}: X_{\alpha} \rightarrow Y_{\phi(\alpha)}$ satisfying

$$
\frac{1}{K} \rho\left(x, p_{\alpha}\right)<\rho\left(f_{\alpha}(x), h\left(p_{\alpha}\right)<K \rho\left(x, p_{\alpha}\right)\right.
$$

for every $x \in X$ where $K>1$ is a fixed number
(34a) There exist homeomorphisms $g_{\beta}: Y_{\beta} \rightarrow X_{\psi(\beta)}$ satisfying

$$
\frac{1}{K} \rho\left(y, q_{\beta}\right)<\rho\left(g_{\beta}(y), h^{-1}\left(q_{\beta}\right)\right)<K \rho\left(y, q_{\beta}\right)
$$

for every $y \in Y_{\beta}$ where $K>1$ is a fixed number, and $q_{\beta} \in Q$ is any point of Q for which $\rho\left(Y_{\beta}, Q\right)=\rho\left(Y_{\beta}, q_{\beta}\right)$.
(35) for every cofinal (in A) sequence $\left\{\alpha_{s}\right\}$ of indices $\rho\left(h\left(p_{\alpha_{s}}\right), q_{\phi\left(\alpha_{s}\right)}\right) \rightarrow 0$ for $s \rightarrow \infty$
(35a) for every cofinal (in B) sequence $\left\{\beta_{s}\right\}$ of indices $\rho\left(h^{-1}\left(q_{\beta_{s}}\right), p_{\psi\left(\beta_{s}\right)}\right) \rightarrow 0$ for $s \rightarrow \infty$.

Proof. By (33) and (33a) there exists a one-to-one mapping θ of A onto B. Denoting $A_{\phi}=\{\alpha \mid \alpha \in A, \theta(\alpha)=\phi(\alpha)\}$ and $A_{\psi}=\{\alpha \mid \alpha \in A$, $\left.\theta(\alpha)=\psi^{-1}(\alpha)\right\}$ one can assume (by Lemma 1.1) that θ is defined so that $A=A_{\phi} \cup A_{\psi}$. We define H by:

$$
H(x)= \begin{cases}h(x) & x \in P \\ f_{\alpha}(x) & x \in X_{\alpha} \wedge \alpha \in A_{\phi} \\ g_{\alpha}^{-1}(x) & x \in X \wedge \alpha \in A_{\vartheta} \backslash A_{\phi}\end{cases}
$$

As in Theorem 1.1 it suffices to show that H is continuous at an arbitrary point $p \in P$. Let $V=S(q, \varepsilon)$ be a given nbd. of $q=h(p)$. By the continuity of h we have:
(a) There exists a nbd. U_{1} of p such that

$$
x \in U_{1} \cap P \Rightarrow H(x)=h(x) \in V .
$$

Let U_{2} be a nbd. of p such that $h\left(U_{2} \cap P\right) \subset S(q, \varepsilon / 8)$. By (32) and (30) there exists a $\delta>0$ such that $X_{\alpha} \cap S(p, \delta) \neq \varnothing \Rightarrow p_{\alpha} \in U_{2}$. Let $\delta_{1}=\min (\varepsilon / 3 K, \delta)$ and let $U_{3}=U_{2} \cap S\left(p, \delta_{1}\right)$. Then

$$
\begin{aligned}
x \in X_{\alpha} \cap U_{3} \Rightarrow\left[\rho\left(f_{\alpha}(x), q\right)\right. & <\rho\left(f_{\alpha}(x), h\left(p_{\alpha}\right)+\rho\left(h\left(p_{\alpha}\right), q\right)\right. \\
& \left.<K \rho\left(x, p_{\alpha}\right)+\frac{\varepsilon}{8}<\varepsilon\right]
\end{aligned}
$$

Hence

(b) There exists a nbd. U_{3} of p such that

$$
x \in X_{\alpha} \cap U_{3} \Rightarrow f_{\alpha}(x) \in V
$$

We now show that
(c) There exists a nbd. U_{4} of p such that

$$
x \in X_{\psi(\beta)} \cap U_{4} \Rightarrow g_{\beta}^{-1}(x) \in V
$$

Indeed, otherwise there exists a cofinal sequence of indices $\left\{\alpha_{s}\right\}$ such that $x_{s} \in X_{\alpha_{s}}, x_{s} \rightarrow p$ and $\rho\left(g_{\beta_{s}}^{-1}\left(x_{s}\right), q\right)>\varepsilon$ where $\beta_{s}=\psi^{-1}\left(\alpha_{s}\right)$. But then $p_{\alpha_{s}} \rightarrow p$ and by (35a) also $h^{-1}\left(q_{\beta_{s}}\right) \rightarrow p$. Thus $q_{\beta_{s}} \rightarrow q$. Now by (34a)

$$
\rho\left(y_{s} q_{\beta_{s}}\right)<K \rho\left(x_{s}, h^{-1}\left(q_{\beta_{s}}\right)\right) \quad \text { where } \quad y_{s}=g_{\beta_{s}}^{-1}\left(x_{s}\right) .
$$

This is however impossible because $\rho\left(y_{s}, q_{\beta_{s}}\right)>\varepsilon / 2$ and $\rho\left(x_{s}, h^{-1}\left(q_{\beta_{s}}\right)\right)<$ $\rho\left(x_{s}, p\right)+\rho\left(p, h^{-1}\left(q_{\beta_{s}}\right)\right) \rightarrow 0$. It follows by (a) (b) and (c) that $H\left(U_{1} \cap\right.$ $\left.U_{3} \cap U_{4}\right) \subset V$.

Theorem 2.1. Let $\left\{X_{\alpha} \mid \alpha \in A\right\}$ and $\left\{Y_{\beta} \mid \beta \in B\right\}$ be decompositions of $X \backslash P$ and $Y \backslash Q$ and let $h: P \rightarrow Q$ be a homeomorphism.

Denote for every i and every $\alpha \in A_{i}$ by $x_{\alpha} \in X_{\alpha}$ a point satisfying $\rho\left(x_{\alpha}, P\right)-\rho\left(X_{\alpha}, P\right)<1 / 4^{i}$.

Similarly denote for every i and every $\beta \in B_{i}$ by $y_{\beta} \in Y_{\beta}$ a point satisfying $\rho\left(y_{\beta}, Q\right)-\rho\left(Y_{\beta}, Q\right)<1 / 4^{i}$.

The following conditions are sufficient for the existence of a homeomorphism $H: X \rightarrow Y$ which is an extension of h.
(36) X_{α} are thin and \boldsymbol{K}_{0} dense with respect to P.
(36a) Y_{β} are thin and \boldsymbol{K}_{0} dense with respect to Q.
(37) for every $\alpha \in A_{i}$ and $\beta \in B_{i}$ there exists a homeomorphism $f_{\alpha \beta}$: $X_{\alpha} \rightarrow Y_{\beta}$ such that

$$
f_{\alpha \beta}\left(x_{\alpha}\right)=y_{\beta}
$$

and such that for every $x \in X_{\alpha}$

$$
\rho\left(f_{\alpha \beta}(x), y_{\beta}\right)\left\{\begin{array}{l}
<\operatorname{Max}\left\{\frac{1}{4^{i}}, 2 \rho\left(x_{\alpha}, x\right)\right\} \\
>\rho\left(x_{\alpha}, x\right)-\frac{1}{4^{i}}
\end{array}\right.
$$

(37a) for every $\beta \in B_{i}$ and $\alpha \in A_{i}$ there exists a homeomorphism $g_{\beta \alpha}$: $Y_{\beta} \rightarrow X_{\alpha}$ such that

$$
g_{i \alpha}\left(y_{\beta}\right)=x_{\alpha}
$$

and such that for every $y \in Y_{\beta}$

$$
\rho\left(g_{\beta \alpha}(y), x_{\alpha}\right)\left\{\begin{array}{l}
<\operatorname{Max}\left\{\frac{1}{4^{i}}, 2 \rho\left(y_{\beta}, y\right)\right\} \\
>\rho\left(y, y_{\beta}\right)-\frac{1}{4^{i}}
\end{array}\right.
$$

(38) for every $x \in X_{\alpha}$

$$
\rho\left(x, p_{\alpha}\right)>\frac{1}{2} \rho\left(x, x_{\alpha}\right)+\frac{1}{2} \rho\left(x_{\alpha}, p_{\alpha}\right)
$$

(38a) for every $y \in Y_{\beta}$

$$
\rho\left(y, q_{\beta}\right)>\frac{1}{2} \rho\left(y, y_{\beta}\right)+\frac{1}{2} \rho\left(y_{\beta}, q_{\beta}\right) .
$$

Proof. It suffices to define mappings $\phi: A \rightarrow B$ and $\psi: B \rightarrow A$ and homeomorphisms $f_{\alpha}: X_{\alpha} \rightarrow Y_{\phi(\alpha)}$ and $g_{\beta}: y_{\beta} \rightarrow X_{\psi(\beta)}$ so that all assumptions of Lemma 2.1 will be satisfied. We note first that by (36) and (36a) assumptions (32) and (32a) hold. Now denote for a fixed i by $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ the sequence of elements of A_{i} and define $\dot{\rho}: A_{i} \rightarrow B_{i}$ by induction. Suppose that $\dot{\phi}$ has already been defined for $\alpha_{1} \cdots \alpha_{n}$. Define $\phi\left(\alpha_{n+1}\right)$ as follows: By (31) there exists a set Y_{β} satisfying:

$$
\left\{\begin{array}{l}
\text { (a) } \beta \in B_{i} \\
\text { (b) } \beta \notin\left\{\dot{\phi}\left(\alpha_{1}\right) \cdots \dot{\varphi}\left(\alpha_{n}\right)\right\} \\
\text { (c) } \tag{39}\\
\rho\left(q_{\beta}, h\left(p_{\alpha}\right)\right)<\frac{1}{4^{i}} \\
\text { (d) } \\
\rho\left(Y_{\beta}, Q\right)<K \rho\left(X_{\alpha}, P\right) \quad \text { here } \quad \alpha=\alpha_{n+1} .
\end{array}\right.
$$

Put $\phi\left(\alpha_{n+1}\right)=\beta$ and define $f_{\alpha}=f_{\alpha, \phi(\alpha)}: X_{\alpha} \rightarrow Y_{\phi(\alpha)}$ as the homeomorphism given by (37). Thus $\phi: A_{i} \rightarrow B_{i}$ is defined for every i and so $\phi: A \rightarrow B$ is defined.

Similarly we define $\psi: B \rightarrow A$ and $g_{\beta}: Y_{\beta} \rightarrow X_{\psi(\beta)}$ (again using (31) and (37a)).

Obviously (33) and (33a) are satisfied. By (39c) also (35) and (35a) hold. By (29), (37), (38) and (39), (denoting $\phi(\alpha)$ by β) we have:

$$
\begin{aligned}
\rho\left(f_{\alpha}(x), h\left(p_{\alpha}\right)\right) & <\rho\left(f_{\alpha \beta}(x), f_{\alpha \beta}\left(x_{\alpha}\right)\right)+\rho\left(f_{\alpha \beta}\left(x_{\alpha}\right), q_{\beta}\right)+\rho\left(q_{\beta}, h\left(p_{\alpha}\right)\right) \\
& <\frac{1}{4^{i}}+2 \rho\left(x_{\alpha}, x\right)+K \rho\left(x_{\alpha}, p_{\alpha}\right)+\frac{3}{4^{i}} \\
& <(K+6) \rho\left(x, p_{\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\rho\left(f_{\alpha}(x), h\left(p_{\alpha}\right)\right) & >\rho\left(f_{\alpha}(x), q_{\beta}\right)-\rho\left(q_{\beta}, h\left(p_{\alpha}\right)\right) \\
& >\frac{1}{2} \rho\left(f_{\alpha \beta}(x), f_{\alpha \beta}\left(x_{\alpha}\right)\right)+\frac{1}{2} \rho\left(y_{\beta}, q_{\beta}\right)-\rho\left(q_{\beta}, h\left(p_{\alpha}\right)\right) \\
& >\frac{1}{(K+6)} \rho\left(x, p_{\alpha}\right) .
\end{aligned}
$$

Thus also property (34) of Lemma 2.1 holds with K replaced by $K+6$.

Remark. One could define the notion of "thin and M dense" using sequences of numbers $\left\{t_{k}\right\},\left\{r_{k}\right\}$ satisfying $t_{k} \rightarrow 0, r_{k} /_{t_{k}} \rightarrow 0$ instead of the sequences $\left\{2^{-k}\right\},\left\{4^{-k}\right\}$ used.

Extension of homeomorphisms in R_{ω}. We shall show now that in R_{ω} every homeomorphism between two compact subsets can be extended to a self homeomorphism of R_{ω}. Before proving this we introduce some definitions and notations.

The n-dimensional cube $C=\left\{\left(x_{1} \cdots x_{n}\right) \mid \alpha_{i} \leqq x_{i} \leqq a_{i}+l, i=1, \cdots n\right\}$ will be denoted by $\left[a_{1} a_{2} \cdots a_{n} ; l\right]$.

Every cube $\left[a_{1} \cdots a_{n} ; l\right]$ can be divided into 2^{n} cubes $C_{i_{1}, i_{2} \cdots i_{n}}$ of the form:

$$
\begin{aligned}
C_{i_{1}, i_{2}, \cdots i_{n}}=\left\{\left(x_{1} \cdots x_{n}\right) \left\lvert\, a_{j}+i_{j} \frac{l}{2} \leqq x_{j} \leqq\right.\right. & a_{j}+\frac{l}{2}\left(i_{j}+1\right) \\
& \text { for every } j=1 \cdots n\}
\end{aligned}
$$

where i_{j} equals 0 or 1 . Let $\hat{C}_{1}, \widehat{C}_{2} \cdots \widehat{C}_{2 n}$, be the sequence of these cubes ordered lexicographically. By induction we define (as above) cubes $\widehat{C}_{i j}$ which divide the cube \widehat{C}_{i} into 2^{n} cubes and more generally $\widehat{C}_{i j \ldots k}$.

For a given cube C, let $Q(C)$ denote the set of cubes:
$\left\{\widehat{C}_{j} \mid j=2 \cdots 2^{n}\right\} \cup\left\{\widehat{C}_{1 j} \mid j=2 \cdots 2^{n}\right\} \cup\left\{\widehat{C}_{11 j} \mid j=2 \cdots 2^{n}\right\} \cup \cdots$.
Let $\langle C\rangle=\left\langle a_{1} \cdots a_{n}, l\right\rangle$ denote the cylinder (in l_{2}) over the cube C i.e.

$$
\langle C\rangle=\left\{\left\{x_{i}\right\rangle_{i=1}^{\infty} \mid\left\{x_{i}\right\} \in l_{2} \quad \text { and } \quad \forall_{i \leqq n}\left(a_{i} \leqq x_{i} \leqq a_{i}+l\right)\right\}
$$

We call the n-dimensional cube $C=\left[a_{1} \cdots a_{n}, l\right]$ the base of the cylinder $\langle C\rangle$, and define $Q\langle C\rangle$ as the set of $\boldsymbol{\aleph}_{0}$ cylinders in l_{2} whose base is one of the cubes in the set $Q(C)$.
π_{n} denotes the projection of l_{2} on the subspace of all points of the form $\left(x_{1} \cdots x_{n} 0 \cdots 0 \cdots\right)$.

Finally for a compact subset $P \subset l_{2}$ and for a set X_{α} disjoint with P we denote by p_{α} any point of P for which $\rho\left(X_{\alpha}, P\right)=\rho\left(X_{\alpha}, p_{\alpha}\right)$ and by x_{α} any point of X_{α} satisfying $\rho\left(x_{\alpha}, P\right)-\rho\left(X_{\alpha}, P\right)<\varepsilon_{\alpha}$ where ε_{α} is given. The following two lemmas are trivial:

Lemma 2.2. Let S be a compact subset of R_{ω} and let $\varepsilon>0$. There exists n_{0} such that for every point $s \in S$ and every $n>n_{0} \rho\left(s, \pi_{n}(s)\right)<\varepsilon$.

Proof. Indeed it suffices to take any finite $\varepsilon / 3$ net $\left\{s_{1} s_{2} \cdots s_{k}\right\}$ in S and choose n_{0} such that $\rho\left(s_{i}, \pi_{n_{0}}\left(s_{i}\right)\right)<\varepsilon / 3$ for every $i=1,2, \cdots k$.

Lemma 2.3. The cylinders of the form

$$
\left\langle r_{1}+\sqrt{2}, r_{2}+\sqrt{2}, \cdots r_{n}+\sqrt{2} ; l\right\rangle
$$

are for every $n \in N$ and every sequence $l, r_{1} \cdots r_{n}$ of rational numbers closed and open subsets of R_{ω}.

Theorem 2.2. Any homeomorphism $h: P \rightarrow Q$ between two compact subsets P and Q of R_{ω} can be extended to a self homeomorphism of R_{ω}.

Proof. It suffices to decompose the sets $R_{\omega} \backslash P$ and $R_{\omega} \backslash Q$ so that all assumptions of Theorem 2.1 hold. Let $\varepsilon_{1}>0$ and let n_{1} be a natural number such that Lemma 2.2 holds with $S=P n_{0}=n_{1}$ and $\varepsilon=\varepsilon_{1}$. Consider the collection F_{1} of all cylinders of the form

$$
\left\langle\frac{k_{1}}{4^{n_{1}}}+\sqrt{2}, \frac{k_{2}}{4^{n_{1}}}+\sqrt{2}, \cdots \frac{k_{n_{1}}}{4^{n_{1}}}+\sqrt{2} ; \frac{1}{4^{n_{1}}}\right\rangle
$$

where $k_{1} \cdots k_{n_{1}}$ are integers. F_{1} is a set of mutually disjoint cylinders. Choose from F_{1} the set of all cylinders $\langle C\rangle$ satisfying $\rho(\langle C\rangle, P)>\frac{1}{2}$ and denote it by G_{1}. Take the (countable) set of cylinders

$$
\bigcup_{\langle C\rangle \in G_{1}} Q\langle C\rangle
$$

and denote it by $\left\{X_{\alpha} \mid \alpha \in A_{1}\right\}$ where A_{1} is countable. (By Theorem 2.1 one has to decompose $R_{\omega} \backslash P$ into sets X_{α} where $\alpha \in \bigcup_{i=1}^{\infty} A_{i}$ and the sets A_{i} have to be disjoint sets of indices. Therefore we do not assume that A_{1} is the set of integers).

Let ε_{2} satisfy $0<\varepsilon_{2}<\varepsilon_{1}$ and let n_{2} be any natural number such that Lemma 2.2 holds with $S=P n_{0}=n_{2}$ and $\varepsilon=\varepsilon_{2}$.

Decompose the set $R_{\omega} \backslash \cup\left\{\langle C\rangle \mid\langle C\rangle \in G_{1}\right\}$ into cylinders of the form:

$$
\left\langle\frac{k_{1}}{4^{n_{2}}}+\sqrt{2}, \frac{k_{2}}{4^{n_{2}}}+\sqrt{2}, \ldots \frac{k_{n_{2}}}{4^{n_{2}}}+\sqrt{2} ; \frac{1}{4^{n_{2}}}\right\rangle
$$

where $k_{1} \cdots k_{n_{2}}$ are integers, and denote the obtained set of cylinders by $F_{2} . \quad F_{2}$ is a set of mutually disjoint cylinders. Let

$$
G_{2}=\left\{\langle C\rangle \left\lvert\,\langle C\rangle \in F_{2} \wedge \rho(\langle C\rangle, P)>\frac{1}{2^{2}}\right.\right\}
$$

Take the (countable) set of cylinders $\bigcup_{\langle C\rangle \in G_{2}} Q\langle C\rangle$ and denote it by $\left\{X_{\alpha} \mid \alpha \in A_{2}\right\}$ where A_{2} is countable. By induction one can define for a given sequence $\varepsilon_{k} \rightarrow 0\left(0<\varepsilon_{k}<\varepsilon_{k-1}\right)$ and a sequence of natural
numbers $n_{k}\left(n_{k}>n_{k-1}\right)$ countable sets of cylinders $\left\{X_{\alpha} \mid \alpha \in A_{k}\right\}$ for every $k=1,2 \cdots$.

Clearly $R_{\omega} \backslash P=\cup\left\{X_{\alpha} \mid \alpha \in A\right\}$ where $A=\bigcup_{i=1}^{\infty} A_{i}$.
Similarly $R_{\omega} \backslash Q=\cup\left\{Y_{\beta} \mid \beta \in B\right\}$ where $B=\bigcup_{i=1}^{\infty} B_{i}$. Also we can choose the same sequences $\left\{\varepsilon_{k}\right\}$ and $\left\{n_{k}\right\}$ for both decompositions. It is easy to show that for sufficiently fast decreasing sequence of numbers ε_{k} (for example $\varepsilon_{k}<1 / 8^{k}$ the sets $X_{\alpha}\left(Y_{\beta}\right)$ are thin and \boldsymbol{K}_{0} dense with respect to $P(Q)$).

Obviously every cylinder $X_{\alpha}, \alpha \in A_{k}$ is homeomorphic to every cylinder $Y_{\beta}, \beta \in B_{k}$. Also for every pair of points $x_{\alpha} \in X_{\alpha}\left(\alpha \in A_{k}\right) y_{\beta} \in$ $Y_{\beta}\left(\beta \in B_{k}\right)$ there exists a homeomorphism $f_{\alpha \beta}: X_{\alpha} \rightarrow Y_{\beta}$ so that $f_{\alpha \beta}\left(x_{\alpha}\right)=$ y_{β} and such that (37) is satisfied. Finally (38), (38a) follow from simple geometric properties of the Hilbert space l_{2}.

Theorem 2.2 is proved.
We conclude with two problems. Let X denote the biconnected set defined by Knaster and Kuratowski ([8] or [5] p. 22) and let $p \in X$ be the point such that $X \backslash\{p\}$ is totally disconnected.

Problem 1. Can each homeomorphism between two compact subsets of $X \backslash\{p\}$ be extended to a self homeomorphism of X ?

In connection with the result obtained in Theorem 2.2 one can ask:

Problem 2. Does there exist for $n=2,3 \cdots n$-dimensional space X where every homeomorphism between two compact subsets can be extended to a self homeomorphism of X ?

References

1. J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Acad. Sci., 10 (1924), 8-10.
2. L. Antoine, Sur l'homeomorphism de figures et de leurs voisinages, J. de Math., (1921), p. 221.
3. Sur les voisinages de deux figures homeomorphes, Fund. Math., 5 (1924), p. 265 .
4. P. Erdj̈s, The dimension of rational points in Hilbert space, Ann. Math., 41 (1940), 734-736.
5. W. Hurewictz., \& H. Wallman, Dimension Theory, Princeton University Press (1941).
6. J. L. Kelley, General Topology, Van Nostrand N.Y. (1955).
7. B. Knaster \& M. Reichbach (Reichaw), Notion d'homogeneite et prolongements des homeomorphies, Fund. Math., 40 (1953), 180-193.
8. C. Kuratowski, Topologie I, Warszawa (1952).
9. M. Lavrentieff, C.R. Acad. Sci. Paris, 178 (1924) p. 187; Fund. Math., 6 (1924) p. 149
10. A. Lelex, Sur deux genres d'espaces complets, Coll. Math. VII (1961), 31-34.
11. A. Schoenflies, Die Entwicklung der Lehre von den Punkt Mannigfaltigkeiten II, Leiptzig Teubner (1908).
12. The New Scottish Book, Wroclaw, 1946-1958.

Received September 1, 1970 and in revised form January 13, 1971. This paper forms part of a thesis in partial fulfillment of the requirements for the degree of Doctor of Science at the Technion-Israel Institute of Technology. The author wishes to thank Professor M. Reichaw for this help in the preparation of this paper.

Technion-Israel Institute of Technology

[^0]: ${ }^{1}$ A lacunar space is a space in which every compact set is nowhere dense. (See [10]).
 ${ }^{2}$ A directed set A is a partially ordered set such that for every $\alpha^{\prime}, \alpha^{\prime \prime} \in A$ there exists $\alpha^{\prime \prime \prime} \in A$ with $\alpha^{\prime \prime \prime}>\alpha^{\prime} \wedge \alpha^{\prime \prime \prime}>\alpha^{\prime \prime}$ ([6]).

