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QUASIVECTOR TOPOLOGIES

FORREST R. MILLER

A topology on a vector space for which the vector opera-
tions are only separately continuous is called a quasivector
topology. Some version of most of the usual results for
topological vector spaces is obtained for these topologies.

Convergence structures which are more general than
topologies can be used to obtain results about quasivector
topologies and this relationship is described and used.

The techniques are motivated by certain quasivector topolo-
gies which occur in functional analysis and references are
given to these occurrences.

Topologies on vector spaces with respect to which the vector
operations are only separately continuous do occur in functional analysis.
If (E, τ) is a locally convex space and E' is the space of all continuous
linear functionals, let p be the finest topology on Ef which agrees
with σ(E;, E) on τ-equicontinuous sets. It can happen that the vector
addition on Ef is only separately continuous with respect to p ([4]).
Another interesting example is given in [8, page 5]. We refer to
such topologies as quasivector topologies.

Some of the results which are true for topological vector spaces
are true in this more general setting. It is the purpose of this paper
to establish such results. For an application of the results of this
paper see [6], [7].

Some quasivector topologies are related to general convergences
with respect to which the vector operations are jointly continuous.
Indeed, two examples mentioned above are of this type. General
convergence theories are very useful in the study of quasivector topolo-
gies as they often allow one to avoid having to work with the com-
plicated neighborhoods which are associated with the quasivector
topologies.

Such a convergence theory has been defined in [3] and [5], and in [3]
the theory has been developed sufficiently to offer effective application.1

We begin with a definition and a theorem from [3].
Let X be any set. If ^ and & are two filters on X we write
<L & to mean Jf gΞ Sf. If & is a filterbase or subbase we write

for the filter generated by .̂ E If A is a subset of X and j^~
is a filter on X such that A Π F Φ 0 for each F in J^ we denote
the filter on A, {AΓ)F\ Fe J?~}, by trAj^ If there is an f in /
such that AΠF = 0 we say that trA^~ does not exist.

1 In [5] the theory was used to study compactifications of topological spaces.
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DEFINITION 1. A convergence structure on X is a function τ
defined on X such that, for x in X

(1) τ(x) is a collection of filters on X.
(2) x = {F\xeF} is in τ(x).
( 3 ) ^ e τ(x) and gf :> Ĵ ~ implies that 5f G τ(x).
( 4) &~ e τ{x) and g? e τ(x) implies that Ĵ ~ Λ 5f € τ(^).2

If ^ " e τ(#) we say that J^ converges to x with respect to τ.
For each subset i g l w e define A = {x\ there is an ^ ~ in τ(x) such
that A G ^"}, and we say that A is r-closed if A = A. If (X, τ) and
(F, σ) are two convergence spaces and /: X —> F is any mapping we
say that / is τ — σ continuous if [f{^)\ e o{f(x)) for each ^ in τ(x)
and each α? in X.

If r and σ are two convergence structures on X we say that τ
is finer than σ (or σ is coarser than τ) and write σ ^ r if r(a?) S
σ(x) for each x in X. Clearly we can consider the set of all topolo-
gies on X to be a subset of the set of all convergence structures on
X. If τ is any convergence structure on X we will use COT to denote
the finest topology coarser than τ. A set V is ωτ-open if and only
if ^~ eτ(x) and xe V implies that F G ^ Γ Also, τ and ωτ have the
same closed sets.

THEOREM 1. ([3]). If f: X-+ Y is τ — σ continuous then f is
ωτ — ωσ continuous. Thus if (Y, σ) is a topological space the set of
τ — σ continuous mappings is the same as the set of ωτ — σ continuous
mappings.

Given convergence spaces (X, τ) and (Y, σ) the product space
(X x X, τ x σ) is defined by τ x σ((x, y)) = {^~ \ pγ{ά?~) G τ(x) and
P2{^~) £ σ(v)} where pγ and p2 are the two projections. If X and F
are also vector spaces we will denote (X x Y, τ x σ) with the usual
vector operations by ( 1 0 F, τ 0 σ) or (X, τ) 0 (F, σ).

DEFINITION 2. Let i? be a vector space3, and r be a convergence
structure on E.

(1) We say that τ is a vector convergence if the vector opera-
tions are jointly continuous.

(2) We say that τ is a quasivector convergence if the vector
operations are separately continuous.

(3) We say that τ is balanced if ^~ G τ(0) implies that b{^) =
[{b(F) I F G J Π ] e r(0) where b(F) = {kv\ke K, veF, and | k \ ̂  1}.

2 By Λ we mean greatest lower bound with respect to the order defined in the
preceding paragraph.

3 We will denote the scalars by K which refers to either the real or complex
numbers. For each positive real number r, S(r) will donote the set {k\k£K and
\k\<r}.
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Using theorem 1 we see that if τ is a quasivector convergence
then ωτ is a quasivector topology. It can happen that τ is a vector
convergence but ωτ is only a quasivector topology.

The balanced property is what is need to characterized continuous
linear functionals by their kernels.

THEOREM 2. Let τ be a quasivector balanced convergence structure
on the vector space E. A linear functional f:E-+K is τ-continuous
if and only if Ker f is τ-closed.

Proof. Necessity is clear. Suppose that Ker / is closed. If / = 0
it is continuous. If not, choose x such that f(x) = 1. Suppose that
J^~ e r(0). Let s be any positive real number. Then H = sx + Ker/
is a τ-closed set and 0&H. Now b{J?~) e r{0) and thus there is a
set Fe^~ such that b(F) g E\H since E\H is ωr-open. Now
f(b{F)) is a balanced set of scalars which does not contain the real
number s. Thus f(F) S f(t>{F)) is bounded in norm by s. Since s
was arbitrary this proves that f{^~) converges to 0; / therefore is
continuous at 0, hence continuous since τ is a quasivector convergence.

If τ is any topology and a is a convergence structure such that
τ = ωa we say that τ can be approximated by a. (In this case the
τ-closure of a set can be obtain by a transfinite iteration of α-closures.)
Since it is not true that a balanced implies that τ is balanced, the
following is pleasing.

COROLLARY 1. Suppose that τ is a quasivector topology on E which
can be approximated by a balanced quasivector convergence structure.
A linear functional is τ-continuous if and only if its kernel is τ-closed.

Proof. Let a be the approximating convergence structure. The
α-closed sets and the τ-closed sets are the same. Now use Theorem
1 and Theorem 2.

LEMMA 1. Let a be a balanced vector convergence structure on
E, let F be an a-closed vector subspace of E, and x £ F. Then Kx + F
is a-closed and {Kx + F,a\Kx + F) ~ {Kx, a\Kx)@ {F, a\F).

Proof. Define /: Kx + F-* K by f(kx + v) = k. Then Ker/ - F
and thus / is α-continuous. Suppose that ^ is a filter on Kx + F
such that \J^\ —> y. Then j^~ — ̂  converges to 0 with respect to
a and thus f{^~) — / (^Q converges to 0 in K. Thus there is a
number s such that f{^~) converges to s. Now ^ — f{J^~)x con-
verges to y — sx. Since trKeTf(j^~ — f{J^~)x) exists we can conclude
that y — sx is in Ker / — F and thus y is in Kx + F. Thus Kx + F
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is α-closed. Finally, the isomorphism with the direct sum is given
by the mapping T(x) = f(x)x + (x — f(x)x).

Many quasivector topologies can be approximated by vector con-
vergences so the following is a useful corollary.

COROLLARY 2. Let τ be a quasivector topology for E which can
be approximated by a balanced vector convergence. If F is a τ-closed
vector subspace of E and G is any finite dimensional subspace, then
F + G is τ-closed.

A word about internal direct sums is in order. Suppose the
quasivector topology τ can be approximated by the quasivector con-
vergence a. Suppose that F and G are disjoint τ-closed (hence a-
closed) vector subspaces and that F+G — F+G~F@G with respect
to a. It does not follow that the isomorphism holds with respect to
τ. In general it is not true that ω(a \ M) — (ωa) \ M, however in [6]
it is shown that this does hold if M is α-closed or ωα-open. Using
this fact and Theorem 1 we have

(F + G, τ IF + G)' = (F + G, ω(a\F + G))' = (F + G, a\F + G)'

= (F,a\ F)f φ (G, a \ G)f - (F, ω(a \ F))' 0 (G, ω(a \ G))'

= (F,τ\Fy®(G,τ\G)'

where ' denotes the continuous linear functional.

The following is routine.

THEOREM 3. Let a be a convergence structure on the vector space
E and let F be a vector subspace. If a is a vector convergence or if
a is a quasivector topology then F is a vector subspace.

The uniqueness of finite dimensional Hausdorff topologies remains
true.

THEOREM 4. Suppose that τ is a balanced Tλ quasivector topology
on Rn and p is the usual Hausdorff vector topology for Rn. Then
T <; p. If T is T2 then τ — p.

Proof. Assume τ is Tx. The proof is by induction on n. For
n = 1 Theorem 2 and the separate continuity give equality (τ = p).
Suppose the result (τ ^ p) is true for dimension n — 1. Let Λ" be
the usual neighborhood filter at 0 for the real numbers, let & be the
p neighborhood filter at 0, and let J7~ be the τ neighborhood filter
at 0.

Let V be any τ-open balanced neighborhood of 0. Let i?* be the
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extended real number system and let B be the set of all vectors in Rn

having length 1. For each x in B, Vf]Rx is a balanced set of real
numbers. Thus it is of the form ( — s(x), s(x))x where s(x) is a positive
element of R. We therefore have a mapping s:B~+R*. For each
δ > 0 let Aδ = {x I s(x) > δ}. Suppose that xe Aδ. Choose v in V such
that v — rx with r > δ. Let F be the n — 1 dimensional subspace
of Rn consisting of all vectors perpendicular to x. By the induction
hypothesis τ IF ^ <o | i*7 and thus the filter Λ"S converges to 0 with
respect to τ, where S is the set of all vectors in F which have length
less than 1. Now v + <yϊr$> converges to v and since V is τ-open
there is k > 0 such that v + kS £ V. Projecting the set v + kS onto
B gives a ,0-open neighborhood of x in which s is greater than δ.
Thus Aa is <o-open in I? for each δ > 0. Since £ is ^-compact and s
is positive this shows that s is bounded away from 0. This shows
that V contains a member of ,̂ ? and thus we have that τ ^ p.

Assume that τ is Hausdorff. Since τ ^ p and Hausdorff we know
that τ and p agree on ,0-bounded sets. Now suppose that τ Φ p.
Then every member of J7~ is unbounded with respect to p and since
τ is balanced we know that trB^~ exists. Let x be a (O-cluster point
of this filter. Now using the fact that r ^ p we see that it is im-
possible to separate x from 2x by τ-open sets. This contradicts the
fact that τ is Hausdorff and thus we must have τ — p.

It is worth nothing that in the absence of joint continuity of
vector addition, the properties Ύx and T2 are not equivalent. Indeed
the last part of the preceding theorem is not true if T2 is replaced
by Z.

The extension of a continuous linear function from a dense vector
subspace to the entire space is usually accomplished using uniform
continuity which does not make sense for quasi vector topologies. Of
course there is always a topological extension (see [2, page 216]; [1]
for a generalization). The problem is whether or not this extension
is large enough. The following establishes an affirmative answer for
linear functionals.

THEOREM 5. Suppose that z is a topology for a vector space E
such that

(1) For each x in E the mapping Tx(y) = x + y is continuous
(2) The mapping R(x) = —x is continuous.

Let F be a dense vector subspace and /: F —> K be a continuous
linear functional. Then for each x in E f(trF^

/ί^(x)) converges, where
^V{x) is the τ-neighborhood filter at x.

Proof. Let x e E\F. Denote trFΛ~{x) by J^~. Now j^~ — x
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converges to 0. Since / is continuous there is a τ-open set JV such
that OeJVnFs/~ 1(S(l)). Choose Ve^~ such that V - x £ N.
Choose veV. Since v — xe N and ( — ̂ ~ + x) + v — x converges to
v — x we can choose W in <β~ so that (— W + x) + v — x S N. We
thus get that v- WQ NnF ^ / - ^ l ) ) . This shows that the set
/(TF) is bounded.

Thus the set of cluster points of f(^~) is not empty. To complete
the proof we need only show that there is exactly one cluster point.
Suppose that r and s are two cluster points and further assume that
r Φ s. Let ε — \ \r — s\. Let JV be a r-open neighborhood of 0 such
that NΠF^ f-ι(S(ε)). Choose V in j ^ ~ such that V- x S JV, Since
r e/(F) we can choose v e F s o that |/(v) — r | < i \r — s\. Now choose
W in ^ so that (- T^ + a;) + v - x S JV. But se/(WT so that we
can choose w e W so that \f(w) — s\ < i\r — s\. Now v — TFS JVΠ
f S Γ W ) and I/O; - w)| = |/(i?) - /(w)| > \ \r - s\ = ε, a contra-
diction.

COROLLARY 3. Let τ be a quasivector topology for a vector space
E, F be a τ-dense vector subspace, and f: F —> K a τ-continuous linear
functional. Then f has a τ-continuous linear extension to all of E.

Proof. By the preceding theorem and [2, page 216] / has a con-
tinuous extension. It is given by f(x) = limit f{trF^V{x)) for each x
in E. Since τ is a quasivector topology it follows that ^V(kx) — k^V(x)
for each x in E and each k in K. Thus f{kx) = Jcf(x). Now let G
be any vector subspace containing F. Since / is continuous we know
that f(x) — limit f{trG^4^{x)) for each x in E. Let a? be any element
in E\G and i/ be any element of G. Then ^ί^{x + y) = y + ^V{x)
and, since y is in G, trG(y + <̂ f"(V)) = y + trG^V{x). This shows that
/(a? + y) = f(x) + /0/) which shows that / is linear on Kx + G. By
Zorn's lemma / is linear on all of E.

The use of the boundedness of neighborhoods and the relative
compactness of bounded sets prevent the extension of the above theorem
to a class of infinite dimensional range spaces. It might be hoped to
extend linear transformations with dense domains and values in a
complete topological vector space if the quasivector topology on the
initial space can be approximated by a vector convergence structure.
It seems that the concept of regular Cauchy structure, as described
in [6] will be useful in working with this problem.

REFERENCES

1. C. H. Cook, On continuous extensions, Math. Annalen, 176 (1968), 302-304.



QUASIVECTOR TOPOLOGIES 451

2. Dugundji, James, Topology, Allyn and Bacon, 1968.
3. H. R. Fischer, Limesraume, Math. Annalen, 137 (1959), 269-303.
4. Y. Komura, Some examples on linear topologies spaces, Math. Annalen, 153 (1964),
150-162.
5. J. Kowalsky, Limeiraume und Komplettierung, Math. Nachr., 12 (1954), 301-340.
6. F. R. Miller, The Approximation of Topologies in Functional Analysis, Ph. D.
dissertation, The University of Massachusetts, 1968.
7. , The lattice of barreled topologies, (to appear).
8. Albert Wilansky, Topics in Functional Analysis, Lecture Notes in Mathematics,
Springer Verlag, 1967.

Received September 21, 1970 and in revised form October 23, 1970.

KANSAS STATE UNIVERSITY






