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ALGEBRAIC STRUCTURE FOR A SET OF
NONLINEAR INTEGRAL OPERATIONS

DAVID LOWELL LOVELADY

A generalized addition is introduced for a set of genera-
tors, and a generalized multiplication is introduced for a set
of evolution systems. Then the mapping which takes a
generator to the corresponding evolution system becomes an
isomorphism. Necessary and sufficient conditions are found
for the generalized addition to reduce to addition, and hence,
under these conditions, we are able to write a formula for
the evolution system generated by the sum of two generators.

Preliminaries. Let S = [0, oo), and let (G, +) be a complete
normed abelian group with norm JVΊ Let H be the set to which A
belongs only in case A is a function from G to G, A[0] — 0, and there
is a number b so that JVJAfp] — A[q]] ^ bN^p — q] whenever (p, q)
is in G x G. If A is in H, let N2[A] be the least number b so that
N^Alp] — A[q]] ^ bNL[p — q] whenever (p, q) is in G x G, and let
iV3[A] be the least number b so that ΛΓJAfp]] ^ bN^p] whenever p is
in G.

Let OA+, OM+, and if+ be as in [8]. Let OA be the set to
which V belongs only in case V is a function from S x S to H so
that

( i ) V(x, y) + V(y, z) — V(x, z) whenever (x, y, z) is in S x S x S
and y is between x and z, and

(ii) there is a member a of OA+ so that

N2[V(a, b)] ^a(a,b)

whenever (a, b) is in S x S.
If a and V are related as in (ii), a will be said to dominate V.

Let OM be the set to which W belongs only in case W is a func-
tion from S x S to H so that

( i ) W(x, y) W(y, z) = W(x, z) whenever (x, y, z) is in S x S x S
and y is between x and z, where the multiplication is composition, and

(ii) there is a member μ of OM+ so that

N t [ W ( a , b ) - I] ^ μ ( a , b ) - 1

whenever (a, b) is in S x S, where I in H is given by I[p] = p.
The following theorem is due to Mac Nerney [9].

THEOREM 1. There is a bijection g7 from OA onto OM so that
if V is in OA and W is in OM, then (i), (ii), (iii), (iv), and (v) are
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equivalent.
( i ) W=&[V].
(ii) W(a, b)[p] = aΠ

h[I + V][p] whenever (a, δ, p) is in S x S x G.
(iii) V(a, b)[p] = aΣ

b[W - I][p] whenever (α, 6, p) is in S x S x G.
(iv) Γ/ierβ is (α, μ) in &+ so that

iSΓ8[ΪF(α, 6) - / - V(a, b)] ̂  μ(a, b) - 1 - α(α, 6)

whenever (α, 6) is m S x S.
(v) If (a, p) is in S x G, and h is given by h(t) — W(t, a)[p],

then h has bounded N^variation on each bounded interval of S, and
is the only such function such that

whenever t is in S.

REMARK 1. The notions of 77, Σ, and (R)\ are to be taken as

in [9].

Let (λ4I be that subset of OA to which V belongs only in case
each of 1 + V(t, t+), 1+ V(t, r ) , 1 + V(t+, ί), and I+V(t~,t) has
inverse in H whenever t is in S. The following theorem is due to
Herod [6] (see also [4] and [5]).

THEOREM 2. Let (V, W) be in &. Then (i) and (ii) are equi-
valent.

( i ) V is in OAL
(ii) Each value of W has inverse in H.

Furthermore, there is a bisection & from OAI onto OAI such that
if V is in OAI, then each of (iii), (iv), (v), and (vi) is true.

(iii) Sf [Sf [7]] - V.
(iv) 5f[V](a, b) = - V(b, a) for each (α, b) in S x S only in case

aΣ
hN3[V[I- V] - V] = 0 whenever (a, b) is in S x S.

(v) &[S?[V]](a,b)- &[V](b,a)= &[V](b,a)-&[&[V]](a,b) = I
whenever (α, b) is in S x S.

(vi) ^[V](afb)[p] = -bΣ
aV[I+ V]~ι[p] whenever (a,b,p) is in

S x S x G.

The © Operation*

LEMMA 1. If each of a and β is in OA+, and (α, b) is in S x S,
then aΣ

ba[l + β] exists and is the greatest lower bound of the set to
which r belongs only in case there is a chain (tk)t=o from a to b so
that r = Σl=1a(tk-i, «*)[! + £(«*-!, tk)].
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Proof. It suffices to show that if {a, b, c) is in S x S x S, and
6 is between a and c, then

a(a, c)[l + β(a, c)] ^ a(a, 6)[1 + £(α, 6)] + a(b, c)[l + /9(6, c)] .

But α(α, c) ̂  a(a, b) and α(α, c) Ξ> α(6, c), so

α(α, c)β(a, c) = α(α, c)/S(α, 6) + a(a, c)β{b, c)

(α, 6) + α(6, c)^(6, c) ,

and the proof is complete.

THEOREM 3. If each of Vx and V2 is in OA, and (α, b, p) is in
S x S x G, then aΣ'V^I + V2][p] exists. If, for i = 1, 2, aζ in OA+

dominates Vi9 then

V2(a, b)] - aΣ
hV\I + V2]]

+ α2(α, 6] - ^ ^ [ 1 + α2]

whenever (a, b) is in S x S. Furthermore, if U is given by U(a, b)[p] —

aΣ
hV\I + V2][p], then U is in OA.

Proof. Let (a, 6, c, p) be in S x S x S x G, with 6 between a
and c. Now

NάVάa, c)[I+ V2(a, c)][p] - Fx(α, b)[I

- Vλ(b, c)[I+ V2(b,c)][p]]

= N^a, b)[I+ V2(a, c)][p] - V

+ V^b, c)[I+ V2(a, e)][p] - V,{

<̂  [a^a, b)a2(b, c) + oc^b, c)a2{a, b)]

= Njlp^a^a, c)[l + a2(a, c)] — a,(

— a^b, c)[l + ot2(b, c)]) .

The theorem is now clear.

+ V2(a, b)][p]

\{a, b)\I + V2{a,

b,c)[I+ V2(b,c

\Nλ[p]

a, b)[l + a2(a, b

DEFINITON 1. If each of Vι and V2 is in OA, then Fx φ F 2 is
that member U of OA given by

U(a, b)[p] - F2(α, 6)[p] + ^ ^ [ 7 + V2][p] .

DEFINITION 2. If V is in 0^4, F * will be that member of OA
given by V*(a, b) = V(b, a).

THEOREM 4. If each of Vly V2, and Vz is in OA, then
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and consequently (OA, φ ) is a semigroup. (OAI, φ ) is a subgroup of
(OA, φ) , each subgroup of (OA, φ ) is contained in OAI, and if V is
in OAI, then

FφSf[F]* = 5 f [ F ] * φ F = 0 .

Proof. Let U be given by

U(a, b)[p] = Vs(a, b)[p] + oΓ
δF2[7 + Vs][p]

+ aΣ»V\I+ Vt][I+ VJfol

A moment's reflection shows

Vi φ (F2 φ F3) = ϋ" = ( F φ V.) φ F s ,

so the first part of the theorem is clear.

Now if A is in H, and I + A has inverse in 77, then

-Λ[7 + A]-1 + A[I - A[I + A]-1]

= - A[I + A]-1 + A[[I + A] - A][I + A]-1 = 0 .

This, with (vi) of Theorem 2, says that if F is in OAI, then
F φ Sf [V] = 0. Similarly, ^ [ F ] φ 7 = 0 , so {OAI, φ ) is a group.

To complete the proof it suffices to show that if U and V are
in OA, and C/φ F = F φ U= 0, then f/ is in OAI and F = 2Γ[t7J .
If ί is in S, then [ U φ F](ί, ί+) = 0, so

I7(ίf ί+)[/ + V(t, t+)\ + V(t, t+) = 0,

mt, t+)[i+ v(t, n] + [/+ v(t, t+)] = /,

[7+

Similarly, since [ F φ U](t, t+) = 0, we have

[7+ F(ί,ί+)][7+ U(t,t+)] = I.

Similar computations for (t, t~), (t+, t), and (t~, t) show that each of
U and V is in OAI. Also, it is clear that V is given by

V(a, b)[p] = -aΣ
bU[I+ UVM = V\UY{a, b)[p] ,

so the proof is complete.

LEMMA 2. Let each of av and a2 be in OA+, and let β be a con-
tinuous member of OA+. Suppose β(a, b) fj α2

τ6α:1α:2 whenever (α, b) is
in S x S. Then β = 0.

REMARK 2. Lemma 2 is immediate, and we shall not prove it here.
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THEOREM 5. Let each of V1 and V2 be in OA. Then (i) and (ii)
are equivalent, and (iii) and (iv) are equivalent.

( i ) ^ 0 7 , = Vi+ F2.
(ii) F J / + F2] - Fx = 0 αί αZZ "pairs" of the forms (t, t+), (t, r ) ,

(£+, £), αwcϋ (<Γ, ί) /or ί m S.

(iii) 7i e ya = v2 © F,.
(iv) V1-Vi= V\I+ F2] - F2[/ + FJ at all "pairs" of the

forms (ί, ί+), (ί, r ) , (t+, t), and ( r , ί) /or ί in S.

Proof. We shall indicate the first equivalence, and leave the
second to the reader. Since [V, © F2] - [V, + F2] = iJFJ/ + Fa] - V19

it is clear that (i) implies (ii). Now suppose (ii). For i = 1, 2, let
α^ in OA+ dominate V{. Let /S in OA+ be given by β(a, b) —

α2 τ δiy3[F1[I+ F2] — F J . Now, by (ii), /3 is continuous, and clearly
/3(α, b) ̂  α ^ ^ Λ whenever (α, 6) is in S x S. Thus /S = 0, (i) follows,
and the proof is complete.

The 0 Operation and the Exponential Identity*

THEOREM 6. Let each of (Vly Wλ) and (F 2, W2) be in g% and let
(a, b, p) be in S x S x G. Then each of

aΠ
b[I+ F J [ / + V2][p] and JV

exists, and they are equal. Furthermore, if M is given by

then M is in OM.

Proof. Let U — Vγ®V2. Let a be a member of OA+ which
dominates each of U, VL, and F 2 , and let μ — g ^ [ α ' ] . Let (a,b,p)
be in S x S x G, and let (£fc)Lo be a chain from α to δ. Now, by
[7, Lemma 4],

k^ tk)][p]]

k-u Q]

F2]]

a{tk-» Q[l + a(tk_l9 tk)\ - β ^ 6 α [ l + a]] .

It is now clear that aΠ
b[I + V^I + F2][p] exists and equals α//6[J 4- U][p]

whenever (a, δ, p) is in S x S x G. Now [9, Lemma 1.2] tells us that
aΠ'W.WM = α/?δ[-Γ+ ^J[ i "+ V2][p] whenever (α, 6, p) is in S x S x G.
Since these products describe &[U], it is clear that M is in OM and
the proof is complete.
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DEFINITION 3. If each of Wx and W2 is in Oikf, Wi® W2 is that
member M of OM given by M(α, 6)[p] = α # 6

There emerges from the proof of Theorem 6 a fact which we
now record.

THEOREM 7. If each of V, and V2 is in OA, then

REMARK 3. Theorem 7, together with the first equivalence of
Theorem 5, includes and extends Theorem 6 of [7].

THEOREM 8. Let VΊ be in OA, V2 in OAL Let U in OA be

given by

Then

&IV,+ V2] =

Proof. Let (a, 6, p) be in S x S x G. Now

(α, b)[p] = a

V2][p]

F 2 Π [ I + V2][p]

,+ V2][p]

This completes the proof.

REMARK 4. Note that by using Theorems 5, 7, and 8 we can
compute, under two different sets of hypotheses, r&\Vι ~f V2] in terms
of the (g) operation.

REMARK 5. The notion of continuously multiplying solutions for
generators in order to construct the solution for a sum of generators
has been used by Trotter [11] and Chernoff [1], [2] for the case of
autonomous linear differential equations with discontinuous linear
operators, by Helton [3] for the case of linear Stieltjes integral equ-
ations, and by Mermin [10] for the case of autonomous nonlinear
differential equations with accretive operators.
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