ALGEBRAIC STRUCTURE FOR A SET OF NONLINEAR INTEGRAL OPERATIONS

David Lowell Lovelady

Abstract

A generalized addition is introduced for a set of generators, and a generalized multiplication is introduced for a set of evolution systems. Then the mapping which takes a generator to the corresponding evolution system becomes an isomorphism. Necessary and sufficient conditions are found for the generalized addition to reduce to addition, and hence, under these conditions, we are able to write a formula for the evolution system generated by the sum of two generators.

Preliminaries. Let $S=[0, \infty)$, and let $(G,+)$ be a complete normed abelian group with norm N_{1}. Let H be the set to which A belongs only in case A is a function from G to $G, A[0]=0$, and there is a number b so that $N_{1}[A[p]-A[q]] \leqq b N_{1}[p-q]$ whenever (p, q) is in $G \times G$. If A is in H, let $N_{2}[A]$ be the least number b so that $N_{1}[A[p]-A[q]] \leqq b N_{1}[p-q]$ whenever (p, q) is in $G \times G$, and let $N_{3}[A]$ be the least number b so that $N_{1}[A[p]] \leqq b N_{1}[p]$ whenever p is in G.

Let $O A^{+}, O M^{+}$, and \mathscr{E}^{+}be as in [8]. Let $O A$ be the set to which V belongs only in case V is a function from $S \times S$ to H so that
(i) $V(x, y)+V(y, z)=V(x, z)$ whenever (x, y, z) is in $S \times S \times S$ and y is between x and z, and
(ii) there is a member α of $O A^{+}$so that

$$
N_{2}[V(a, b)] \leqq \alpha(a, b)
$$

whenever (a, b) is in $S \times S$.
If α and V are related as in (ii), α will be said to dominate V.
Let $O M$ be the set to which W belongs only in case W is a function from $S \times S$ to H so that
(i) $W(x, y) W(y, z)=W(x, z)$ whenever (x, y, z) is in $S \times S \times S$ and y is between x and z, where the multiplication is composition, and
(ii) there is a member μ of $O M^{+}$so that

$$
N_{2}[W(a, b)-I] \leqq \mu(a, b)-1
$$

whenever (a, b) is in $S \times S$, where I in H is given by $I[p]=p$.
The following theorem is due to Mac Nerney [9].
Theorem 1. There is a bijection \mathscr{E} from $O A$ onto $O M$ so that if V is in $O A$ and W is in $O M$, then (i), (ii), (iii), (iv), and (v) are
equivalent.
(i) $W=\mathscr{E}[V]$.
(ii) $W(a, b)[p]={ }_{a} \Pi^{b}[I+V][p]$ whenever (a, b, p) is in $S \times S \times G$.
(iii) $V(a, b)[p]={ }_{a} \Sigma^{b}[W-I][p]$ whenever (a, b, p) is in $S \times S \times G$.
(iv) There is (α, μ) in \mathscr{E}^{+}so that

$$
N_{3}[W(a, b)-I-V(a, b)] \leqq \mu(a, b)-1-\alpha(a, b)
$$

whenever (a, b) is in $S \times S$.
(v) If (a, p) is in $S \times G$, and h is given by $h(t)=W(t, a)[p]$, then h has bounded N_{1}-variation on each bounded interval of S, and is the only such function such that

$$
h(t)=p+(R) \int_{t}^{a} V[h]
$$

whenever t is in S.
Remark 1. The notions of Π, Σ, and $(R) \int$ are to be taken as in [9].

Let $O A I$ be that subset of $O A$ to which V belongs only in case each of $I+V\left(t, t^{+}\right), I+V\left(t, t^{-}\right), I+V\left(t^{+}, t\right)$, and $I+V\left(t^{-}, t\right)$ has inverse in H whenever t is in S. The following theorem is due to Herod [6] (see also [4] and [5]).

Theorem 2. Let (V, W) be in \mathscr{E}. Then (i) and (ii) are equivalent.
(i) V is in OAI.
(ii) Each value of W has inverse in H.

Furthermore, there is a bijection \mathscr{G} from $O A I$ onto OAI such that if V is in OAI, then each of (iii), (iv), (v), and (vi) is true.
(iii) $\mathscr{G}[\mathscr{G}[V]]=V$.
(iv) $\mathscr{G}[V](a, b)=-V(b, a)$ for each (a, b) in $S \times S$ only in case ${ }_{a} \Sigma^{b} N_{3}[V[I-V]-V]=0$ whenever (a, b) is in $S \times S$.
(v) $\mathscr{E}[\mathscr{G}[V]](a, b) \cdot \mathscr{E}[V](b, a)=\mathscr{E}[V](b, a) \cdot \mathscr{E}[\mathscr{G}[V]](a, b)=I$ whenever (a, b) is in $S \times S$.
(vi) $\mathscr{G}[V](a, b)[p]=-{ }_{b} \Sigma^{a} V[I+V]^{-1}[p]$ whenever (a, b, p) is in $S \times S \times G$.

The \oplus Operation.

Lemma 1. If each of α and β is in $O A^{+}$, and (a, b) is in $S \times S$, then ${ }_{a} \Sigma^{b} \alpha[1+\beta]$ exists and is the greatest lower bound of the set to which r belongs only in case there is a chain $\left(t_{k}\right)_{k=0}^{n}$ from a to b so that $r=\sum_{k=1}^{n} \alpha\left(t_{k-1}, t_{k}\right)\left[1+\beta\left(t_{k-1}, t_{k}\right)\right]$.

Proof. It suffices to show that if (a, b, c) is in $S \times S \times S$, and b is between a and c, then

$$
\alpha(a, c)[1+\beta(a, c)] \geqq \alpha(a, b)[1+\beta(a, b)]+\alpha(b, c)[1+\beta(b, c)]
$$

But $\alpha(a, c) \geqq \alpha(a, b)$ and $\alpha(a, c) \geqq \alpha(b, c)$, so

$$
\begin{aligned}
\alpha(a, c) \beta(a, c) & =\alpha(a, c) \beta(a, b)+\alpha(a, c) \beta(b, c) \\
& \geqq \alpha(a, b) \beta(a, b)+\alpha(b, c) \beta(b, c)
\end{aligned}
$$

and the proof is complete.

Theorem 3. If each of V_{1} and V_{2} is in $O A$, and (a, b, p) is in $S \times S \times G$, then ${ }_{a} \Sigma^{b} V_{1}\left[I+V_{2}\right][p]$ exists. If, for $i=1,2, \alpha_{i}$ in $O A^{+}$ dominates V_{i}, then

$$
\begin{aligned}
& N_{3}\left[V_{1}(a, b)\left[I+V_{2}(a, b)\right]-{ }_{a} \Sigma^{b} V_{1}\left[I+V_{2}\right]\right] \\
& \quad \leqq \alpha_{1}(a, b)\left[1+\alpha_{2}(a, b]-{ }_{a} \Sigma^{b} \alpha_{1}\left[1+\alpha_{2}\right]\right.
\end{aligned}
$$

whenever (a, b) is in $S \times S$. Furthermore, if U is given by $U(a, b)[p]=$ ${ }_{a} \Sigma^{b} V_{1}\left[I+V_{2}\right][p]$, then U is in $O A$.

Proof. Let (a, b, c, p) be in $S \times S \times S \times G$, with b between a and c. Now

$$
\begin{aligned}
& N_{1}\left[V_{1}(a, c)\left[I+V_{2}(a, c)\right][p]-V_{1}(a, b)\left[I+V_{2}(a, b)\right][p]\right. \\
&\left.-V_{1}(b, c)\left[I+V_{2}(b, c)\right][p]\right] \\
&= N_{1}\left[V_{1}(a, b)\left[I+V_{2}(a, c)\right][p]-V_{1}(a, b)\left[I+V_{2}(a, b)\right][p]\right. \\
&\left.+V_{1}(b, c)\left[I+V_{2}(a, c)\right][p]-V_{1}(b, c)\left[I+V_{2}(b, c)\right][p]\right] \\
& \leqq {\left[\alpha_{1}(a, b) \alpha_{2}(b, c)+\alpha_{1}(b, c) \alpha_{2}(a, b)\right] N_{1}[p] } \\
&= N_{1}[p]\left(\alpha_{1}(a, c)\left[1+\alpha_{2}(a, c)\right]-\alpha_{1}(a, b)\left[1+\alpha_{2}(a, b)\right]\right. \\
&\left.-\alpha_{1}(b, c)\left[1+\alpha_{2}(b, c)\right]\right) .
\end{aligned}
$$

The theorem is now clear.
Definiton 1. If each of V_{1} and V_{2} is in $O A$, then $V_{1} \oplus V_{2}$ is that member U of $O A$ given by

$$
U(a, b)[p]=V_{2}(a, b)[p]+{ }_{a} \Sigma^{b} V_{1}\left[I+V_{2}\right][p] .
$$

Definition 2. If V is in $O A, V^{*}$ will be that member of $O A$ given by $V^{*}(a, b)=V(b, a)$.

Theorem 4. If each of V_{1}, V_{2}, and V_{3} is in $O A$, then

$$
V_{1} \oplus\left(V_{2} \oplus V_{3}\right)=\left(V_{1} \oplus V_{2}\right) \oplus V_{3}
$$

and consequently $(O A, \oplus)$ is a semigroup. $(O A I, \oplus)$ is a subgroup of $(O A, \oplus)$, each subgroup of $(O A, \oplus)$ is contained in $O A I$, and if V is in OAI, then

$$
V \oplus \mathscr{G}[V]^{*}=\mathscr{G}[V]^{*} \oplus V=0
$$

Proof. Let U be given by

$$
\begin{aligned}
U(a, b)[p]= & V_{3}(a, b)[p]+{ }_{a} \Sigma^{b} V_{2}\left[I+V_{3}\right][p] \\
& +{ }_{a} \Sigma^{b} V_{1}\left[I+V_{2}\right]\left[I+V_{3}\right][p] .
\end{aligned}
$$

A moment's reflection shows

$$
V_{1} \oplus\left(V_{2} \oplus V_{3}\right)=U=\left(V_{1} \oplus V_{2}\right) \oplus V_{3}
$$

so the first part of the theorem is clear.
Now if A is in H, and $I+A$ has inverse in H, then

$$
\begin{aligned}
& -A[I+A]^{-1}+A\left[I-A[I+A]^{-1}\right] \\
& \quad=-A[I+A]^{-1}+A[[I+A]-A][I+A]^{-1}=0
\end{aligned}
$$

This, with (vi) of Theorem 2, says that if V is in $O A I$, then $V \oplus \mathscr{G}[V]^{*}=0$. Similarly, $\mathscr{G}[V]^{*} \oplus V=0$, so $(O A I, ~ \oplus)$ is a group.

To complete the proof it suffices to show that if U and V are in $O A$, and $U \oplus V=V \oplus U=0$, then U is in $O A I$ and $V=\mathscr{S}[U]^{*}$. If t is in S, then $[U \oplus V]\left(t, t^{+}\right)=0$, so

$$
\begin{aligned}
& U\left(t, t^{+}\right)\left[I+V\left(t, t^{+}\right)\right]+V\left(t, t^{+}\right)=0 \\
& U\left(t, t^{+}\right)\left[I+V\left(t, t^{+}\right)\right]+\left[I+V\left(t, t^{+}\right)\right]=I \\
& {\left[I+U\left(t, t^{+}\right)\right]\left[I+V\left(t, t^{+}\right)\right]=I}
\end{aligned}
$$

Similarly, since $[V \oplus U]\left(t, t^{+}\right)=0$, we have

$$
\left[I+V\left(t, t^{+}\right)\right]\left[I+U\left(t, t^{+}\right)\right]=I
$$

Similar computations for $\left(t, t^{-}\right),\left(t^{+}, t\right)$, and $\left(t^{-}, t\right)$ show that each of U and V is in $O A I$. Also, it is clear that V is given by

$$
V(a, b)[p]=-{ }_{a} \Sigma^{b} U[I+U]^{-1}[p]=\mathscr{S}^{\prime}[U]^{*}(a, b)[p],
$$

so the proof is complete.
Lemma 2. Let each of α_{1} and α_{2} be in $O A^{+}$, and let β be a continuous member of $O A^{+}$. Suppose $\beta(a, b) \leqq{ }_{a} \Sigma^{b} \alpha_{1} \alpha_{2}$ whenever (a, b) is in $S \times S$. Then $\beta=0$.

Remark 2. Lemma 2 is immediate, and we shall not prove it here.

Theorem 5. Let each of V_{1} and V_{2} be in $O A$. Then (i) and (ii) are equivalent, and (iii) and (iv) are equivalent.
(i) $V_{1} \oplus V_{2}=V_{1}+V_{2}$.
(ii) $V_{1}\left[I+V_{2}\right]-V_{1}=0$ at all "pairs" of the forms $\left(t, t^{+}\right),\left(t, t^{-}\right)$, $\left(t^{+}, t\right)$, and $\left(t^{-}, t\right)$ for t in S.
(iii) $\quad V_{1} \oplus V_{2}=V_{2} \oplus V_{1}$.
(iv) $\quad V_{1}-V_{2}=V_{1}\left[I+V_{2}\right]-V_{2}\left[I+V_{1}\right]$ at all "pairs" of the forms $\left(t, t^{+}\right),\left(t, t^{-}\right),\left(t^{+}, t\right)$, and $\left(t^{-}, t\right)$ for t in S.

Proof. We shall indicate the first equivalence, and leave the second to the reader. Since $\left[V_{1} \oplus V_{2}\right]-\left[V_{1}+V_{2}\right]=\Sigma V_{1}\left[I+V_{2}\right]-V_{1}$, it is clear that (i) implies (ii). Now suppose (ii). For $i=1,2$, let α_{i} in $O A^{+}$dominate V_{i}. Let β in $O A^{+}$be given by $\beta(a, b)=$ ${ }_{a} \Sigma^{b} N_{3}\left[V_{1}\left[I+V_{2}\right]-V_{1}\right]$. Now, by (ii), β is continuous, and clearly $\beta(a, b) \leqq{ }_{a} \Sigma^{b} \alpha_{1} \alpha_{2}$ whenever (a, b) is in $S \times S$. Thus $\beta=0$, (i) follows, and the proof is complete.

The \otimes Operation and the Exponential Identity.
Theorem 6. Let each of $\left(V_{1}, W_{1}\right)$ and $\left(V_{2}, W_{2}\right)$ be in \mathscr{E}, and let (a, b, p) be in $S \times S \times G$. Then each of

$$
{ }_{a} \Pi^{b}\left[I+V_{1}\right]\left[I+V_{2}\right][p] \quad \text { and }{ }_{a} I^{b} W_{1} W_{2}[p]
$$

exists, and they are equal. Furthermore, if M is given by

$$
M(a, b)[p]={ }_{a} \Pi^{b} W_{1} W_{2}[p]
$$

then M is in $O M$.
Proof. Let $U=V_{1} \oplus V_{2}$. Let α be a member of $O A^{+}$which dominates each of U, V_{1}, and V_{2}, and let $\mu=\mathscr{E}^{\dagger}[\alpha]$. Let (a, b, p) be in $S \times S \times G$, and let $\left(t_{k}\right)_{k=0}^{n}$ be a chain from a to b. Now, by [7, Lemma 4],

$$
\begin{aligned}
& N_{1}\left[\Pi_{k=1}^{n}\left[I+U\left(t_{k-1}, t_{k}\right)\right][p]-I_{k=1}^{k}\left[I+V_{1}\left(t_{k-1}, t_{k}\right)\right]\left[I+V_{2}\left(t_{k-1}, t_{k}\right)\right][p]\right] \\
& \leqq N_{1}[p] \mu(a, b)^{2} \sum_{k=1}^{n} N_{3}\left[V_{1}\left(t_{k-1}, t_{k}\right)\left[I+V_{2}\left(t_{k-1}, t_{k}\right)\right]\right. \\
&\left.-{ }_{t_{k-1}} \Sigma^{t_{k}} V_{1}\left[I+V_{2}\right]\right] \\
& \leqq N_{1}[p] \mu(\alpha, b)^{2}\left[\Sigma_{k=1}^{n} \alpha\left(t_{k-1}, t_{k}\right)\left[1+\alpha\left(t_{k-1}, t_{k}\right)\right]-{ }_{a} \Sigma^{b} \alpha[1+\alpha]\right]
\end{aligned}
$$

It is now clear that ${ }_{a} \Pi^{b}\left[I+V_{1}\right]\left[I+V_{2}\right][p]$ exists and equals ${ }_{a} I^{b}[I+U][p]$ whenever (a, b, p) is in $S \times S \times G$. Now [9, Lemma 1.2] tells us that ${ }_{a} \Pi^{b} W_{1} W_{2}[p]={ }_{a} \Pi \Pi^{b}\left[I+V_{1}\right]\left[I+V_{2}\right][p]$ whenever (a, b, p) is in $S \times S \times G$. Since these products describe $\mathscr{E}[U]$, it is clear that M is in $O M$ and the proof is complete.

Definition 3. If each of W_{1} and W_{2} is in $O M, W_{1} \otimes W_{2}$ is that member M of $O M$ given by $M(a, b)[p]={ }_{a} \Pi^{b} W_{1} W_{2}[p]$.

There emerges from the proof of Theorem 6 a fact which we now record.

Theorem 7. If each of V_{1} and V_{2} is in $O A$, then

$$
\mathscr{E}\left[V_{1} \oplus V_{2}\right]=\mathscr{E}\left[V_{1}\right] \otimes \mathscr{E}\left[V_{2}\right] .
$$

Remark 3. Theorem 7, together with the first equivalence of Theorem 5, includes and extends Theorem 6 of [7].

Theorem 8. Let V_{1} be in $O A, V_{2}$ in $O A I$. Let U in $O A$ be given by

$$
U(a, b)[p]={ }_{a} \Sigma^{b} V_{1}\left[I+V_{2}\right]^{-1}[p] .
$$

Then

$$
\mathscr{E}\left[V_{1}+V_{2}\right]=\mathscr{E}[U] \otimes \mathscr{E}\left[V_{2}\right] .
$$

Proof. Let (a, b, p) be in $S \times S \times G$. Now

$$
\begin{aligned}
{\left[\mathscr{E}[U] \otimes \mathscr{E}\left[V_{2}\right]\right](a, b)[p] } & ={ }_{a} \Pi^{b} \mathscr{C}[U] \mathscr{E}\left[V_{2}\right][p] \\
& ={ }_{a} \Pi^{b}[I+U]\left[I+V_{2}\right][p] \\
& ={ }_{a} \Pi^{b}\left[I+V_{1}\left[I+V_{2}\right]^{-1}\right]\left[I+V_{2}\right][p] \\
& ={ }_{a} \Pi^{b}\left[I+V_{1}+V_{2}\right][p] \\
& =\mathscr{E}\left[V_{1}+V_{2}\right](a, b)[p] .
\end{aligned}
$$

This completes the proof.
Remark 4. Note that by using Theorems 5, 7, and 8 we can compute, under two different sets of hypotheses, $\mathscr{E}\left[V_{1}+V_{2}\right]$ in terms of the \otimes operation.

Remark 5. The notion of continuously multiplying solutions for generators in order to construct the solution for a sum of generators has been used by Trotter [11] and Chernoff [1], [2] for the case of autonomous linear differential equations with discontinuous linear operators, by Helton [3] for the case of linear Stieltjes integral equations, and by Mermin [10] for the case of autonomous nonlinear differential equations with accretive operators.

References

1. P. R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis, 2 (1968), 238-242.
2. -, Semigroup product formulas and addition of unbounded operators, Bull. Amer. Math. Soc., 76 (1970), 395-398.
3. B. W. Helton, Integral equations and product integrals, Pacific J. Math., 16 (1966), 297-322.
4. J. V. Herod, Multiplicative inverses of solutions for Volterra-Stieltjes integral equations, Proc. Amer. Math. Soc., 22 (1969), 650-656.
5. Coalescence of solutions for nonlinear Volterra equations, Notices Amer. Math. Soc., 16 (1969), 834.
6. Coalescence of solutions for nonlinear Stieltjes equations, J. Reíne Angew. Math., (to appear).
7. D. L. Lovelady, Perturbations of solutions of Stieltjes integral equations, Trans. Amer. Math. Soc., 155 (1971), 175-188.
8. J. S. Mac Nerney, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.
9. -, A nonlinear integral operation, Illinois J. Math., 8 (1964), 621-638.
10. J. L. Mermin, Accretive operators and nonlinear semigroups, Ph. D. Thesis, University of California, Berkeley (1968).
11. H. F. Trotter, On the product of semigroups of operators, Proc. Amer. Math. Soc., 10 (1959), 545-551.

Received June 4, 1970.
Georgia Institute of Technology
AND
University of South Carolina

