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THE ASYMPTOTIC EEHAVIOR OF NORMS OF
POWERS OF ABSOLUTELY CONVERGENT
FOURIER SERIES

DENNIS M. GIRARD

Let f(t) have an absolutely convergent Fourier series
f(t) = Sare™t and set || f|| = > |ar|. In this paper we will
study the asymptotic behavior of || f*|| as n — .

THeoreEM, Let f be absolutely continuous and let f’ be
of bounded variation on the real line modulo 2z, Let f(0) =
1 but |f(¢#)| <1 for t + 0 and suppose that for t near 0,
f(t) = ¢(e’*) where ¢ is defined and analytic near z=1.
Define the parameters «, p, ¢, A and 8 as follows

a=¢'(1)
o(z) =2+ Air(z — 1)» +0o(1)(z — 1)?, 2> 1(A + 0)
lg(e)| =1 —Btr+o(t), t >0 (83+0).
Then, (a) for p + ¢
1711 ~ (@) 1320 g~ p(p — DL (pI2g) | A 12 2o =wi0:
where 6(p) =0 if p is even and, =1 if p is odd; (b) for p = ¢
lim || /| = (1/2r) || Pl

where 7 is the Fourier transform of F(t) = exp (At?).

The following results about these parameters are known
and easily verifiable: p and ¢ are positive integers, 2 < p < ¢,
qiseven, >0, ReA<0; p=q if and only if ReA+0;p=q
implies 8 = —ReA;

(1) @(e’t) = exp [lat + At? + ()], t>0if p=¢q,

and

(2) ¢(eit) = exp [tat + (—1)? At + 7, Z crt’ — Bte
+ Z(ttY)], as t — 0, cr real ifp+gq.

We outline in §5 how it is possible to relax the condition
of analyticity at £ = 0 and replace it with conditions (1) and
(2) where the &7 terms satisfy certain smoothness conditions,

G. W. Hedstrom proved in 1966 that under these same

hypotheses, there exist two constants ¢, C such that ¢ <
12| moimeiorz < €

1. Introduction. The -classical result of this type is that
m,_. || f"||"* = 1, but much better estimates, namely ||f"|| = £ (n),
n— c and even ||f"|| =0V 1), n—  were relatively easy to
obtain [1], [5], [6]. It is also known that this last estimate is the best
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possible. More precise estimates for ||f"|| were separately sought
for those functions satisfying respectively

(i) |¢(2)| attains its maximum on |z| =1 at finitely many
points,

(ii) |4@)| =1 for |z| = 1.

It is known that if ¢(z) satisfies (ii) and is not a power of z, then
[|[f*]] — c as m— co [1], and more precisely, there exist positive
constants ¢,, ¢, such that ¢, vV'n < [|f*|| £ eV [6].

It was proved in [1], [3] that if #(2) does satisfy (i), then the
necessary and sufficient condition for ||f"|| = ~2(1) as n— « is
that »p = ¢ at each point of maximum modulus. In the case where
p =gq is not satisfied at each point Hedstrom [4] has shown that
there exist constants C,, C, such that Cn* < ||¢"|| < Con® where
s = max (1 — p/q)/2, the maximum being taken over all points where
p # q. Further developments and connections with the work of
Kahane and Leibenson can be found in Hedstrom’s paper where he
considers the more general case when f(¢) has an absolutely conver-
gent Fourier series. Connections with the conformal invariance of
peripheral convergence can be found in a paper by Bajsanski [2] and
a recent thesis by Whitford [9]. The main results of Bajsanski,
Clunie, and Vermes were rediscovered and appear in a recent paper
by Newman [7]. In connection with this paper in §4 we discuss
some partial results concerning the behavior of ||f"|| when |f| has
several points of maximum on [—, 7].

2. Preliminary lemmas. We give in this section some lemmas
which will be needed in the proof of the theorem. The proof of the
following lemma is explicitly contained in the proof of Lemma 2.1
in [4] and so is not given.

LeMMA 1. Let f(t) be absolutely continuous and suppose that
f(t) is of bounded wvariation and |f(t)| <1 for all t. Then, if a,,
is the Fourier coefficient of f™(t), k =0, &1, .-+, there are constants
C,, C, such that | a,,| £ Cn/k* for | k| = Cymn.

Using (1) and (2) we can write
f(t) = exp (Gt + 1p(t) + G,(t)), t — 0

where p(f) is a real polynomial of degree at most ¢ and G,(t) =
— Bt + Gy(t), Go(t) = & (t**"), as t— 0. Since f(¢) is analytic at ¢t =0,
by putting

#7*¢(z) = exp [ip[(log 2)/i] + G.[(log 2)/i]], 2— 1,
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we have f(t) = ¢(¢*) for ¢ in some neighborhood of ¢ = 0, where ¢(2)
is analytic in a neighborhood of z = 1.

The following lemma generalizes Lemma 1 in [1] and plays a
fundamental role in the proof of the theorem.

LEMMA 2. Let ¥(r,t) = Re[log [(re?*)~<¢(ret)]] and »r = 1 £+ n—°,
c=1—(p—1)/q. Then, if ¢ is sufficiently small,

geo_ exp [n¥(r, t)]dt = &2 (n9), n— = .

Proof. By Taylor’s formula

W(r, 1) = 53 Cul)t™ + Cyfr; 1, 8] < &,

where
Cm(r) = (1/m')aqw(ry t)/atm It=03 m = 07 17 tee,q — 1
and
Cyr, 7) = (1/gHo ¥ (r; )0t |,—., | T] < [E] < & .

The derivatives of C,(r) are given by

A C (7 Jdr = (1/ml)om (r, £)/6r"dt™ |,y ,
but log z=%¢(2) = <~ (1)(z — 1)?, z—1 and this implies that ¥ (», t) =
Re[7 (L) (e (r — 1) + €' — 1)?] so that the partial derivatives of ¥ of
order less than p are zero at r =1, ¢t = 0. Thus C,(r) has a zero
at the point » =1 of order = p — m, for m = 0,1, -++, p — 1 and
so |C.(r)|<C,|r—1™ in a sufficiently small neighborhood of
r =1 for constants C,. In addition ¥'(1,t) = —pBt* + (") as t — 0,
so that C,(1) =0, m = p, ---,q¢ — 1 and thus for » sufficiently near
1, |C.mn=C,|r—1|, m=p, ---, ¢g—1. Furthermore, d'¥(1, t)/dt* |,—,=
—q! 8 < 0 implies that o¥(r, t)/ot* < —M, M > 0 for r sufficiently

close to 1 and |t| <&, for some ¢ > 0. Thus, if »r=1+n" and
1] =«

Uir,t) < S, Cono=me|t " + S, Cone| t|" — Meo
m=90 m=p

and so we have

o

SEO exp [n¥(r, t)]dt < n‘”"S exp [Q(w)]du ,
where Q(u) = S\ n C n! =™y m - St Cont =™ u [ — Mu?. But
Q(u) is bounded by
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q—1
>, Colul™ — Muf
m=0

since 1—¢c—m/¢g <0 for m=p, -+, g—1and 1—c(p—m)—m/g <0
for m =0, +--, p — 1; the result follows.

LEMMA 3. Let h(t) = at + P(t) be a real polynomial where a # 0
and P(t) = ct? + <+« ¢ty ¢ = p =2, q even and let g(t) = P'(t)/h(t).
Then, if for ted = [s, s,], P” is of constant sign, h'(t) = 0 and G(t)
18 such that ReG(t) < Bt/2 (83> 0) and ,G'(t)| < C|t|*, there is a
constant M depending only on C, 8 and q such that

I= [ Lexp [ih(t) + G(t)]ldt

= Mla|™ max [max [g(t) — 11, [g(s) ], | 9(s:) ] -

Proof. Integration by parts yields

I< | exp [ih(t) + GOII(E)

82
81

+|[ explin) + GGy @)t
+ lSJeXp [ih(t) + G(t)][h"(t)/(h’(t))ﬂdtI L+ L+1,.
We have

L =|al™ max la/R' ()] =|al|™ max lg(t) — 1]
since |exp G(t)| < exp [—BtY/2] < 1.

I, < max | 1/h/(t) |Sw exp (—lﬁtq>c [t]'dt
7 —o 2
= M |a|" max|g(t) — 1]
and
L= | (W®1r e H
= lal*| 10'®1dt = a1 965 - 9(s)|
since ¢'(t) does not change sign. The result follows.

LEMMA 4. Let (g.(x) be a sequence of real walued function on
an interval [a, b] such that



THE ASYMPTOTIC BEHAVIOR OF NORMS OF POWERS 361

(a) g, is continuous, for each .
(b) lim g}(x) = ¢’(x) uniformly

(c) Lifl ga(a) = g(a)

(d) g'(®)=d>0.
Then, if f(x) is continuous on [a, b],

lim Sbf(x) | cos (n'g,(x) + 0) | dw = %gbf(x)dx

Nn—oo

for any ¢ > 0 and any real 6.
The lemma is a straightforward generalization of Exercise 118
in [8] and so the proof will not be given.

3. Proof of the theorem. The proof of our result is divided
into several parts. We want to determine the asymptotic behavior of

[ )
1770 = Slanl = S5 || rwe ] .
2w 1)<

The essential ideas in the proof are these: depending upon the
parameters «, p, ¢ introduced above and %, there are only small
ranges of values for & near na which are significant in the determi-
nation of the asymptotic behavior; and for these values of & there
are only small neighborhoods of ¢ = 0 in the integrals above which
are of significance. Part 1 will provide an initial reduction of the
expression above. Part 2 will further this reduction for the case
» # q. In the remaining three parts the asymptotic constants will
be obtained separately for the cases p # ¢, p even; p # ¢, p odd;
P =q.

We shall omit the phrase “for » sufficiently large” finitely many
times in the course of the proof.

The following notation will also be used consistently:

c=1-(p—1fq b, = [(1 — p/g)/2 + 1] log n
n=nx—k v = (na — k)n~'?

S(n) = {k:nb, < | pt] < n'+V0}

T(n) = {k:b, < || <nb,}

Umn) = {vin™%, <v < n'%,}.

We now choose ¢, sufficiently small so that |G,(@¢)| = ptY/2, for
|t < e, ¢(ré') is analytic for |t]| <e, and r sufficiently close to 1,
and |[4(ret)] <1 —0<1 for t = +¢, and » sufficiently near 1, for
some 0 > 0.
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PART 1
We first show that
(3) 2 i ’ ank| = Z ' ‘50 fn(t)e—ikzdt + O(,n/(l——-p/q)/z) ,
— RE

as n— oo, where the range of summation is for ke T(n) US(n). Let
[ | > n'+  Then for some K >0, |k|> Kn't"* and so by Lemma 1

> faul=nC 3 1k=om"), n—co.

|#l>nl+lg k| >nl+l/dg
If we write

2nan = ([° + | )Freat = agi + ai
[—=yxI\[—egreq]

—&g

then
ani| = SEO exp (—npBt'f2)dt = & (n™) , n— oo
ey

and since for all te[—m, 7w]\[—¢, &] there is a % > 0, such that
Ift) =1 —-7n<1, [al]| <271 — )" and we obtain
S lall = 2 ,), n—

lpelsby
and

2. ladl=cm@ @l -9, n—e.
|n|snl+l/e
Each of these last sums is o(n"~?/?"*) ag n— o and so (3) follows.
We next show that
Z Ia(llé! — O(n(I—P/(I)/z)
ke S(n) "

as m— o by using the analyticity of f(f) at ¢t = 0 to deform the
contour of integration for the function ¢. Indeed, @l is the integral
of ¢"(z)z~** along the path z = ¢, |t| < ¢,. We replace this contour
by contours I',, chosen to be functions of #», @ and &k in the follow-
ing way: let

Fnk = R;k U an U RZk
where

Qu: |2 = ;1—n‘°,k§na,|argz| <&
T M 4w k> na, jargz] < 6,
1—-n°<|2|£1, k< na

RE:argz = *+¢
e arg °{1§[zl§1+n‘°,k>na.
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These paths are illustrated below.

\
|
E<na T 1
!
!

For definiteness we will assume that a > 0.

The cases for a¢ < 0
and « = 0 follow in a similar fashion.

We write

S la| < X

where

J=3

.

nk

ol

cJ=x|l-

Qe

Rk ’
the integrand in each case is ¢"(z)2~*~' and the range of summation
is for ke S(n).
We estimate each J,:
Jodi< 3| 1o del

kS
Rk

1
= 5[ Jstre prar
ksna —c

1-n
+ 3T sre o iy = 5, 4 B
Now
Sis2n (L =0yt 3ot re=1-n
and
kgzm ri* = 2[n° exp [an®7]], n— oo,
S0

S = 2@ = d)rexp (an?* V)] = o(l) , m—> oo .

Further,
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nltlle

S.=<2n°1 —0)" D, 1=01), n—
and so J, and J, are both o(n"~?/?%) as m— . To estimate J, we
treat two cases:
(i) Let 3, denote the sum in .J, restricted to ke S(n), k > na.
Then

3=t

geo [(,’.eit)—agpr(,re"it)]nei(na—-k) tdt
-

E

=5t exp lnyr, o1t
—eo
=onM) S rt, r=14+n""
by applying Lemma 2 and since
,},.na—-k ~ N eXp (_bn) ]
keS(n),k>na
Zs — ﬁ[n(l—p/q)ﬂﬂl .._.~O(n(1—p/q>/2) , N— oo .
(ii) If 3, is the sum in J, restricted to k < na,
Si=o@M) ety r=1—mn""

as n— co, This last sum is also of order »n°exp (—b,) and so >}, =
o(n"~??"2) ag n— o completing the estimate for J,. Thus, we can
write

4) 2w 3 law| = 3, [ail] + om!"=78) , m— oo,
k=—co keT(n)

PART 2

By making a simple change of variable we can write

kel (n)

enltle
5) = %‘ )n‘”"[ S ‘ 1, EXP [ivt + inp(tn="17) + nGL(tn“"’)]dt|

—&pn

+

ecnlle
S ,, EXDP [—4vt + inp(tn="7) 4+ nG,(tn"'7)]dt I]

—egnl

where

p@d) = bt? + S bytt .
k=p+1

If b <0, we can write p(t) using —|b| instead of b and then by
taking conjugates (5) can be put into the same form as above with
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| o] instead of b. Hence, whether b is positive or negative (5) can
be written in the form

=
(6) AR
+|S Mexp[ﬁh@)+-aand4]

—egnl

lemmmw+Gmwi

—&gn

where

h(t) = vt + nP{tn")
hat) = —vt + nP(tn )
Pl) =bt? + 3 et*, b>0

k=p+1

Gt) = — Bt + n1Gy(t)

and G,(t) = &), tn"—0, n—c and |G| = BtY2, for
[tn~'?] < e, In what follows we will establish the existence and
uniqueness of zeros of A[(t) and #hi(t) in certain intervals which
depend upon 7, and then show that, after splitting off from (6) the
sum of integrals in small neighborhoods of these zeros, the remainder
will be o(n*?2%), as n— . We define

7\’n — (2/B)I/q(log nw)l,’(p—l)

where @ > (1 — p/q)/2 is to be determined as follows: there is an
® > (1 — p/g)/2 such that

(1) bojpbA < 6 < % :

Indeed, b,/pbN7' = (1/pb)(B/2)" V1 [(1 — p/g)/2 + 1]/w. Let V =
(1/pb)(B/2)*="/¢.  Then, if V < 1/2, pick w = (1 — p/g)/2 + 1 and if
V' =1/2, pick w so large that [(1—p/¢)/2+1]/w <1/2V. We establish
the existence of zeros of 4, and 4, by use of the following inequalities:
for ¢ > 0 sufficiently small P, P’ and P” are monotone on each of
[—¢, 0] and [0, ¢] and in each of these intervals

%pb tP < P < 2pb |t
%p(p — Dbt < | P < 2p(p — Db ¢

For » sufficiently large, \,n7"? < ¢, and then in the case of even p,
for te[—X,, 0], we have,

v+ 2pbn1—p/qtp—1 <v -+ nl—lqu'(tn—l/rI) <7+ _;_pbnl—p/qtp—l
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and both of these bounding polynomials have zeros in [—2,, 0].
Hence, #{(t) has a zero, say —t,, in [—\,, 0]. Furthermore, since
P’(tn="9) is monotone there, this zero is unique and for ¢e [0, \,] we
have |Ai(t)| = . In a similar way we can show that h;(¢) has a
unique zero, t,, in [0,),] and |[Ayt)| = for te[—N\, 0]. If p is
odd, the same type of arguments yield |A[(t)| =~ for te[—N\,, N\l
and h(t) has unique zeros in each of [—2X,, 0] and [0, A\,], say, re-
spectively, —7,, and ¢,,.
Let t, be a zero of Z/(t) or hj(t). Then |¢,| < \, and

n' =P (tm ) = ' Ppbty 1 + 7 (n7V log m)]
since A, = ¢ (log n) as n— . Thus,
lt,| = (v/m'~?l7pb)*="(1 + & (n~"" log n))
as n— o from which it follows that
lim [| /(7 =pb) =] = 1

uniformly in k.
We now introduce the following intervals:

L, = [tu(1 — n7), tu(l + n79)]
we = [— @ + 1Y), =t (1 — nY)]
e = [=Tau(l + 779, —Ta(l — n7%)]
for d =7(1 — p/q)/16. Also let D, = [\,, en'], D, =[—¢emn'? —\,],
D, = [0, \,], D,= D\I,., Dy=[—N\,, 0], Dy = D,\L,,, D, = D\I.. Our
purpose is to show that if p is even

s el = 3w

keT(n) TeU(n)

S ~exp[ik(t) + G(o)ldt H

nk

S ., Xp [iha(t) + G()]at ]

+

+ O(n(l—P/Q)/z) y n— o

and if p is odd
Slag= 3w
7eU(n)

exp [ihy(t) + G(t)]dtl

glukUIfn'k
+ O(n(l—p/q)/z) , M — oo,

If we let

TeU (n)

Ci= 5 n—uqHD.exp [iha(t) + G(t)]dt}

m=127=1,-.--,7 by using (5) we can write, for p even,
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ol = 3w || expling®) + Golat |
keT(n) rel(n) Ink

+ H exp [ih(t) + G()]dt m <30+ 3G,

Lok

)

where the first sum is for 7 =1,2 3,4 and the second is for
j=1,25,6 and if p is odd

S Jall - 3 o

keT(n) reU(n)

éEQH‘ZQ:‘

where the first sum is for 1, 2, 3, 5 and the second is for 1, 2, 6, 7.
We must show that each of these C;; is o(n"??7) as n— co.
First for ¢ = 1,2 and 7 = 1, 2, C;; is bounded by

S exp [ihuft) + G()ldt H
©) |

£

ecnlla
s nS lexpG(t) | dt = 3, ng
7el (n)

relU(n) -

exp <— -;-,Bt")dt

‘n

and since
r exp (—nt)dt < CL'""exp (—nL%), L >1
L

for some constant C and 7 > 0, the sum above is bounded by

C >, n U %exp[—(log n*)”* V] < Cnb,n="""“\L?

7elU(n)
— O(H(l—p/q)IZ), as n — oo

because @ > (1 — p/g)/2.

In order to estimate the remaining C;; we apply Lemma 3.
Consider those integrals which have one limit zero and the other
either n, or —X,. We have g(t) = n'""P’'(tn=""%)/h’(t) where h(t) is
either h,(t) or h.(t) and then ¢g(0) = 0 and

(0D | S UL — |/ P/ (En ) ]

But since »,n7"" — 0 as n— <, we have by (7)

7P () | < | v/nl-wq-;—pbxz-l

< 2b,/pbANTT <20 < 1.

Thus, | g(£X,)| is bounded and if A’ has no zero in [0, \,], |A/(¢) | = 7.
Hence, maxy,; ;|7/h'(t)| =1 and so we have

I SZ” exp [ih(t) + G(t)]dt‘ <M
0 Y

for some constant M. A similar estimate for the integral over the
interval [—X\,, 0] holds and thus we obtain a bound of order
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(10) S ()t = 2 (logm) = o(ntrR) , m— o

revU(n)

for C,, C,; and C,;.
Consider the integral

SD exp [ihy(t) + G(8)]dt

and write [0,\,] = [0, 2,) UL, U (Yu, Ma]. We will show that the
conditions of Lemma 3 are satisfied on these two outside intervals.
First, we have shown above that |g(\,)| is bounded. Further,
maxy,.,; 1/| hi(¢) | = 1/| hi(x,) | and

Ihg(xn)| = I -7 + n‘_""P’[tnk(l _ n_d)n—llq:”
N —1p,1— qk_l k — e —dm
= kgpkcktik 7l Z < m 1)(_1) nd

m=1

since Ay(t,;) = 0. This last sum is equal to
nPp(p — Dbt~ [l + (w7 log m)], m— o
and since
nPlpbtrt = v[1 + 2 (n i log m)], m— o,

| hy(x,) | = (1/2)yn~. By replacing 1 — »~¢ by 1+ n~¢ in the above
arguments it follows that |Aj(y,)| = (1/2)yn~% A similar calculation
shows that g(x,) and g(y,) are both < (n?) as n— «. Thus, our
integral is 2~ (n%) and we get by (10) that

Cu= o) 3 (0" = ofn=0")
Tet(n)
as n— oo. A similar argument applies also to C,, C, and C,.

PArT 3

In this section we will obtain the asymptotic constant for the
case when p is even and different from ¢. Indeed, if we let

I,= 3w
Telin)

S, exp [ihat) + G(B)]dt
then

1 i
3, ~ =Lntrel g — o,
2

where
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L= 2al/—7i'-rF(x)dx

for
F("C) — w—(p—z)/zm—l) exp (__qul<p-11)

and
a = (2pb/(p — 1))"*.

For simplicity write #, = h. Then A'®(t,,) = & (n'~?'"2;*) as n— oo
for k= 2 and so for tel,,

’h(m(tnk)(t _ tnk)k/k' 1 g Mn(x—p/q)(i—m/m)tﬁk ,

for some M > 0. Using t2, = <[(log n)*’*"], m— « and Taylor’s
formula we have for tel,,

MO) = hlt) + FH(ER)(E = L) + S (log m)]
as n— o=. A simple calculation also yields
G(t) = —ptl, + < [(log n)'n™]
for tel,, as n— < and so we can write
\ S, exp [ih() + Glo)ldt ]

= exp (—pt%,)

[ exp i (tu)(t — tu)t/2L + G*(t)ldt |

where G*(t) = ~[(log n)*n—*"—?/2¢], tel,., as n— . A change of
variable also yields

S exp [ih"(tu)(t — t)}/2]dt = [2/h"(tnk)]”2§wnkei“u“/zdu
Ink 0

where w,, = (1/2)h" (t..,)tam 2.
Let 0,, = p/n'pb and 4o,, = 1/n°pb. Then we can write

‘&n‘“"’”?‘” - ‘;‘L‘ = E K
=1

where
K= |5 || euau)
0 |
X [exp (— Bti) (/R (to) P20 =11 — g F(q,,)40,,]
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K, = | 5 aF(a,,,,)Aa,,k[

Sw”"eiuu—uzdu> . l/“j‘z.‘iH ,
]

K, = |V T S F(ow)do, - %L ’
and

K4 = p—U-rlof2 Z nle exp (_Btg‘k)

glnkG*(t)dt ) ,

where all sums are for ve U(n).
To estimate K, we let s,, = oY/ and observe that

(ot X0 (850) = obu", 3, oxD (—eks)(phbu)™
= ﬁ(nc)s: exp [— Ba»~"]da
=com), n—co.
Then, since t,, = s,u[l + <7 (n~"?log n)] and s,, = < (logn) as n— co,

thy = sip + I (log n)**'], m— o

and so

K, < 2u-t-ron-ie ¥ exp(—eszk)g | G*(¢) |dt
) Ink

7Tel(n
= Znurai=tlog n)’l = o(l), n— oo,

since for te I,,, G*(t) = ~[(log n)*n**—*2%], n-— . To estimate K,
we define a sequence of functions as follows: let

2 F(O'nk)x'nk(x)’ HAS [bn(ncpb)_ly bn(pb)—ll
0 elsewhere

Fo@) = {

where X, is the indicator function of [0, 0.,_,) and the sum is for
ve€ U(n). Then, the sum in K; is equal to S F . (x)dx and

0

K, < ai/?[Se(Fn + F)ds + S“’(Fn + F)d + SR| 7, — F]dx]
0 R €

for 0 < e < R. For any d < 0, a straightforward calculation shows
that there exist ¢ and R so that the sum of the first two integral
expressions is bounded by 6/2av 7 and since F,(x) converges
uniformly to F(x) on [e, R] there is an 7, such that for » > m,, the
third integral is bounded by 6/2av 7. Thus, K; = o(1) as n — co.

Also for ¢ > 0 and some M > 0, since Swei“u“‘fzdu =17 &M,
]
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K,

IIA

a Z )F(O-nk)

7elU(n

M 2 F<ank)dank

n=nCpbe

S e““u"‘“du‘ 40,
1U,nk

IA

r ef“u"“zdut San(x)dx .

Wyk €

+a sup

1>ncpbe

The first of these terms is bounded by M’e?**-Y for some constant
M’ and the second is bounded by

M" sup

u>npbe

r ey dy l

Wy lk

for some constant M”. Further, integration by parts twice gives

r ei“u*l"zdul < 2V w,,

Wnk
and since 2, = 2?7 V[1 + & (n """ 1log n)] = (1/2)e?'*~Y for sufficiently
large n, we have

W > %nl—p,qp(p — 1)b5p/(p—1)n—-2i — %n(l—p!q)lf%p(p _ 1)b8p/(p—1) .
Thus,

sup

#>nCpbe

Sw ei“u—l'zdu‘ = (7 (nUrIOne)

Wyl

as n— o and so for 6 >0 we can find an ¢ > 0 and n, such that
n > n, implies that K,<d. To show that K, tends to zero as n— oo
we need the following fact:

Let ¥, ¢, 0 be complex valued functions of a real variable and
let (¢..), (s..) be double sequences. If w,— 0 uniformly in % as
n— oo and T(t.)/6(m) = 1 + & (w,), n— = and

2660t | = 7)), n— e,
then,
ST — 36000 | = C@), n— o
To apply this it will be sufficient to estimate the behavior of
(1)  exp (= BLIIR ()] [0 "p(p — 1)bs,"*]'* exp (Bshs).
We have
exp [—B(th — si)]l = 1 + & [n7""(log n)**']
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as m— o and since t,, = Z(logn), h'(t,.) = n " p(p — 1)bt2:>.
[L 4+ & (n " log n)]. This together with 232 = s27*[1 + 2 (n~"* log n)]
yields

[w="p(p — Dbszi? /1"t = 1 + & (n" log m)
and so (11) is of order 1+ £ (n " (log n)*') and hence K, =
[n"(log n)*'] = o(1) as m— . Thus, we have

1

12 3 ne Sz,,k exp [ha(t) + G(t)]dtl - n“"”"”z[-é—L + 0(1)] :

Tel(n)

n— co

In order to treat

Z n—‘llq

7eUin)

SIM exp [ihn(t) + G(b)]dt |

we set w = —t and notice that h(—t) and G(—t) are of the same
form respectively as h,(f) and G(¢) since both p ane q are even;
therefore, by precisely the same argument

1

13) 3 ne Slnk exp [ihy(t) + G(t)]dt] - n““”/"”z[—z—L + 0(1)],

TeU(n)

n— oo ,

and then by combining (4), (8), (12) and (13) we obtain (a) in the
statement of the theorem since by computing the integral

(14) L = 2[2pbr/(p — D]'*[(p — 1)/ql1/B)"**['(p/2q) -

PART 4

We consider the case when p is odd and different from q. As
before we can write

S exp [ihy(t) + G(t)]dt

Tk

= exp [iha(tne) — Btik][z/hé'(tnk)]uzsw"kei”u_”zdu
+ explihi(ta) — Btl | G*(t)dt

where G*(t) = &Z[n>"?2M(log n)?], tel,,, as n— . But we must
also take into account this same integrand for the interval I.;,. Let

hy(t) = —ho(—1) = =7t + n'"lbt? + nkj'; eu(— 1)kt

=p+1

Then, a change of variable and conjugation produce
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| explin(t) + G@ldt = S_I” exp [ihs(t) + G(—D)]dt

L S48 nk

= exp [ ih(eu) — Bell2/A @01 ] e u i

+ exp[—ihu(ra) — prial|_ Gty

nk

where
G**(t) = o (n~*0—?e¥(Jog m)?), te — 1, , n— oo,

@, = hi(T)tim ™2 and — 1) = [0, — ™), 7.0 + n9]. Let

(15) X,= >

7elU(n)

We shall show that

S, exp[ih,(t) + G(D)]dt

Ik

Y, ~ (2[m)Ln!~??% | as m— oo,

To do this we write
(16) smeren — 21l < Sk,
where K, = K,, K, = K,,

K, = poU-rio)2 Z nie exp [—B‘L‘ZL,C]S [G**(t) |dt y
I’

relU(n) nk

K, is K, with t,, replaced by 7,. and w,, replaced by w.,,,

Z F(O-nk)Ao.'nk

exp [ihz(t%k)]gwnkei“u‘mdu

+ exp [—ihg(f”k)]gjhke“"“u'”zdul _ %«n/%’gfzf(x)dx] ,

where the sum is for en*pb < ¢t < Rn°pb, K,, is the sum term of K,
with the range of summation b, < ¢t < en’pb, K,, is the sum term in
K, with the range of summation Rn°pb < ¢t < b,n°,

K, = (2a/1/7r_)g5F(x)dx ,
K, = (2a/1/7t_)rF(x)dw
R
and a and F(x) are as defined in Part 3.
Again, we must show that each K, is o(l) as n— . K; is

treated in the same fashion as K,, K; as K,. We remark that there
is a constant M such that
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Y
g e*”u‘”zdu‘ =M
0

for all Y so that

K, = &’[S:Fn(x)dx] =o(), ¢—0
and

K, = ﬁ[LFn(x)dx] =o(1), R— co.

That K, = o(1), ¢— « and K, = o(l), R— o follows easily from
the definition of F(x). To estimate K, we write

Ky = a3 F(tu)
«

@
0

S nkei“u,_”zdu _ ei:/ﬂ/%_

A0,

+ad F(o,,) gwnke—i“u“”du - e—i"‘l/?‘dank
“ 0

+ Ioﬂ/?f S F(0,.)

exp [thy(t,,) + im/4] + exp [—1ihy(T,,) — im/4]
1 )
- aVE.(z/n)S F(x)dx!

where the sum in each of these terms is over the range en‘pb < ¢t <
Rn'pb. The first and second sums above are treated in the same
fashion as K, and both are 7 (n=""?9"), 5 — . The sum in (17)
can be written as

V' S F(0,,)

|
cos%[hz(t%k) + hulew) + /2] 40,

Thus, it suffices to show that the limit of the sum in the last
expression is equal to

(2/7T)SRF(x)dac :
This will be accomplished by the following steps:

(i) For each n = n, for some n, there is a function H,(x)
such that

—%(m(tnk) + h(tn) = WP H(0,,) ;

thus, the sum above will take the form

Sy = Z F(O.nk)

cos <nl""/"Hn(0nk) — i-n)'dank .
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ot

(ii)

r ) 1
8, — &F(w)'cos <n1"""Hn(w) - z-n)ldxl 0, n— o,
(iii) The limit of the integral in ii) is precisely
(Z/n)SRF(a:)dx .

After we construct the sequence (H,(x)) iii) will follow directly as
an application of Lemma 4. To construct the sequence (H,(x)) first
recall that

hoft) = —vt + 0779t + n i e HItE

k=p-+1

and

ha(t) = =7t + Wb 4+ 0 3 e (— 1) mottt

k=p+1

and that hj(t.,) = 0 and hj(z,,) = 0. Let

6.(t) = 7+ > key(pb)~ b gt
k

=p+l1

and
vall) = 07+ Y ey (ph)H(— Ly agt
k=p+1

Then, t,, and 7,, are respectively the unique solutions to n'~?'7pbg,(t) =
v and »'~??9by,(t) = v in the interval [0, \,]. That is, ¢,(t..) = O
and (7. = 0,,. Now, 7,, is contained in the interval [e, R] since
en'pb < 1t < Rn'pb. We will consider ¢, and -, over an interval
[r, s] where » > 0. First,

$a(t) = "' (L + Z(n719) = 71 + 7 (nH9)
on [r, s] as # — <o, and then
ou(t) = (p — D1 + (7))
> -%(p —Dr2 >0
for » sufficiently large. Thus, ¢,(f) is strictly increasing for n greater
than some n,. Similarly,
Yalt) = L+ ()

and so +,(t) is strictly increasing on [», s] and there
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¢;1(x) — x‘/(ﬁ—l)(l 4+ (f/‘?(n—i/q)) — xx/w—n + ﬁ(n—'IIQ)

as n— co. Also, [¢7'(®)] = 1/¢,(t) where x = 4,(¢), and so there is a
constant M such that [¢;'(x)]' < M for ze[s,(r), 4.(s)]. Similar
statements hold for +;'(x). We rewrite

-——é—(hzank) + hefTe)

L pbous (o) — Mo el — 5 et
+ 2= pbo,y 0, — By @)

-3 (Dol )]
for n > n,. Thus, for n > n, we define
) — 1 ot —1 —1 ? N —(k—p)/q[ z—1 k
H, () = 5 pbas (x) — blgn'(w)]” — 3 e [¢:' ()]
k=p+1
2] beyie) — by @l — 3 (Do iy @)
2 k=p+1

for xze[e, R], and for n > n, the following conditions hold:

(a) H,(x) and H,(x) are continuous

(b) lim,_. H,(x) = (p — 1)bx?’*~" and

lim,_., H,(x) = pbx'®" uniformly

(¢) |H,2)— H,(y)| < M|x—y| where M is a constant depending
on p, b, ¢ and R but independent of .

If we let H(®) = (p — 1)ba?’/*", then H'(x) is bounded away
from 0 on [¢, R] and hence the conditions of Lemma 4 are satisfied
and so (iii) is proved. Let

Xoi()

cos (n“”"’Hn(ank) - %-n')

p=encpb

j ancpb F(Unk)

Fn(x) = l for xe U [Gnk’ ank—l)
k

0, elsewhere.

Then,
R
%:Sﬂmm
and we need only show that

(18) F.(x) — F(z) {cos <n1"’”Hn<x) - -‘i—ff)’ ,
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tends uniformly to zero on [¢, R] as n— <o in order to prove (ii).
Let xe[e, R]. Then, x€[0,, 0.,.] and thus (18) is bounded above by

F(o..,)

cos (nl“f’”"Hn(onkb) — -i—n) — oS (n“”"’Hn(a;) - %n)'
+ [ Fow) — F(x)| .

Since F'(x) is bounded on [¢, R], we have |F(o,)— F(»)|=
M|o,.,, —«| < Mn°/pb for some constant M and so the second term
tends uniformly to zero as n— c. Also on [¢, R], F(x) < M’, for
some M’, so that the first term is majorized by (using condition ¢)
above) :

M ’lcos (nl”””Hn(ank)) — -i—n) — cos8 <n1“1""'Hn(m) — —i—n)l
= M Hy(0w,) — Hy(@) | = M0~ 0, — x| < M"/n'"pb .

Thus, (18) tends uniformly to zero on [¢, R] and so we have shown
that K, = o(1), as » — . Finally, by combining (4), (9), (15) and
(16) we have the result and this completes the proof for » odd.

PART 5

We now consider the last case, namely » = ¢. By (4)

2r3lanl = 3 [aif +od), n— e
eT(n)
and since p =gq, f(t) = exp[iat + At® + G,(t)] where ReA = —p5,

G,(t) = @), t— 0 and Re[G,(t)] = (1/2)(ReA)t?, |t]| < . That is,
the polynomial p(t) is (ImA)t*. Thus, by a change of variable

Silagi]l=Xn"

enlle
S ' , €XD [ivt + at? + G(t)]dt
—contld

where the sums are for kc T(n) and where G(t) = n'? (),
t/n'* — 0, as n — co.

Further for |¢| < A, we can write exp G(f) =1 + G*(t) where
G*(t) = & [n " *(log n)*™'] as n — co.

If we let

s, = >, n7lr

enllP

S U explivt + At + G(O)dt
—s nllP

where the sum is for ve U(n) and let

Flx) = exp (At"), F(z) = Sf F(t) exp (iat)dt ,
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the Fourier transform of F', then
(19) S0 — | 1 Flde = o(1), n— e
JOo
Indeed, we can bound (19) in absolute value above by >\.._, L, for

L, = l PR

S“ exp [ivt + At”]dt] _ S“[ﬁgdx‘ ,

—co 0

L= S niiv S exp [ivt + At? + G(t)]dt] ,
DyUD,

L= S n» exp [i7t + At"]G*(t)dtl ,

Susunﬁ

L= nir S exp [t + At*’]dtl ,
D

where the D, are defined in Part 2, D = (—c, \,) U (N, ) and all
the sums are for ve U(n). First, we remark that L, and L, are
bounded above by

2> n*””gj exp (— -é-@t”)dt

TeLn) n
which is o(1) as n — . Next, since
L, = 2[b,n""(log n)”“]& exp (ReAtr)dt = o(1) , n— oo,

=
J—

it remains to estimate L,. As before we define a sequence of
approximating funections

nl/Ph

S F(pn )2, (@), b ? < @ < b,
Fo@) = | F(0) | 0<a< b
0 elsewhere .

The sum in L, is then an(x)d:c + 0(1), m— > and so we have
0
reduced the problem to showing that

H:[Fn(”) — [ F@) llds| = o(1), n—co .

Let R be a fixed positive number to be chosen below. The expression
above is bounded by

1P = 1 F@) lldo + | Fuwdo + |1 F@) | o

and by using the standard estimate: |F(y)| < K/i*, y = 0, for some
constant K, we have
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San(w)dx = nl/ﬁb" | F(pn) |- < mie S, 1t < 1/(R — 2),

R u=nl/PR n=nllPR

and so we can pick R so large that for ¢ > 0 the sum of the last

two integrals above is bounded by 26/3. Then, for this fixed value

of R there is an n, such that for all » > m, the first integral is

bounded by 6/3 since F,(x) converges uniformly to | F(z)| on [0, R].
Similarly, we can show that

n—00

lim3 |al| = SO | P| de
where the sum is for ke T(n), k > na, so that if p = ¢ we have

lllean” = (27_) 1|[Fiu

n—0

and this completes the proof of the theorem.

4. Several maximum points. The results we have obtained can
be extended partially to the case when |f(t)| = 1 at several points
in the interval [—m, w]. Assume that f(¢t) is absolutely continuous
and f'(t) is of bounded variation; |f(t)| <1, t = t;, f(t;) =1 and f(¢)
is analytic at t =1¢;, j =1, ---, m. For each of the points ¢; we can
define parameters «;, p;, q; corresponding to the parameters «, p, ¢
defined above. We let T;(n) and S;(n) be defined by replacing «, p, ¢q
in the definitions of T(n) and S(n) by «;, p; and g, respectively.

Let Q;,7 =1, --+, m be sufficiently small intervals centered about
each of the points ¢; and set I; = S f (tye ™ dt, I = S f"(t)e—”’tdt — I

If we assume that «;#a;; i 7, then T;n)N Tin) = ¢ for =
sufficiently large and it follows by a straightforward application of
the previous arguments that, for j =1, --., m,

SL| = ofmt—rii®) 3| I| = o(nt=riniTy

as n — oo, wWhere the first sum is for k£ in the complement of T;(n)
and the second sum is for ke T,(n). Thus, we have

2r 3l a | =3 3L+ o), m—eo
J=1 ke’l'j
where s = min; (p;/q;). We can also show that 3., [I;| = n!'"7il%""

[C; + o(1)], n— < for a constant C; depending upon the parameters
associated with each of the points ¢;. Thus, we obtain

lim 2zn—"— “"“Z[a vl =20C;

n—00
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where the sum extends over all those j such that p;/¢; = s. This
“additivity” does not, however, extend to the general case and, as
an example by Newman [7, p. 40] shows, the asymptotic limit may
fail to exist.

5. A stronger result. In our proof the condition of analyticity
is used only in Part 1 to show that

Z“ I a;:“ = O(n(l—pm/z) , N — oo

where the sum is for kes(n). Here we outline a proof of this
statement using only the smoothness conditions assumed in Hedstrom’s

paper.
We first remark that the proof of our theorem from Part 2
onward is not affected if we take b, = rlogn for any fixed 7 =

1+ (1 — p/q9)/2. Define
al = S Frte-rdt
jf@

where

i
= [ M Nont] N, = <%> "(w, log m)!®=»

' > (1/2)1 + (p + 2)/q9). For = sufficiently large
|asi — afi| = 26 exp| —Lngvn) ']

and so
Z l am _ a;s]z[ — ﬁ[nL}—l/q—-w/] — O(,n(l—p/q)/z) , M — oo

where the sum is for ke S(n). In order to show that > |a¥| =
o(n?9?) n— o we treat separately the cases » = ¢ and p = q.

In the case p=q we fix a value for 7=1+ (1 — p/g)/2 in
b, = tlogn so that

oAby < 1/2..

A change of variable followed by an application of Lemma 3 yields
(as before)

ig”‘ exp [ih(t) + G()]de| = 2L
- 7]

for some constant M; thus
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keS(n)

S lag| = o3 |_i_ln—”«] = ollog n] = om0, n— oo .
If p=gq, af takes the form

S lexp it + ng(®)]dt .

Integration by parts twice, followed by majorization and use of the
estimate

Var [ng'(t)e] = &2 (n'?) , n— oo
te 7

yields
1 _ e
IceS(n)| fl = ﬁ(log n> = o), m )
Thus,
Dilanl =X ah —ad| + X lak] =on""7E) . n— eo

in both cases.

The author wishes to thank his doctoral advisor, Professor Bogdan
Bajsanski, for many useful conversations and suggestions, and the
referee for several useful suggestions.
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