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THE ASYMPTOTIC BEHAVIOR OF NORMS OF
POWERS OF ABSOLUTELY CONVERGENT

FOURIER SERIES

DENNIS M. GIRARD

Let fit) have an absolutely convergent Fourier series
fit) = Σctkβikt and set | | / | | = Σ I α* |. In this paper we will
study the asymptotic behavior of | | / w | | as n—> oo.

THEOREM. Let / be absolutely continuous and let f be
of bounded variation on the real line modulo 2π. Let /(0) —
1 but I fit) I < 1 for t Φ 0 and suppose that for t near 0,
fit) = φ(eu) where φ is defined and analytic near z = 1.
Define the parameters a, p, q, A and β as follows

a = φ'{l)

φ(z) = za + Ai*(z - l)p + o(l)(z - l)p, Z->1(AΦ 0)

I φ(e%t) \=1- βp + o(p)9 t -> 0 (β Φ 0) .

Then, (a) for p Φ q

11 fn || — (2/τr)1/2-5(^g-1[p(p - lXpΓCp^g) | A 11/2^/2^(1-^^/2

where δ(p) — 0 if p is even and, = 1 if p is odd; (6) for p = q

where F is the Fourier transform of Fit) = exp (Atp).
The following results about these parameters are known

and easily verifiable: p and q are positive integers, 2^ p -^ q,
q is even, β > 0, i?eA g 0; p = q if and only if ReA Φθ;p=:q
implies β = —

(1) φ(e<η = exp [iαί + AP + ^ ( ί p + 1 ) ] , <-> 0 if p - g ,

and

0(eίt) = exp [ίαί + i—iyAP + i Σ crί
r - ^ί9

+ ^ ( ί 9 + 1 ) ] , as ί->0, cr real, if p Φ q .

We outline in § 5 how it is possible to relax the condition
of analyticity at t = 0 and replace it with conditions (1) and
(2) where the #* terms satisfy certain smoothness conditions.

G. W. Hedstrom proved in 1966 that under these same
hypotheses, there exist two constants c, C such that c <

l Introduction* The classical result of this type is that

^ββH/*!!1'* = 1, but much better estimates, namely \\fn\\ = έ?(n),

n-+oo and even \\fn \\ = έ?(]/~n), n—>oo were relatively easy to

obtain [1], [5], [6]. It is also known that this last estimate is the best
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possible. More precise estimates for | | / w | | were separately sought
for those functions satisfying respectively

( i ) I φ(z) I attains its maximum on | z \ = 1 at finitely many
points,

(ii) | *(s) | = l for | s | = l .
It is known that if φ(z) satisfies (ii) and is not a power of z, then
||y»| |_>oo a s n-+co [i], and more precisely, there exist positive
constants clf c2 such that c{\/n ^ | | / n | | ^ c2Vn [6].

It was proved in [1], [3] that if φ(z) does satisfy ( i ) , then the
necessary and sufficient condition for \\fn \\ = έ?(l) as n—> °o is
that p — q at each point of maximum modulus. In the case where
p = q is not satisfied at each point Hedstrom [4] has shown that
there exist constants C19 C2 such that Cji8 ^ || φn\\ <£ C2n

s where
s — max (1 — p/q)/2, the maximum being taken over all points where
p Φ q. Further developments and connections with the work of
Kahane and Leibenson can be found in Hedstrom's paper where he
considers the more general case when f(t) has an absolutely conver-
gent Fourier series. Connections with the conformal in variance of
peripheral convergence can be found in a paper by Bajsanski [2] and
a recent thesis by Whitford [9]. The main results of Bajsanski,
Clunie, and Vermes were rediscovered and appear in a recent paper
by Newman [7]. In connection with this paper in §4 we discuss
some partial results concerning the behavior of \\fn\\ when |/1 has
several points of maximum on [ — π, π],

2. Preliminary lemmas* We give in this section some lemmas
which will be needed in the proof of the theorem. The proof of the
following lemma is explicitly contained in the proof of Lemma 2.1
in [4] and so is not given.

LEMMA 1. Let f(t) be absolutely continuous and suppose that
f'(t) is of bounded variation and \f{t)\ ^ 1 for all t. Then, if ank

is the Fourier coefficient of fn(t), k = 0, ± 1 , •••, there are constants
Cu C2 such that \ ank \ rg C^/k2 for | k | ^ C2n.

Using (1) and (2) we can write

f(t) = exp (iat + ip(t) + G^ί)), t -> 0

where p(t) is a real polynomial of degree at most q and G^t) =
-βtq + G2(ί), G2(ί) = ^ ( ^ + 1 ) , as ί — O Since f(t) is analytic at t = 0,
by putting

z-*φ(z) - exp [ip[(log z)/i] +
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we have f(t) = φ{eu) for t in some neighborhood of ί = 0, where φ(z)
is analytic in a neighborhood of z = 1.

The following lemma generalizes Lemma 1 in [1] and plays a
fundamental role in the proof of the theorem.

LEMMA 2. Let Ψ{r, t) = Re [log [(re^φire^)]] and r = 1 ± n~%
c = 1 — (p — l)/tf. TΛ,ew, i/ ε0 is sufficiently small,

exp , t)]dt = ), n-

Proof. By Taylor's formula

Σ
0

where

and

Cm(r) =

Cq(r; τ)t\ \t |

= 0, 1, q -

Cq(r, τ) = (l/g\)dΨ(r; f)/dt< | ί = r , | τ

The derivatives of Cm(r) are given by

dnCm(r)/drn = (l/m!)3m+w?F(r, t)/drndtm | ί = 0 »

but logs-α0(z) = ^(1)(« ~ l) p

5 «—^1 and this implies that Ψ(r, t) =
Re[έ?(l)(eu(r - 1) + e" - l)p] so that the partial derivatives of Ψ of
order less than p are zero at r = 1, ί = 0. Thus Cm(r) has a zero
at the point r = 1 of order ^ p — m, for m = 0, 1, , p — 1 and
so I CJr) \ < Cm\r - l\p~m in a sufficiently small neighborhood of
r = 1 for constants Cm. In addition Ψ(l, t) = -βtQ + ^(tq+1) as ί->0,
so that Cm(l) = 0, m = p, , g - 1 and thus for r sufficiently near
1, |C w (r) | ^ C w | r - l | , m = p, •••, q-1. Furthermore, dq¥(l, t)/dtq\t=0 =
-q\ β < 0 implies that d9Ψ(r, t)/dtq < -M, M> 0 for r sufficiently
close to 1 and 11 \ < ε0, for some ε0 > 0. Thus, if r = 1 ± ^~c and

, ί) ^ Σ Cmn~ip-m)c\ t

and so we have

where

exp i , t))dt ^

Cmn-°\ t \

exp

Mtq

| u \m-Muq. But
is bounded by
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Muq

since 1 — c — m/q ̂ 0 for m — p, , q — 1 and 1 — c(p — m) — m/q ̂  0
for m = 0, , p — 1; the result follows.

LEMMA 3. Let h(t) — at + P(t) be a real polynomial where a Φ 0
and P(t) = cpt

p + + cqt
q, q ^ p ^ 2, q even and let g(t) = Pf{t)jh'{t).

Then, if for teJ— [su s2], P " is of constant sign, h'{t) Φ 0 and G(t)
is such that Re G(t) ^ βtq/2 (β > 0) and , G'(ί) | ^ C| t \q~ι, there is a
constant M depending only on C, β and q such that

T

exp G(t)]dt

SM\a [-1 max [max | g{t) - 11,

Proof. Integration by parts yields

I< exp G(t)]/h'(t) exp G(t)](G'(t)/h'(t))dt

+ I* + I*.

We have

a I"1 max | a/h'(t) | = | a I"1 max
J J

since | exp G(t) | ^ exp [-βtQ/2] < 1.

I2 ^ max I l/h'(t)\[° exp ( - — βtq)c \ t \q~ιdt

and

I"1 m a x

" ( t ) I/I Λ'(

since

- \a\-ι\jg'(t)\dt= \a\"ι\g(8ύ-g(8ι)

does not change sign. The result follows.

LEMMA 4. Let {gn{x)) be a sequence of real valued function on
an interval [α, 6] such that
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(a) g'n is continuous, for each n.
(b) lim g'n{x) = g'{x) uniformly

n-*oo

(c) lim gn(a) = g(a)

(d) g'(x) g: <5 > 0.
Then, if f(x) is continuous on [α, 6],

f(x) I cos (nμgn(x) + θ)\dx = —\ f(x)dx

for any μ > 0 and any real θ.
The lemma is a straightforward generalization of Exercise 118

in [8] and so the proof will not be given.

3* Proof of the theorem. The proof of our result is divided
into several parts. We want to determine the asymptotic behavior of

II/"II = Σ l α . J = Σ-^IΓ/"(«)«-"'<**

The essential ideas in the proof are these: depending upon the
parameters a, p, q introduced above and n, there are only small
ranges of values for k near na which are significant in the determi-
nation of the asymptotic behavior; and for these values of k there
are only small neighborhoods of t — 0 in the integrals above which
are of significance. Part 1 will provide an initial reduction of the
expression above. Part 2 will further this reduction for the case
p Φ q. In the remaining three parts the asymptotic constants will
be obtained separately for the cases p Φ q, p even; p Φ q, p odd;

P = ff.
We shall omit the phrase "for n sufficiently large" finitely many

times in the course of the proof.
The following notation will also be used consistently:

c - 1 - (p - l)/q K - [(1 - p/q)/2 + 1] log n

μ = na — k Ί ~ (na — k)n~ιlq

S(n) = {k: n% ^ | μ \ ^ nι+llq}

T(n) = {k: bn < I μ | < n%}

U(n) - {T: n~ιlqbn < 7 < ne~il9bn} .

We now choose ε0 sufficiently small so that | G2(t) \ ̂  βtg/2, for
11 ^ ε0, φ{reiv) is analytic for \t\ ^ ε0 and r sufficiently close to 1,
and I φ(reu) \ ̂  1 — δ < 1 for t = ± ε 0 and r sufficiently near 1, for
some δ > 0.
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P A R T 1

We first show t h a t

(3) 2π±\ank\ - Σ I Γ° fn(t)e~mdt
\ J-ε0

o{na-plq)l2) ,

as w-->oo, where the range of summation is for ke T(n){jS(ri). Let
I μ I > n1+llq. Then for some K > 0, \k\> Kn1+llq and so by Lemma 1

Σ ί \ank\ ^nC

If we write

2πank = (T° + ί )fn(t)e-iktdt = α$ + αS ,

then

I αi1* I ^ Γ° exp (-nβtq/2)dt = ^(wr 1 / 9) , w —> oo

and since for all t e [ — π, π]\[ — e0, ε0] there is a 57 > 0^ such that
\f(t) I ̂  1 — 77 < 1, I ail I ^ 2τr(l — 77)̂  and we obtain

and

Σ I a{nl I = ^(n1+llq(l — η)n) , n —> co .

Each of these last sums is o{na~plq)l2) as w—> >̂ and so (3) follows.
We next show that

keSίn)

as 7t —> 00 by using the analyticity of /(ί) at t = 0 to deform the
contour of integration for the function ^. Indeed, α$ is the integral
of ^(z);?"^1 along the path 2 = eil, \t\ ^ ε0. We replace this contour
by contours Γnk chosen to be functions of n, a and k in the follow-
ing way: let

Γnk — R~k U Qnk U Rik

where

ί l — n~% k ^ ^ α , I a r g z | ^ ε0

11 + ^~c, k > w#, I a r g z | ^ ε0 ,

— w~c ^ I z I ^ 1, A: ̂  na

^ I z I ^ 1 + w~~σ, Λ > na .
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These paths are illustrated below.

363

k>na

For definiteness we will assume that a > 0. The cases for a < 0
and a = 0 follow in a similar fashion. We write

Σ ' "•"•'

where

the integrand in each case is ^%(^)^-yb~1 and the range of summation
is for ke S(ri).

We estimate each Jm:

< Σ ί +
k e ύ'ι%) J β—£

^ Σ Γ I sKre^o

Now

and

so

+ Σ [+ )φ(re±itή\nr-k-ιdr = Σi
k>naj1

i ^ 2n~c(l - δ)nnι

[an{p~ί)lq]] ,

- δ)" exp , n—>oo

Further,
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wlfl/ςr

Σ 2 ^ 2n-e(l - ί ) " Σ l = o(l) , n — oo
na

and so Jx and J 2 are both o(na~plq)l2) as %-^co, To estimate / 3 we
treat two cases:

( i ) Let Σ s denote the sum in J 3 restricted to he S(ri), k > na.
Then

Σ rna-U ' • £°

• J - ε 0

) Σ r%a-fe , r = 1 + n~c

by applying Lemma 2 and since

Σ rna~k - τι eexp(-&n) ,
feeS(»)fA;>wa

Σ 3 = arty1-*1*12-1] = o(n{1-plq)l2) , n - > o o .

(ii) If Σ4 is the sum in J3 restricted to k < M ,

"1 / 9) Σ rna~k , r = 1- n~c

as w—• cx3. This last sum is also of order nc exp( — bn) and so Σ4 =
o(na~p/q)l2) as n—> ̂  completing the estimate for /3. Thus, we can
write

(4) 2π Σ I ank \ = Σ I a™k \ + o(n{1-plq)ί2) , n-+oo .
k = -co keT(n)

PART 2

By making a simple change of variable we can write

Λ e Σ IcώM

(5) = Σ w~1/gΓ| Γcw exp [ίjt + inp(to~1/?) + nG^trr1

reUίn) LI J-eo»l/?

+ exp [ — ή ί + inp(ίπ-1/g) + nG1(tn-ιlq)]dt

where

p(£) = btp + Σ δ/t̂  .

If b < 0, we can write p(ί) using —16| instead of b and then by
taking conjugates (5) can be put into the same form as above with
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I 6 I instead of 6. Hence, whether 6 is positive or negative (5) can
be written in the form

(6)

where

Σ
ϊeU(n)

•ΓK"" " explicit) + G(t)]dt
LI J-εo»ll/«

]exp

h^t) = 7ί + nPitrrιlq)

h2it) = - 7 ί + nPitn~ιlq)

Pit) = btp + Σ cfcί
fc , 6 > 0

and G8(ί) - ^( t f f + 1 ) , to~1/9 — 0, ^ -> oo and | G8(ί) | ^ /5ίg/2, for
I ίw~/α I ^ ε0. In what follows we will establish the existence and
uniqueness of zeros of h[(t) and hί(t) in certain intervals which
depend upon n, and then show that, after splitting off from (6) the
sum of integrals in small neighborhoods of these zeros, the remainder
will be o(n{1-plq)l2)y a s % - ^ ^ . We define

where ω > (1 — p/q)/2 is to be determined as follows: there is an
ω > (1 — p/q)/2 such that

Indeed, bjpbxf1 - (l/pδ)(/S/2)(^1)/9[(l - p/q)/2 + l]/ω. Let V =
(l/pb)(β/2){p-ί]!q. Then, if V < 1/2, pick ω ^ (1 - p/g)/2 + 1 and if
F ^ l / 2 , pick ω so large that [(l-p/q)/2 + l]/ω < 1/2F. We establish
the existence of zeros of h[ and ^ by use of the following inequalities:
for ε > 0 sufficiently small P, Pr and P" are monotone on each of
[ —ε, 0] and [0, ε] and in each of these intervals

^ P ( P - 1)6 P"(ί) I ^ 2p(p - 1)6 | ί P - 2

For 7i sufficiently large, λ%ΉΓ1/(Z < ε, and then in the case of even p,
for te[ — Xny 0], we have,

7 + 2pbnι~plqtp-1 ^ 7 + nl-llqP\tn~llq) <; 7 + —pbnι"Plqtp-1
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and both of these bounding polynomials have zeros in [ — λw, 0].

Hence, h[(t) has a zero, say —t'nk in [ — λn, 0]. Furthermore, since

P'(tn~llq) is monotone there, this zero is unique and for t e [0, Xn] we

have \h[(t)\^y. In a similar way we can show t h a t h[(t) has a

unique zero, tnk, in [0, λ j and \K(t)\^Ύ for te[ — λn, 0]. If p is

odd, the same type of arguments yield \h[(t)\^Ύ for te[ — λw, λw]

and λj(ί) has unique zeros in each of [ — λn, 0] and [0, λ n ] , say, re-

spectively, — rwfc and tnk.

Let £0 be a zero of &[(£) or h'2(t). Then | ί o | < λπ and

since λn = & (logri) as n—> c>o. Thus,

ίo| =

as w —> cxD from which it follows that

-1"^)1^11-11] = 1

uniformly in A;.
We now introduce the following intervals:

Ink = [« t(l - n-d), tnk(l + n~d)]

Ilk = [-ί'.*(l + w-'), - ίU(l - n~d)]

Iίi = [-τ,k(l + w-4), - ^ ( 1 - TO^)]

for d = 7(1 - p/g)/16. Also let A = [λ,f erf"], A = [-eoii
1/5, - λ j ,

A = [0, λ j , A = A\/:*, A = [-K, 0], A = A\/»*. A = AUiί Our
purpose is to show that if p is even

ieΓ(«
I a<:i I = Σ «-"{I ί exp [iA.ίί) + G(ί)]dί

w) reU(n) L I J/Λfc

+ o(n{ί-plq)l2) ,

and if p is odd

ZJ I aJk I = V ^ - i exp [iA2(ί)

+ o(n{1-plq)l2) ,

If we let

Cmj = Σ n~llq I [ exp [iΛm(ί) |

m = 1, 2, j = 1, , 7, by using (5) we can write, for p even,



THE ASYMPTOTIC BEHAVIOR OF NORMS OF POWERS 367

(8)
Σ I αίίi

keT(n)

exp [ih2(t) + G(t)]dt

\ exp [ih^t) + G(t)]dt 1 ^ Σ Ciy + Σ

where the first sum is for j = 1, 2, 3, 4 and the second is for
j = 1, 2, 5, 6 and if p is odd

(9)
ΣkeT(n)

< y c Σ

exp [iΛ,2(ί) + G(ί)]dί

where the first sum is for 1, 2, 3, 5 and the second is for 1, 2, 6, 7.
We must show that each of these C^ is o(na~Plq)l2) as n—*c

First for ΐ = 1, 2 and j = 1, 2, Ca is bounded by

r Σ κ

and since

I exp G(ί) I dί ^ Σ n~ιlq exp(-—βtq)dt

exp {-ηtq)dt ^ exp ( - , L > 1

for some constant C and ^ > 0, the sum above is bounded by

ω) g / ( p- 1 )] ^ Cncbnn-ιlq-ωK~q

= o{riι-vίq)l2), as w-> co

C Σ
γeU(n)

because ω > (1 — p/q)/2.
In order to estimate the remaining Ĉ - we apply Lemma 3.

Consider those integrals which have one limit zero and the other
either Xn or - λ n . We have g(t) = nι-llqP'(tn-ιlq)/h'(t) where h(t) is
either h^t) or h2(t) and then #(0) = 0 and

I g(±K) I ̂  1/[1 - I Ύ/nι-ιlqP'(±Xnn-ίlq) |] .

But since Xnn~llq —> 0 as n —> co, we have by (7)

<
1

~2

Thus, I flf(±λn) I is bounded and if h! has no zero in [0, λ j , | h'{t) \ ̂  7.
Hence, max[0,^ ] | y/h'(f) | ^ 1 and so we have

IΓnexp[iΛ(ί) + G(t)]dt

for some constant M. A similar estimate for the integral over the
interval [ — λn, 0] holds and thus we obtain a bound of order
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(l/y)n~lίq = <S?(logn) = o(n{1-pl9)l2) , w-> oo

for C13, C15 and C25.

Consider the integral

exp [ίh2(t) + G(t)]dt

and write [0, λw] = [0, xn) U /Λ* U (2/n, VI We will show that the
conditions of Lemma 3 are satisfied on these two outside intervals.
First, we have shown above that | g(Xn) | is bounded. Further,
max[0,Xn] 1/1 Jφ) I = 1/| K{xn) | and

- 7 - nrd)nr11'nrd)nr11']

since /^(ί«fc) = 0. This last sum is equal to

log

and since

1/g log

. By replacing 1 - n~d by 1 + n~d in the above
arguments it follows that | h[{yn) \ ̂  (l/2)τw~d. A similar calculation
shows that g(xn) and g(yn) are both ^ ( ^ r f ) as n—>co, Thus, our
integral is ^ ( V ) and we get by (10) that

C 2 6 -

as . A similar argument applies also to Cu, C27 and C26.

PART 3

In this section we will obtain the asymptotic constant for the
case when p is even and different from q. Indeed, if we let

7 e U{n) Ink

exp [ih2(t) + G(t)]dt

then

j n ^ i_Ln ( 1-p / 9 /2 , n

where
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L = 2aV π [~F(x)dx
J

for

and

F(x) = α;-(p-2)/2(p-1) exp (-βxq l { v~ ι ))

a = (2pb/(p - I))1'2 .

For simplicity write h2 = h. Then h{k)(tnk) = ̂  (nγ-~vHv~k

k) as n
for /c :> 2 and so for t e InJfc

for some M > 0. Using ίSΛ = ^[(log w)p/(p-υ],
formula we have for £ € /nΛ

λh"(tnk)(t - tnkf
Δ

as n —> co. A simple calculation also yields

G(t) = -/Sίifc + ^[(logn

for te Ink as w —> oo and so we can write

exp [ih(t) + G(£)]dί

exp [ifc'

and Taylor's

where G*(£) = ^[(logn)2w-β ( 1-p / ? ) / l β], ί e / ^ as
variable also yields

exp [ih"(tnk)(t - tnkf/2]dt =

, A change of

where wnk =
Let σnk = μ/ncpb and zίίT̂ ^ = l/ncpb. Then we can write

where

eiuu~ll2du

[exv(-βtlk)(2/h"(tnk)Y ?-(l-p/9)/2-l/ςf _
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ΣαF(σ.*)^.»[|jβ

W"V -

aVπ

- V π

and

exp (-βtq

nk) I (

where all sums are for 7 6 U(ri).
To estimate K4 we let snk = σ1^ί'~1) and observe that

Σ exp (-£«!*) = pδ^c Σ
reU(n) γeU(n)

n

Then, since ίwfc =

and so

+ έ?(n-lιqlog n)] and swfc = ̂  (logn) as

si* + ^[n-"q (log ^)9+1] , n ̂  co

1-'/ff)/2-1<ff Σ exp {-βsq

nk)\ \ G*(t) \dt
TeU(n) JInk

since for ίe/ n f c , G*(ί) = έ?[(logn)2nδ{1-plq)l% n-+
we define a sequence of functions as follows: let

. To estimate iΓ3

Fn{x) =
Σ,F(σnk

0 elsewhere

where Zπfc is the indicator function of [σnk, σnk_^) and the sum is for

S CO

Fn(x)dx and

^ + F)dx +\*\Fn-F\dx\

for 0 < ε < R. For any d < 0, a straightforward calculation shows
that there exist ε and R so that the sum of the first two integral
expressions is bounded by δ/2αi/ττ and since Fn(x) converges
uniformly to F(x) on [ε, R] there is an n0 such that for n > nQί the
third integral is bounded by δ/2ατ/ττ. Thus, K3 = o(l) as ^—*oo.

S CO

eiuu~li2du — Vπ ei7ΐβ,
0
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K2 ^ a Σ F(σnk) I Γ j '
reU(n) I J w n k

^ M Σ F{σnk)Δσnk

+ α sup eiuu~ll2du I ^Fn(x)dx .

The first of these terms is bounded by Mfεp;2{p~ι) for some constant
Mf and the second is bounded by

M" sup
μ>ncpbε

eiuu~ll2du
wnk

for some constant M". Further, integration by parts twice gives

eiuu~ll2du < 2/λ/wn

and since tζk = σpjk

{p~ι)[l +
large n, we have

Thus,

Ίogri)] ^ (l/2)epl{p-1) for sufficiently

-2 ί = λ.n

a-p!q)l8p(p - l)bεPl{p-1] .
4

sup
μ>nCpbε

as n —> co and so for δ > 0 we can find an ε > 0 and ?̂ 0 such that
n>n0 implies that K2<δ. To show that K1 tends to zero as n—*^
we need the following fact:

Let Ψ, φ, θ be complex valued functions of a real variable and
let (tnk), (snk) be double sequences. If ωn—>0 uniformly in k as
n-+ oo and Ψ(tnk)/Φ(snk) = 1 + ^ ( ω w ) , n-^ ^ and

then,

Σ

Σ Ψ(tnk)θ{tnk) -
k

.*) I =

n-^> co

To apply this it will be sufficient to estimate the behavior of

(11) exp (-βtl.WiU^Ίn^pip - l)bsnk*-ψ* exp (βslk).

We have

exp[-£(ί i* - «!»)] = 1 + έ?[n-ιl«(log n)«+ι]
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as w-»co and since tnk = <^(logn), h"(tnk) = nι~p!qp(p -
[1 + έ?(n-1!Q log n)]. This together with ί^2 = s;*2[l + ^(wr1/<? log w)]
yields

[ ^ - ^ ( p - l)6s^ 2] 1 / 2/[^'(U] 1 / 2 - 1 + ^(n-^logn)

and so (11) is of order 1 + έ?(yrιlq (log n)q+1) and hence K, =
)?+1] = o(l) as n—* oo. Thus, we have

(12) Σ »""• I ( exp [h2(t) + G(t)]dt = w'1-"*"*!"—L + o(l)l ,
reU(n) I J/n A. L 2 J

In order to treat

Σ n-ίlq I ί exp [ih.it) + G(t)]dt
reUin) \)lnk

we set u — —t and notice that h^ — t) and G( — t) are of the same
form respectively as h2(t) and G(£) since both p ane g are even;
therefore, by precisely the same argument

(13) Σ n~llq I ( exp [^(ί) + G(t)]dt - n{1-plq)l*\—L + o(l) l ,

and then by combining (4), (8), (12) and (13) we obtain (a) in the
statement of the theorem since by computing the integral

(14) L = 2[2pbπ/(p - l)p[(p -

PART 4

We consider the case when p is odd and different from q. As
before we can write

exp [ih2(t) + G(t)]dt
Ink

= exp [ih2{tnk) - βt

+ exp [ih2(tnk) - βtlk] ^ G*(t)dt

where G*(ί) - ^[^- 5 ( 1-p / ? ) / 1 6(log^) 2], telnk, as n-»oo. But we must
also take into account this same integrand for the interval JΓ"Λ. Let

^(ί) = -h2(-t) = - 7 ί + tf-*i*bt* + n Σ cfc(

Then, a change of variable and conjugation produce
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[ exp [ih2(t) + G(t)]dt = ί exp [ihz{t) + G(-t)]dt

= exv[-ίh3(τnk) - βτlk][2K{τnk)γλωnke-iuu
Jo

+ exp l-ihs(τκk) - βτlk}\ G**(t)dt

where

G**(ί) = <?(n-slt-plt)ll<'(iogn)t),te -l"k , n

<k = K'(τnk)τikn-Ul2 and - i ί = [r. t (l - rrd), r . t ( l Let

(15)

We shall show that

To do

(16)

where

K8 is .

Σn ~ (2/π)Ln(1-p

this we write

Kδ = UL4, KΊ = iLi,

ϋ = n-"-" " r Σ m n - ' <

K, with £Λjfc replaced by τnk

+ (

Σ F{σnh)Δσnk

Bxp [ — iΛ:

βxp[iλ,

Jo
V' ,

exp
nk

111)12 , a s

-!L
π

VII

a n d ^̂ '?̂ fc

Jo

,2(ΐ) + G(t)]dt •

13

ί t l j / / ; | G * * ( ί ) | ( ί ί ,

replaced by w'nk,

7Γ )ε

where the sum is for εncpb ^ μ ^ Rncpb, Kl0 is the sum term of iΓ9

with the range of summation bn tί μ < sncpb, Kn is the sum term in
K9 with the range of summation Rncpb < μ ^ &„%%

Γ12 = (2a/v/π)\F(Λ

and α and F(x) are as defined in Part 3.
Again, we must show that each Km is o(l) as n—>©o. iΓ6 is

treated in the same fashion as if4, iί8 as Kλ. We remark that there
is a constant ikf such that
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e±iuu~ll2du

for all Y so that

and

K10 =

Kn =

M

, ε - 0

, R-> co .

That K12 = o(l), ε—>co and Kιz = o(l), R—>oo follows easily from
the definition of F(x). To estimate K9 we write

Kq < a eiuurιltdu - e**1 V π

(17)
aVπ exp [ίh2(tnk) + iττ/4] + exp [ — ih(τnk) — ΐττ/4]

I

where the sum in each of these terms is over the range sncpb ^ μ ^
Rncpb. The first and second sums above are treated in the same
fashion as K2 and both are έ?(n~{1-plq)l1*), n~>oo. The sum in (17)
can be written as

aVπ ΣjF(σnk
h(τnk) + π/2]

Thus, it suffices to show that the limit of the sum in the last
expression is equal to

(2/π)[*F(x)dx .

This will be accomplished by the following steps:
( i ) For each n*z n0, for some n0, there is a function Hn(x)

such that

~{K{t«*) + h(τnk)) = rt

thus, the sum above will take the form

8 = Σ ̂  *
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(ϋ)

cos (nι-plqHn(x) - —π
\ 4

dx 0 , nsn - \RF(x)

(iii) The limit of the integral in ii) is precisely

(2/π)\RF(x)dx .

After we construct the sequence (Hn(x)) iii) will follow directly as
an application of Lemma 4. To construct the sequence (Hn(x)) first
recall that

and

h2(t) = -it + n1-*19^* + n Σ ckn~k!qt

and that h!2(tnk) = 0 and hf

2{τnk) — 0. Let

^n(ί) = ί'"1 + Σ kck{pb)-ιn-[k-p)lHk-1

and

Then, ίwfc and τ%& are respectively the unique solutions to n1~plqpbφn(t) —
Ί and nl~vlqvbfn{t) = 7 in the interval [0, Xn], That is, φn{tnk) = 0^
and ψni^nk) — Qnk Now, σ%fe is contained in the interval [ε, R] since
εncpb ^ μ ^ Rncpb. We will consider φn and ψ̂ w over an interval
[r, s] where r > 0. First,

on [r, s] as n —> 00, and then

0

for ^ sufficiently large. Thus, φn(t) is strictly increasing for n greater
than some n0. Similarly,

and so τ^w(ί) is strictly increasing on [r, s] and there
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as w —> co. Also, [φn\x)Y
constant M such that
statements hold for ψ^ι{x)

l/^ή(ί) where a? = 0w(ί), and so there is a
1 ^ ) ] ' ^ Λf for .τG[^(f),^(s)] . Similar
We rewrite

b[φ?(σ%k)]> -
k=p+l

- Σ (-

for n > »0. Thus, for n > n0 we define

#.(*) = -ίfpδx^-1^) - b[φ-\x)\" - Σ
2 L *

for α e [ε, β ] , and for n > nQ the following conditions hold:
(a) Hn(x) and fZi(a?) are continuous
(b) l i m ^ Hn(x) = (p - l)6xp/(ί)-1) and

lim^c fK(«) = pbxil{p-l} uniformly
(c) I Hn(x) — Hn(y) I ̂  M \ x — y \ where M is a constant depending

on p, δ, ε and i2 but independent of n.
If we let H(x) = (p - l)bxpl[p-γ\ then iί'(a ) is bounded away

from 0 on [ε, R\ and hence the conditions of Lemma 4 are satisfied
and so (iii) is proved. Let

Fn(x) - J

RnCpb

Σ F(σnk)

for x e U [σnk, σnk_x)

-±π)\Xnk(x)

0, elsewhere.

Then,

sn = J *Fn(x)dx

and we need only show that

(18) F%{x) - F(x) cos (nl-'i'HJx) - —
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tends uniformly to zero on [ε, R] as n—> co in order to prove (ii).
Let x e [ε, 12]. Then, x e [σnkQi σnk^γ] and thus (18) is bounded above by

cos - ±-π) - cos 1_
4

+ I F(σnk) - F(x) I .

Since Fr(x) is bounded on [ε, 12], we have \F(σnk) — F(x)\ <
M\σnkd — x\ <£ Mnc/pb for some constant M and so the second term
tends uniformly to zero as n—> ©o. Also on [ε, 12], F(x) ^ ΛF, for
some M', so that the first term is majorized by (using condition c)
above)

M' cos (nι-^Hn{σnk) - i-τr) - cos (n^'H^x) - ^-π

- Hn{x) σnko - x \ ^

Thus, (18) tends uniformly to zero on [ε, 12] and so we have shown
that K9 = o(l), as n—>oo, Finally, by combining (4), (9), (15) and
(16) we have the result and this completes the proof for p odd.

PART 5

We now consider the last case, namely p = q. By (4)

2π Σ I ank I - Σ I aΆ \ + o(l) , n -> -

and since p = q, f(t) = exp [ία£ + Aίp + G2(<)] where ReA = —β,
G2(ί) = ^ ( ^ + 1 ) , ί — 0 and 12β[G2(ί)] ^ (l/2)(ReA)tp, \ t \ S ε0. That is,
the polynomial p(£) is (ImA)tv. Thus, by a change of variable

2-ι I α ^^ I — 2 J ^ c exp

where the sums are for keT(n) and where G(t) =
t/nllp-+0, as n—> oo.

Further for | ί | < λ n we can write exp G(t) = 1 + G*(ί) where
G*(ί) = έ?[n-llp(\og n)p+1] as ^ - ^ oo.

If we let

n ^ G(ί)]dίsw = Σ w-1/p| Γc exp [ijt + A
I J_ ε ^ T O l/p

where the sum is for 7 e C7(n) and let

F(x) = exp (Atp), F(x) = [° F(t) exp (ixt)dt ,
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the Fourier transform of F, then

(19) sn - F \dx = o(l) , n

Indeed, we can bound (19) in absolute value above by Σ»=i for

"V^ —1

2-j w

^ — I ]_

.4 = Σ ^ " 1 / P

exp [iyt +

exp [iyt + Atp +

\ exp [iyt + Atp]G*(t)dt

[ exp [iyt + Aίp]dί
Jz>

- \F\dx

where the Dm are defined in Part 2, .D = (—<χ>, λn) (J (λΛ, oo) and all
the sums are for T G U(n). First, we remark that L2 and L4 are
bounded above by

2 Σ n-llp[°exp(-—βtp

r t u ( « ) J ^ % \ 2reΊΓi^) J ^ ~ V 2 ' /

which is o(l) as n—> ^o. Next, since

L3 = ^[&nw~1/p(logw)p+1]Γ exp (ReAtp)dt = o(l) , n — oo ,
J-oo

it remains to estimate Lt. As before we define a sequence of
approximating functions

Fn(x) =

Σ
\F(0)\

0

bnτb p ^ x <C bn

0 ^x < bnn~llp

elsewhere .

The sum in Lι is then \ Fn(x)dx + o(l),
Jo

reduced the problem to showing that

and so we have

[Fn(x)-\F(x)\]dx = o(l) , n •

Let R be a fixed positive number to be chosen below. The expression
above is bounded by

FJx) - I F(x) \\dx+\ Fn{x)dx [ F(x) I dx

and by using the standard estimate: | F(y) \ ^ K/y2, y Φ 0, for some
constant K, we have
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Fn(x)dx= Σ \F(μwι")\n-1"<nι" Σ Vμ2 < 1/(R - 2)\
R μ=nUPR μ=nUPR

and so we can pick R so large that for δ > 0 the sum of the last
two integrals above is bounded by 2δ/3. Then, for this fixed value
of R there is an n0 such that for all n > n0, the first integral is
bounded by δ/3 since Fn(x) converges uniformly to \F(x)\ on [0, R],

Similarly, we can show that

\F\dx

where the sum is for ke T(n), k > na, so that if p — q we have

and this completes the proof of the theorem.

4* Several maximum points* The results we have obtained can
be extended partially to the case when | f(t) \ = 1 at several points
in the interval [ — 7Γ, π]. Assume that f(t) is absolutely continuous
and f'(t) is of bounded variation; \f(t) | < 1, tΦ t3 , f(tj) = 1 and f(t)
is analytic at t = tj9 j = 1, , m. For each of the points tά we can
define parameters <x, , pj9 q3- corresponding to the parameters α, p, q
defined above. We let T3 (n) and S0{n) be defined by replacing a, p, q
in the definitions of T(n) and S(n) by a3 , p3- and q3 respectively.

Let Qj, j = 1, , m be sufficiently small intervals centered about

each of the points t3 and set I3 = [ fn{t)e~iktdt, Γ3 = [ fn(t)e~iktdt - Iά.
JQj J-.-r

If we assume that a3 Φ a{\ ί Φ j , then T3(n) Π Ti(n) = ψ for n
sufficiently large and it follows by a straightforward application of
the previous arguments that, for j = 1, , m,

Σ

as n —> oo, where the first sum is for k in the complement of T3(n)
and the second sum is for ke T3(n). Thus, we have

where s = mm3 (p3/q3). We can also show that Σfce^ \Ij\ = n{

[C3 + 0(1)], n—> co for a constant C3 depending upon the parameters
associated with each of the points t3. Thus, we obtain
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where the sum extends over all those j such that Pj/Qj = s. This
"additivity" does not, however, extend to the general case and, as
an example by Newman [7, p. 40] shows, the asymptotic limit may
fail to exist.

5* A stronger result* In our proof the condition of analyticity
is used only in Part 1 to show that

Σ I a% I = oW1-*1*1*) , n — -

where the sum is for kes(ri). Here we outline a proof of this
statement using only the smoothness conditions assumed in Hedstrom's
paper.

We first remark that the proof of our theorem from Part 2
onward is not affected if we take bn = τ log n for any fixed τ J>
1 + (1 - p/q)/2. Define

αS = t fn(t)e~iktdt

where

^ - [-Kn-1!\ Kn-1"] , λ; - (^)1/f f(ω' log n)1"'-"

ωf > (1/2) (1 + (p + 2)/q). For n sufficiently large

I a% - aSl I £ 2so[exp [_i-^/3(λ^-^)]g]

and so

Σ I ail - aSl I = έ?[n1+llq-ω/] - o(n{1"plq)l2) , n-> ^

where the sum is for JceS(ri). In order to show that Σ I α£* I =
o(n{1-plq)l2), n—> oo we treat separately the cases p Φ q and p = q.

In the case p Φ q we fix a value for τ Ξ> 1 + (1 — p/ϊ)/2 in
6Λ = τ log n so that

vKKY-ΊK < 1/2.

A change of variable followed by an application of Lemma 3 yields
(as before)

G(t)]dt

for some constant ikf; thus



THE ASYMPTOTIC BEHAVIOR OF NORMS OF POWERS 381

Σ I αS I = ^ [ Σ ^~n-ιιΛ = έ?[\og n] = o(n{ι-^)l2) , n -> - .
keSin) L | 7 | J

If p = g, αS takes the form

\ [exp iμt + ng(t)]dt .

Integration by parts twice, followed by majorization and use of the
estimate

Ya.τ[ng'(t)ena{t)] =

yields

Σ

Thus,

Σ I aΆ I ̂  Σ I αΰ - αS I +

in both cases.
The author wishes to thank his doctoral advisor, Professor Bogdan
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