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GENERALIZED FINAL RANK FOR ARBITRARY
LIMIT ORDINALS

DOYLE 0. CUTLER AND PAUL F. DUBOIS

Let G be a p-primary Abelian group. The final rank of G
can be obtained in two equivalent ways: either as infne ω{r(pnG)}
where r(pnG) is the rank of pnG; or as sup {r(G/B) \ B is a
basic subgroup of G}. In fact it is known that there exists
a basic subgroup of G such that r(G/B) is equal to the final
rank of G. In this paper are displayed two appropriate
generalizations of the above definitions of final rank, ra(G)
and sa(G), where a is a limit ordinal. It is shown that the
two cardinals r#(G) and sa(G) are indeed the same for any
limit ordinal a. In this context one can think of the usual
final rank as "ω-final rank".

The final rank of a p-primary Abelian group G is inf%<ω {r(pnG)}
where r(pnG) means the rank of pnG. The same cardinal number is
obtained by taking swρBeΓr(G/B) where Γ is the set of all basic sub-
groups of G. In [1] we defined for limit ordinals a, sa(G) = infβ<ar(pβG)
and ra(G) = swpHeΓr(G/H) where Γ is the set of all pα-pure subgroups
H of G such that G/H is divisible; it was shown that for accessible
ordinals a that ra{G) = sa(G). The proof given there strongly depended
on the accessibility of a. In this paper it is proved that ra(G) — sa(G)
for any limit ordinal a, at the cost of a considerably more difficult
argument.

Throughout we consider a reduced p-primary Abelian group G.
We consider cardinal and ordinal numbers in the sense of von Neumann;
that is, an ordinal number is a set, namely, the set of all smaller
ordinals. Cardinal numbers are ordinal numbers that are not equivalent
to any smaller ordinal. The cardinal number of a set Γ is denoted
by \Γ\. The symbol ω denotes the first infinite ordinal. In general
the notation and terminology is that of [2] or [3].

1. The lemmas* Let τ be a limit ordinal. We define the final
τ-rank of G in two ways, which we will then show are equivalent.
Ordinary final rank as defined in [2] corresponds to final ω-rank.

DEFINITION.

(1) 8Γ(G) = inf,<Γr(j>'G[p]).
(2 ) rτ{G) - sup {r(G/H): H^G, G/H is divisible, and 0 -> H-~>

G-*G/H->0 represents an element of pτ Ext (G/H, H)}.

In [1] it is shown that rr(G) ^ sτ(G). To show the converse we

345



346 DOYLE 0. CUTLER AND PAUL F. DUBOIS

will construct a pr-pure subgroup H of G with G/H divisible and
r(G/H) - 8T(G).

We prove the following lemma to simplify the problem and to
illustrate some techniques of construction which we will sometimes
use later in the paper without explicit proofs.

LEMMA 0. (a) rτ(G) = rτ(Gτ) + r(pTG) for any pτG-high subgroup
Gτ.

(b) 8τ(G) = sτ(Gτ) + r{pτG) for any pτG-hίgh subgroup Gτ.
(c) rT(G) ̂  sτ(G) holds for all G if it holds for all G satisfying

PTG = 0.

Proof, (a) and (b) together show (c). A pτG~high subgroup Gτ

satisfies G[p] = Gr[p] 0 (prG)[p], ([4]) and hence is pr+1-pure (Th. 2.9
of [5]). It is easy to see that for a < τ,

(p«G)[p] = (p*Gr)[p] 0 (p*

and (b) follows.
To prove (a), suppose H is a #Γ-pure subgroup of Gv with Gτ/H

divisible. Then H is pr-pure in G and G/H = (G/Gτ)/(GT/H) is divisible
since G/Gτ is divisible. For H a pure subgroup of G,

r(G/H) - r((G/H)[p)) = r(G[p]/H[p]) .

Hence in this case

r(G/H) = r(Gr[p] 0 (pτG)[p]/H[p]) = r(Gτ/H) + r(p*G[p]) .

Hence rτ(G) ^ rΓ(GΓ) + r(pτG).
Now let H be a pr-pure subgroup of G with G/H divisible. Let

H[p] = S(B(pτG Π H)[p]. Let Z" be a pΓG-high subgroup containing S,
and let π: G->G/pτG be the natural map. Then (π(K))[p] = π(K[p]) =
π(Gτ[p]). Choose S' g GΓ[p] such that π(S') = π(S). We will then have
that r(Gr[p]/S') = r(π(Gτ)/π{S)) = r(K[p]/S). Note that {S\ (pτG)[p]} =
{S, (pτG)[p]} and so the pr-purity of H and the divisibility of G/H
yield, for every a < τ,

S} n GAP]}

n σ[

We let L be such that Gτ[p] = L 0 S ' and let M be L-high containing
S'. Then M[p] = S', M is neat in Gr[p] and by Th. 2.9 of [5], M is
pΓ-pure in Gτ. Then
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r(G/H) = r((K[p] φ (p'G)[p])/(S Θ (PTG Π

= r(K[p]/S) + r(p<G[p]/(p*G Π H)[p\)

^ r(Gτ[p]/S') + r(p*G[p])

= r(Gr/M) + r(p*G)

£ rτ(Gτ) + r(^G)

and (a) is proved.
Hence we consider only groups G with pτG = 0. We will need

the following four technical lemmas.

LEMMA 1. Let G be a p-primary Abelίan group of length τ, a
limit ordinal. Let S^G[p] be such that Sf](prG)[p]Φθ for all 7 < r .
Then there exists S' g S such that r(S/S') ^ 1 and {Sr, (prG)[p]} =
{S, (prG)[p]} for all 7 < τ.

Proof. Let ae S(a Φ 0). We define a family {Rj},<τ inductively
as follows:

Write S = L, © pG Π S. If a ί Llf let R, = L,. If α e L19 let
{ya}aer be a basis for Lx. Then α = ΣaerCLaVa where 0 ^ aa < p and
αα = 0 for all but finitely many a. Choose aoe Γ so that aaQ Φ 0.
Let Rγ = Σ«er-(«o} <!/«>θO«o ~ δ> w h e r e bepGf]S(bΦθ). Then S =
•βiφpGn S and α ί jBlβ Inductively, suppose {i?i}i<r has been defined
such that Σii^kKr Ri θ P&G n S = S for each fc < 7 and a $ ΣJM Ri- If
7 — 1 exists we have Σ;<r Ri^Bfl^G f] S = S. We choose L r so that
Lγ 0 F G Π S = p<-ιG f]S. If α g Σ ί < r iϊi φ L r we let RT = LΊ. Other-
wise, let {2/;};er be a basis of L r . Then α = x + Σ;er^l/X0 ^ α̂  < p,
χ^Έuί<r R%)' By the induction hypothesis not all aλ are zero. Let
λ0 G Γ such that aλo Φ 0, and let i?r = Σ u r-{;o} <?/;> φ <1/;.o - 6> (δ e p>G Π
S, 6 ^ 0). It follows that α g Σ k r + 1 i2< and Σ ^ ^ r i ί i θ ί ? f c G n S = S.

If 7 is a limit ordinal, note that Σ;<r R% Π PrG = 0. Choose L r

such that Σί<r Ri@Lr@prGnS = S. Either α g Σ « r ^ θ L r i n

which case we let iϋr = L r, or α G Σi<r ^* ® Lr and we modify Lr as
above to get Rf.

By transfinite induction, we obtain a family {JBtf}<<r such that
Σ ^ f c Λ i θ ί ) f c G n S = S for all k < τ and αg Σ k r J?,. Let S' = Σ;<r-B*
and the conditions of the lemma are satisfied.

The general idea of the above proof for S summable was com-
municated to the authors by Paul Hill.

LEMMA 2. Let G be a p-primary Abelian group of length τ a
limit ordinal. Let {Rj]j<ηi f] a limit ordinal, be a collection of sub-
socles of G satisfying the following conditions:
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( 1 ) ΈJJ<V Rj i s direct,

( 2 ) r(Rj) — V̂  is fixed, and
( 3 ) For each λ < τ, there exists j < η such that 0 Φ R3- g pxG[p).

Then there exists S g Σi<>? -By s ^ c ^ that
(a) For eαcfc λ < τ, {S, pxG[p]} = {Σ;<» Λy, PλG[p]}, and
(b)

Proof. For each i < 97, let {«jiβ}β6Γ (|ΓΊ — fc$) be a basis of JB^. Let
Sa = ΣJJ<V O ; «>• Note that Σ«er Sα is direct and Σ«er Sα = Σ α < ϊ 7 jBie

Let λ < r. Then Sa Π ̂ ^ [ p ] ^ 0 by hypothesis (3). Hence by Lemma
1, there exists, for each ae Γ, Ta g Sa such that

{Sa,p>G[p]}={Ta,p*G[p])

for all λ < r and r(Sα/Γα) ^ 1. Let S - Σ«er Ta. Then {S, pΛ

{Σ Sa, p*G[p]} = {Σi<, Λy, P2G[P]} for all λ < τ and r((Σy<, Λ

LEMMA 3. Le£ G be a p-primary Abelian group of length τ a
limit ordinal. Let a be an infinite initial ordinal such that σ <̂  τ.
Let {Rj}j<σ be a collection of subsocles of G satisfying:

( 1 ) Σi<σ R3 is direct.
( 2 ) For each λ < τ there exists j < σ such that for all i^j,

RiSPλG[p].
(3) \{j\RjΦ0}\ = σ.

Then there exists S £ Σ;<σ -By swc/z, that
(a) {S, pΛG[p]} - {Σ;<* By, p"G[p]} /or αίί λ < τ,
(b)

Proo/. Let x, e R3 (xj Φ 0) for each j e {j \ R3 Φ 0} = Γ. Then we
may write Γ as the disjoint union Γ = Ui<σ A

 s u c ^ that | ̂  | — cr
for each i < σ. Since σ is an initial ordinal, Γt g /3 for any β < σ.
Hence Σye^^y^ satisfies the conditions of Lemma 1. Hence there
exists a subgroup Si S Σyβ^^y^ such that {£•<, ̂ G[p]} = {Σier{<%>»
ί?;G[p]} for all λ < τ, and r((Σier,<^»/^) ^ 1. Let Q be such that
Σ ί < σ Σ r , < ^ > 0 Q = Σj<σRj, and define S - Σ ^ S . φ Q . Then S
satisfies the desired conditions.

LEMMA 4. Let G be a p-primary Abelian group of length τ a
limit ordinal. Let {Rj}jeσ (o* a limit ordinal, σ ^ τ) be a collection
of subsocles of G satisfying:

(1) Σi«r^i is direct;
( 2) For each X < τ, there exists j < σ such that for all j < i < σ,

(3 ) For all i < j < σ, r{Rά) ^ r{Rι)
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Then there exists a subgroup S S Σi«τ Rj satisfying:
(a) {S, pλG[p]} = {Σ;<» R, , p'Gfe]} /or αlί λ < τ.
(b)

0

Proof. Define Qa

β for all (a, β) e σxσ as follows: Define Ql = i?
and Q? = 0 for all a < σ, a > 0. We induct on the lower index.
Suppose Qa

β has been defined for all β < 7 < σ satisfying:
( 1 ) For all a ^ β < 7, r(Qa

β) = r(Qa

a);

( 2) Q? = 0 if β < a < σ;
( 3 ) For β < σ, r(<$) ^ 0 if and only if r(i^) > r(Ra) for all

a < β; and

( 4 ) 22, = Σ«e,Q?.
Suppose 7 — 1 exists. If r(Rr) = r{Rr^, let φ: R^-*Rr be an

isomorphism and define Qa

r = φ(Q^) for all aeσ. If r(2ϊr«1) < r(Rr)
we first write Rr = SQ)R where R = i2r_L (under an isomorphism φ).
Let Q? - 9>(Q?-i) for α < 7, Qr

r = S, and Q? - 0 for a > 7.
Suppose 7 is a limit ordinal. If r(Rγ) = r(22i8) for some β < 7,

then iϋr ^ i2α for all /3 ^ a < 7. Let ^ be an isomorphism from J?̂
onto Rr and let Q? = φ(Qa

β) for all α < σ.
If for some β < 7, r(i?r) > r ^ ) ^ r(i?α) for all a < 7 we write

Rr = R 0 S where R = Rβ and proceed as in the case of the non-
limit ordinal.

Finally suppose r(Rr) > r(Rβ) for all β < 7 and that there does not
exist δ < 7 such that r ^ ) ^ r(jR^) for all /5 < 7. Let π = Σ ^ r ^ i ^ ) -
Since r(22r) > r ( ^ ) ^ |σ | , /9 < 7, we have π <; r(22r) and both of these
cardinals are infinite. We may write Rr as S φ i ί where r(S) = π.
Divide a basis of S into two sets, {yλ}λeπ and fe}^ex. Let Qf = i2 0
^fehex), and noting that π = Σ«<rr(Qίί)> write 7Γ as the disjoint
union π = \Ja<rπa such that |7Γα| = r(Q*).

Let Q? = <({^ I λ 6 τrα}>, and we complete the induction. Note
that by the construction that if R7 is the first to have rank p, then
r(Qr

r) - p.

Let Λ = { r ^ )!^ < cr}. For each pe A let j^, be the least element

of σ such that r(R3 ) = p. Then Qĵ  ^ 0 by construction. For each

pe A consider the collection {Q3

ap}aeΓ where Γp = {j\jp ^j<σ}. Note

that this collection satisfies the hypothesis of Lemma 2. Thus there

exists a subgroup Sp £ Σ«er Qί? such that \(Σi«er Qίή/Sp\ ^ /O, and

for each λ < τ, {Sp, p*G[p]} = {Σαe^ Qί", p"G[p]}. Note that

Σ Σ QLP = Σ
peΛ ae Γp j<a

since each nonzero Qj is a Qj> for some pe A. Let S = Σι*eΛ S^ Then

= Σ l( Σ QίO/^l ^ Σ P = Σ r(iίy) - | Σ R,\ .
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(Note that we use the last part of condition (3) for the second equa-
lity). Also for each λ < τ, {S, (pxG)[p]} = {Σ;«, R,, (PλG)[p]}.

2. The Theorem.

THEOREM. Let G be a reduced p-primary Abelian group. Then
rτ{G) = 8r(G).

Proof. As indicated in the introduction we may assume that the
length of G is τ. Let λ < τ be such that \pλG\ = sT(G). Then there
exists an ordinal β such that τ = λ + β, and the length of pλG is β.
Now rτ{G) ^ rβ(pλG) (Use [5, Th. 2.9]) and sΓ(G) = sβ(pxG). Hence we
need only show rβ(pxG) = sβ(pxG). Thus we may consider only those
groups G with length τ and r(G) — sΓ(G).

Let Γ be the set of all ordinals β such that there exists a one-
to-one order preserving map fβ from β into τ such that \Ja<βfβ(cή = τ.
Let σ be the least element of Γ and f = fσ It follows easily from
Theorem 13.4.4 of [6] that σ is an initial ordinal.

Define a set of subgroups {P«}α<σ of G[p] as follows: Let Po be
such that G[p] = Poφ(p/ ( o )G)[p]. Assuming that Pα has been defined
for all a < β < σ, define Pβ such that G[p] = Σ«</* Pa®Pβ® (pf(β)G)[p].
This procedure is inspired by [3].

Choose λ0 such that IΣλo^<σPil = infλ<σ |Σ^»<αP»l By the choice
of σ, we have that [λ0, o) = σ. Hence we assume henceforth that
Σ;<σP;l = inf;t<σ IΣ^«σP»l We may, in fact, assume each Pα, a < σ

is nonzero, again because σ is regular (see [6]).
Let Q be such that Σn«,PiΘQ= Σi<σ (the original P4). Then

note that for each ^ <τ,{Σii<σPi^Q,{pxG)[p]} = G[p\. Let ϋf =
v . p.
^Lji

Case I. Suppose \M\ <sτ(G). Then [5, Th. 2.9] M@Q supports
a pΓ-pure subgroup K of G with G/ϋΓ divisible and |G/JSL | ^ sτ(G). So
we assume |Jlf| ^ sr(G).

Case 71 (A). Suppose \M\ = σ. Then by Lemma 3 there exists
a subsocle S oί M such that |M/S| ^ a ^ sr(G), and {S, (pxG)[p]} =
{M, (p;G)[p]} for all λ < τ. Thus S 0 Q supports a pτ-pure subgroup
if of G with G/K divisible and |G/ίΓ| ^ sr(G).

(JS). Suppose | M | > σ . Then construct a family of subsocles
{Ri}i&, inductively as follows: Let Ro = Σί<^ -P< where λx is the least
ordinal such that IΣ ^ P i l ^ σ Assuming Ra has been defined for
all a < /3, define i^ = Σ^^»<^+1 P» where λ̂  is the least element of
σ such that Pλ Π Ra = 0 for all a < β, and X ^ is the least element
of σ + 1 such that I Σ ^ o ^ P J ^ I-B*l for all a < β.
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If λ,g does not exist set Rβ = 0. It will be seen below that if
Xβ exists, Xβ+1 exists.

Note that Rσ — 0 since σ is an initial ordinal such that if β < σ, β
is not cofinal with σ (i.e., σ is regular). Note that Σ ί < σ P{ = Σί«χ-β; If
not, let rj be the least element of σ + 1 such that Rη = 0. If λ̂  = σ
then Σii<oPi = Σ*i<vIti If λ,<(7, then I Σ ^ ^ Λ I = I Σ ^ ^ I ^ l^.i
for all a<η. Hence Rv Φ 0, a contradiction. Hence Σ ί < σ i ^ = Σ ί < σ P^.

Let 57 be the least element of σ + 1 such that Rη = 0. Suppose
57 is not a limit ordinal. Let ^ = 7 + 1. Then Rγ = Σ^ <i<σ Pi and
^r I ̂  I ί?« I f° r a l l ^ < T. Construct a family {Ri-}^ as above replacing

0 by λr. Let /?! be the least ordinal such that RJ1 = 0. Suppose ^j.
is not a limit ordinal. Let τjL = τx + 1. Then |iϊ!j>| > |i2*| for all
α < 7i. In fact, \R\1\ > sup«<ri \R?\ since |Rp] — \Rr\ and assuming
otherwise we would have Rr = (Σα^-B?)© R? with | Σ α < r i i 2 ? | = | i2 r |
contradicting the construction of Rr. Hence there exists i, λΓl <̂  i < σ
such that \Pι\ ^ supα < r i | i i? | . This contradicts the construction of JS X
Hence η1 is a limit ordinal.

Hence in either case {η or ηι a limit ordinal) there exists a family
of subsocles {Ri}i<v of G[p] such that |Σ;<>?^;I = IΣi<σ-P»l a n d satisfy-
ing the conditions of Lemma 4. Thus there exists a subsocle S of
Σ;<^ Ri satisfying conditions (a) and (b) of Lemma 4. Now Σ;<>? Ri
may not be all of Σί<α (the original Pt) and so we let Qr be such
that Σ;<* (the original P<) - Σί<^ -R* θ Q' We then have

for each λ < τ. Further,

> YΛR \ =

Hence S 0 Q ' supports a ^r-pure subgroup H oί G such that |G/Jϊ| ^

sr(G). Thus rr(G) ^ sτ(G). An application of this theorem appears in

[1].
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