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GENERALIZED FINAL RANK FOR ARBITRARY
LIMIT ORDINALS

DoYyLE O. CuTLER AND PaAuL F. DuBois

Let G be a p-primary Abelian group, The final rank of G
can be obtained in two equivalent ways: either as inf, .. {r(p"G)}
where 7(p"G) is the rank of »"G; or as sup {r(G/B)|B is a
basic subgroup of G}, In fact it is known that there exists
a basic subgroup of G such that »(G/B) is equal to the final
rank of G. In this paper are displayed two appropriate
generalizations of the above definitions of final rank, ».(G)
and s,(G), where « is a limit ordinal, It is shown that the
two cardinals 7,(G) and s,(G) are indeed the same for any
limit ordinal «. In this context one can think of the usual
final rank as “o-final rank”,

The final rank of a p-primary Abelian group G is inf,_, {r(p"G)}
where r(p"G) means the rank of p"G. The same cardinal number is
obtained by taking sup,.rr(G/B) where I" is the set of all basic sub-
groups of G. In [1] we defined for limit ordinals «, s,(G) = inf,_, 7(p’G)
and 7.(G) = supg.r r(G/H) where I" is the set of all p*-pure subgroups
H of G such that G/H is divisible; it was shown that for accessible
ordinals « that 7,(G) = s,(G). The proof given there strongly depended
on the accessibility of @. In this paper it is proved that »,(G) = s.(G)
for any limit ordinal «, at the cost of a considerably more difficult
argument.

Throughout we consider a reduced p-primary Abelian group G.
We consider cardinal and ordinal numbers in the sense of von Neumann;
that is, an ordinal number is a set, namely, the set of all smaller
ordinals. Cardinal numbers are ordinal numbers that are not equivalent
to any smaller ordinal. The cardinal number of a set I" is denoted
by |I'|. The symbol @ denotes the first infinite ordinal. In general
the notation and terminology is that of [2] or [3].

1. The lemmas. Let 7 be a limit ordinal. We define the final
z-rank of G in two ways, which we will then show are equivalent.
Ordinary final rank as defined in [2] corresponds to final w-rank.

DEFINITION.

(1) s(G) = inf,.. r(P*G[p]).

(2) r.(G)=sup{r(G/H): H< G,G/H is divisible, and 0 — H—
G — G/H — 0 represents an element of p° Ext (G/H, H)}.

In [1] it is shown that 7.(G) < s.(G). To show the converse we
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will construct a p*-pure subgroup H of G with G/H divisible and
r(G/H) = s.(G).

We prove the following lemma to simplify the problem and to
illustrate some techniques of construction which we will sometimes
use later in the paper without explicit proofs.

LEMMA 0. (a) 7.(G) = r(G.) + r(p°G) for any p°G-high subgroup
G..
b)) 8@ = s.(G,) + r(p°G) for any p G-high subgroup G..
(¢) (@) = s.(G@) holds for all G if it holds for all G satisfying
»°G = 0.

Proof. (a) and (b) together show (¢). A p°G-high subgroup G.
satisfies G[p] = G.[p] @ (p°G)[»], ([4]) and hence is p +'-pure (Th. 2.9
of [5]). It is easy to see that for a <,

(&)l = (p°G-)[p] © (°G)[P]

and (b) follows.

To prove (a), suppose H is a p -pure subgroup of G. with G./H
divisible. Then H is p*-pure in G and G/H = (G/G.)/(G./H) is divisible
since G/G. is divisible. For H a pure subgroup of G,

*(G/H) = r((G/H)[p]) = 7(GIpl/H[p]) -

Hence in this case
r(G/H) = r(G.[p] @ (0°@[pl/H[p]) = r(G./H) + r(p°G[p]) -

Hence 7.(G) = r.(G.) + r(»°G).

Now let H be a p*-pure subgroup of G with G/H divisible. Let
Hp]l =SB (»°G N H)[p]. Let K be a p*G-high subgroup containing S,
and let 7: G — G/p°G be the natural map. Then (7(K))[p] = =(K[p]) =
(G [p]). Choose S’ < G.[p] such that 7(S’) = 7(S). We will then have
that r(G.[p]/S") = r(@(G.)/7(S)) = r(K[p]/S). Note that {S’, (p"G)[pl} =
{S, (p°G)[p]} and so the p -purity of H and the divisibility of G/H
yield, for every a < 7,

{p*G.Ipl, S’} = {(p°G N G.)[»], S}
= {{p"Glpl, S’} N G.[p]}
= {{p"Glpl, S} N G[pl}
= {Glp] N G:[p]} = G.[p] .
We let L be such that G.[p] = L@ S" and let M be L-high containing

S’. Then M[p] = S’, M is neat in G.[p] and by Th. 2.9 of [5], M is
pT-pure in G.. Then
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r(G/H) = r((K[p] © (p°G)[p])/(S © (»°G N H)[p]))
(K [p]/S) + r(p°G[pl/(p°G N H)[p])
r(G.[pl/S') + r(p°Glp])

(G /M) + r(p°G)

r(G.) + r(p°G)

I IA

IA

and (a) is proved.
Hence we consider only groups G with »°G = 0. We will need
the following four technical lemmas.

LEMMA 1. Let G be a p-primary Abelian group of length T, a
limit ordinal. Let S<E G[p] be such that SN (p'G)[p] =0 for all v <.
Then there exists S' & S such that r(S/S) =1 and {S', (p"G)[p]} =
{S, (p®[p]} for all v < z.

Proof. Let ae S(a # 0). We define a family {R,};.. inductively
as follows:

Write S=L, PHpGNS. If a¢l, let R =L. If acL, let
{Ya)aer be a basis for L,. Then a = 3. @Y. where 0 < a, < p and
a, = 0 for all but finitely many a. Choose a,e " so that a,, # 0.
Let R, = Yacr oy Ya) B Yo, — b) where be pG N S(b+#0). Then S =
R PpGNS and a¢ R,. Inductively, suppose {R;};., has been defined
such that Y., R, p*GNS =S for each k<~ and a¢ >, R;. If
v — 1 exists we have >, R, p'GNS=S. We choose L, so that
L®penS=p"'GNS. If a¢ >, R, PL, we let R, =L,. Other-
wise, let {y;};.- be a basis of L,. Then a = = + >, a0 < a; < p,
xe€ i R;). By the induction hypothesis not all a, are zero. Let
N € I" such that a; # 0, and let R, = 3.3, <y @ {y;, — by (be p’'GN
S, b = 0). It follows that a¢ >, R; and Yoo, R, B »*GNS = 8.

If v is a limit ordinal, note that >, R; N p'G = 0. Choose L,
such that 3, R, B L, PpGNS=S. Either a¢>;, R, PL, in
which case we let R, = L,, or a€ >, R, L, and we modify L, as
above to get E..

By transfinite induction, we obtain a family {R;};.. such that
S BB p*GNS =S8 for all k<7 and a¢ >,;. R;. Let "=, R;
and the conditions of the lemma are satisfied.

The general idea of the above proof for S summable was com-
municated to the authors by Paul Hill.

LEmMMA 2. Let G be a p-primary Abelian group of length T a
limit ordinal. Let {R;};.,, 7 a limit ordinal, be o collection of sub-
socles of G satisfying the following conditions:
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(1) Dl RB; is direct,

(2) r(R;)= W s fixed, and

(3) For each N < T, there exists j < 7 such that 0 = R; < p*G[p].
Then there exists S & 3., R; such that

(@) For each N <7, (S, p'G[p]} = {Zicn Bs, P'GIpl}, and

() r(Zin B))/IS) = W

Proof. For each j < %, let {2; .}aer (| I"] = W) be a basis of R;. Let
Sy = D3icn{¥; op. Note that >,., S, is direct and 3., S, = ., B;.
Let A <z. Then S, N p’G[p] = 0 by hypothesis (3). Hence by Lemma
1, there exists, for each ae ", T, & S, such that

{Sa, p*Glpl} = {Torp*Glp]}

for all A< 7 and r(S,/T,) = 1. Let S=3,.r T,. Then {S, p’G[p]} =
{32 8., p'Glpl} = {Ziwn Bs, p'Glp]} for all x <7 and (X, B)/S) =
ZaePT(Sa/Ta) Z R'

LEMMA 3. Let G be a p-primary Abelian group of length T a
limit ordinal. Let o be an infinite initial ordinal such that o < 7.
Let {R;};<, be a collection of subsocles of G satisfying:

(1) 3 R; is direct.

(2) For each N < T there exists 7 < o such that for all © =7,
R, S p'G[p].

(3) |{FIR; =0} =o0.

Then there exists S = >;, B; such that
(@) {S, p'GIpl} = (X< R, p’Glpl} for all X < 7, and
(b) (X<« Bj)/S| = 0.

Proof. Let x;e R;(x; = 0) for each je{j|R; #+ 0} = I". Then we
may write I" as the disjoint union I" = U;., I"; such that |[;| =0
for each 7 < 0. Since o is an initial ordinal, I'; £ g for any B < o.
Hence >);.,,<{w;> satisfies the conditions of Lemma 1. Hence there
exists a subgroup S; S 3ij.r, <{%;» such that {S;, p’G[pl} = {Dlicr, ¥
p*G[p]} for all X < 7, and r((X;.r, <2»)/S;) = 1. Let Q be such that
Dlico 2r 8D Q= X, Rjy and define S= 35,8, Q. Then S
satisfies the desired conditions.

LEMMA 4. Let G be a p-primary Abelian group of length T a
limit ordinal. Let {R;};., (¢ a limit ordinal, o < 7) be a collection
of subsocles of G satisfying:

(1) 3;R; is direct;

(2) For each N < T, there exists 3 < o such that for all j < 1 < 0,
R; = p'G[p]; and

(8) Forall 1<j<o,rR;)=rR)=|ol
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Then there exists a subgroup S & 3,;., R; satisfying:
(@) (S, p'Glpl} = (3 B;, p*GIp]} for all \ < z.
(b) [Rlice B)/S| = | Ziico Bsl-

Proof. Define Qf for all (a, B) € oxc as follows: Define @ = R,
and Qf =0 for all a<o,a>0. We induct on the lower index.
Suppose Q4 has been defined for all 8 < v < ¢ satisfying:

(1) Forall a < B <, r(Q) = r(QY;

(2) @=0if p<a<o;

(3) For p<o,7(Q% +0 if and only if »(R;) > r(R, for all
a < B; and

(4) Rﬂ = Zaea Qg'

Suppose v — 1 exists. If »(R,) = »(R,_), let »: R,_,— R, be an
isomorphism and define Qf = @(Q+_,) for all aco. If »(R,_) < r(R,)
we first write R, = S R where R = R,_, (under an isomorphism ).
Let Qf = o(Q;-) for a <v,Q; =S, and Qf =0 for a > 7.

Suppose v is a limit ordinal. If »(R,) = »(R;) for some B8 <7,
then R, = R, for all 8 <a <~v. Let ® be an isomorphism from E;
onto R, and let Qf = #(Q%) for all a < o.

If for some g < v, r(R,) > r(R;) = r(R,) for all a« < v we write
R, = R@® S where R= R; and proceed as in the case of the non-
limit ordinal.

Finally suppose r(R,) > r(R;) for all 8 < v and that there does not
exist 0 < v such that »(R;) = »(R;) for all g <v. Let m= >, r(Rs).
Since r(R,) > r(R;) = |o|, 8 <, we have © < »(R,) and both of these
cardinals are infinite. We may write R, as S@ R where »(S) = «.
Divide a basis of S into two sets, {#;}:c. and {2;};c.. Let Q= R
Hz}iexp, and noting that 7 = >, r(QF), write 7= as the disjoint
union 7 = .., 7, such that |7,| = r(Q%).

Let Qf = {y,Inem)>, and we complete the induction. Note
that by the construction that if R, is the first to have rank p, then
7(Q)) = p.

Let 4 = {r(R;)|j < 0}. For each pc 4 let j, be the least element
of o such that »(R;)= o. Then Qj +# 0 by construction. For each
0 € /4 consider the collection {Qie},. r, where ', = {j|j, < Jj < o}. Note
that this collection satisfies the hypothesis of Lemma 2. Thus there
exists a subgroup S, & Z,aepp Qe such that |(Zaefp Qi»)/S,| = p, and
for each » < 7, {S,, p’G[p]} = {Zaer, Qle, p*G[p]}. Note that

>, > Qie=2 R;

ped ael‘p ji<e

since each nonzero Q; is a Qj» for some pe 4. Let S= 3., S,. Then

(2 RIS =2 1 % Q)/S,l = X0 =X r(Ry) = | 3 By -

j<o ji<a ji<e
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(Note that we use the last part of condition (3) for the second equa-
lity). Also for each » < 7, {S, (P’G)[p]} = (Xic, Bs, (P°G[p]}

2. The Theorem.

THEOREM. Let G be a reduced p-primary Abelian group. Then
r.(G) = s.(G).

Proof. As indicated in the introduction we may assume that the
length of G is 7. Let N < 7 be such that |p’G| = s.(G). Then there
exists an ordinal @ such that 7 =\ + B, and the length of »’G is B.
Now 7.(G) = r:(p’G) (Use [5, Th. 2.9]) and s.(G) = s;(p*G). Hence we
need only show 7(p’G) = s(p*G). Thus we may consider only those
groups G with length 7 and 7(G) = s.(G).

Let I" be the set of all ordinals B such that there exists a one-
to-one order preserving map f; from g into 7 such that .., fi(@) = 7.
Let o be the least element of I" and f = f,. It follows easily from
Theorem 13.4.4 of [6] that ¢ is an initial ordinal.

Define a set of subgroups {P,}.., of G[p] as follows: Let P, be
such that G[p] = P, (»"“G)[p]. Assuming that P, has been defined
for all @ < B < 0, define P; such that G[p] = 3i.cs P. P P: D (9P G)[p].
This procedure is inspired by [3].

Choose \, such that |3 <ic Pil = inf,, | 2licic, Pi|. By the choice
of o, we have that [\, 0) = 0. Hence we assume henceforth that
[Sico Pi| = inf; ., [ Dicice Pi|l. We may, in fact, assume each P,,a <o
is nonzero, again because ¢ is regular (see [6]).

Let @ be such that 3, P.P Q = D, (the original P;). Then
note that for each \ <7, {3, P; D Q, (9*'G)[p]} = G[p]. Let M=
Zi<a Pi'

Case I. Suppose |M| < s.(G). Then [5, Th. 2.9] M & Q supports
a p-pure subgroup K of G with G/K divisible and |G/K | = s.(G). So
we assume M| = s.(G).

Case II (A). Suppose |M| = 0. Then by Lemma 3 there exists
a subsocle S of M such that |M/S|= o = s.(G), and {S, (p*G)[p]} =
{M, (p*G)[p]} for all x < 7. Thus S Q supports a p -pure subgroup
K of G with G/K divisible and |G/K| = s.(G).

(B). Suppose |M| > o. Then construet a family of subsocles
{R}is, inductively as follows: Let R, = >;.; P; where A, is the least
ordinal such that |3;.; P;| = 0. Assuming R, has been defined for
all a <, define R, = 3, <, P; where )\, is the least element of
o such that P, N R, = 0 for all @ <, and Ay, is the least element
of 0 + 1 such that |3 i, Pil = [ R, for all @ < g.
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If \; does not exist set R; = 0. It will be seen below that if
s exists, ;. exists.

Note that R, = 0 since o is an initial ordinal such that if 8 < o, g
is not cofinal with o (i.e., ¢ is regular). Note that >, ., P, =Y, R;. If
not, let » be the least element of ¢ + 1 such that B, =0. If A, =0
then 3%, P;= 3, R;. If N, <o, then | 2ipsico Pil = | 2ico Pil Z | Be|
for all @ < 7. Hence R,+ 0, a contradiction. Hence >};., R, = 3., P;.

Let 7 be the least element of o + 1 such that R, = 0. Suppose
7 is not a limit ordinal. Let » =~v + 1. Then R, = Ezrgm P; and
|R,| = |R,| for all @ < v. Construct a family {Ri},., as above replacing
0 by ;. Let », be the least ordinal such that R/ = 0. Suppose 7,
is not a limit ordinal. Let 7, =~ + 1. Then |R}| > |R?| for all
a <. In fact, |R}| > sup..,, |R;| since |R}:| =|R,| and assuming
otherwise we would have R, = X, B}) D Rj* with |X., Bf| = | R,
contradicting the construction of E,. Hence there exists 7,1, <1 <o
such that |P;| = sup..,, | R7|. This contradicts the construction of RJ1.
Hence 7, is a limit ordinal.

Hence in either case (1 or 7, a limit ordinal) there exists a family
of subsocles {R;};., of G[p] such that |>;., B;| = |, P;| and satisfy-
ing the conditions of Lemma 4. Thus there exists a subsocle S of
Siicn B; satisfying conditions (a) and (b) of Lemma 4. Now >};., R;
may not be all of >, , (the original P;) and so we let Q be such
that >, (the original P;,) = >};,., R, Q. We then have

Glp] = { ; R, D Q, (»G)p]} = {SO Q, p'G[pl}
for each N < 7. Further,
IGlp]l/SS Q| = I%Ri/sl = I%Ri| = |M| = s(G) .

Hence S@ Q' supports a p-pure subgroup H of G such that |G/H |
s.(G). Thus r.(G) = s.(G). An application of this theorem appears in

1.

%
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