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A FACTORIZATION THEOREM FOR ANALYTIC
FUNCTIONS OPERATING IN A
BANACH ALGEBRA

Puinip C. CURTIS, JR. AND HENRIK STETKAER

Cohen’s factorization-theorem asserts that if the Banach
algebra U has a left approximate identity, then each ye
may be written ¥ = xz, x,2z€, The vector x may be chosen
to be bounded by some fixed constant and z may be chosen
arbitrarily close to y., In this setting the theorem below
asserts that if F is a holomorphic function defined on a
sufficiently large disc about { =1, and satisfying F(1) =1,
then each y <2 may be written y = F'(x)z, where x,zc,
Again x may be chosen to be bounded by some fixed constant
and z may be chosen close to y.

We state and prove our result using the terminology of [2].
The proof is an elaboration of the proof of Theorem 2.2 of [2]. In
what follows X is a complex Banach space, & = {FE,} is a uniformly
bounded subset of B(X) which we may assume to be directed and
which satisfies lim, E, E = E for each Ee¢ &. Convergence is in the
norm topology of B(X). Let

Y={rxeX: limE,z=u},

and let ¥ be the closed subalgebra of B(X) generated by &.

For further extensions of Cohen’s theorem we refer the reader
to Chapter 8 of [3].

THEOREM. Let F be a holomorphic complex-valued function with
F() =1, defined on a meighbourhood of {zeC||z — 1| < M}, M > 1,
where ||E — I|| < M for all Ee &.

Then to every ye 'Y and 0 > 0 there exist z€ Y and Ue? such
that

y=FU)z and ||y — z]| < 0.

If furthermore F' has mo zeros in the open interval 10, 1[, then
U may for some acl0, 1] be written in the form

U=Sal—a*" E,,

where E,e & for k=1,2, «--.
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Proof. It suffices to prove the theorem in the case where F' has
no zeros in )0, 1], since we otherwise simply use the function

G(z) = F(é 2) F(e'")™*
for 6 small, instead of F.

Let {\,, - -+, \,.,} denote the zeros of F in the disc {zre C||z — 1| < M}.
Let finally ye Y and 6 > 0 be given.
To proceed we need

LEMMA 1. Let 0<a<1l; E, -+, E, €& and set

U =Sal—a) B +1—arl.

Assume that no \; belongs to the spectrum o(U,) of U,, and that

RO\, U)YS Y

for i =1, -+, m,
where

R()\Ji, Un) = (X,LI - Un)—l .

Then F(U,) and W, = F~(U,) belong to B(X) and both map Y
wnto Y.

Proof. We assert first that o(U,) S {|z — 1| < M}. Indeed,

U, —I= kﬁaa — @)} E+Q—arl—I= kﬁ;aa — o) YE, —I),
so that

1T, — II| £ M3 a(t — )~

=MAl-Q1-a)y) <M.
Now

Y={veX|lmE,x =z},

and consequently EY = Y for every Ee &, so that U, YES Y. For
[ — 1] = M we have
RCU)=C-D)'I-E-1)N(U, - D)
=C-H)"XC-H)HU, - D)*,

which converges absolutely, so that

RC U)YCS Y.
Since the integral
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F(U,) = LS FQORE, U)de e B(X)
2w, Jig—u=un

is a limit of Riemann sums,
FU)Y S Y.
Since F' is holomorphic and does not vanish on ¢(U,) we have
wW,=F(U,eBX).
To show W,Y < Y, write

F@) = 11 (v — 9"HE) |

where H does not vanish on {|z — 1| < M.} The above argument shows
HY(U,Y Y. Finally,
F(U,) = H*(U,) [] R(v, U,)* ,
and
R\, U)Y S
by hypothesis.

LEMMA 2. If in addition U, may be chosen so that

(W, — W_l)y||<—§n— for n=12 ---,

then the theorem follows.
Proof. Set z,= W,y. Then {z,} is a Cauchy-sequence. With

z = lim, 2, we have ||z — y|| < 4.
Further, if

U= i all — a)* ' E,,
then
[F(U)z — yl| = [|[F(U)z — F(U,)z + F(U,)(z — z,) + F(U,)z, — 9|
< [[F(U) = F(U) | 2] + [ F(U) ||z — za]] »

from which the lemma follows.
We will need the following technical lemma in the induction step
below, where we use the notation

T(a) = {#1 — a)™"|n = 0,1,-+-and pre{\, -+, N} U{z| ]2 — 1| = M}}
for 0 <a<1.
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LEMMA 3. Tnere exists bel0, 1] such that
la(z — 1) < —zlﬁfor all a€l0,b] and all Te T(a) .

Let A, = aE,+ (1 — a)l for some a€]0,b]. Then for te T(a)
we have that R(t, A,) exists in B(X), maps Y into Y and:has
[|R(z, Al || = C < oo, where C only depends on F' and M.

Furthermore, for fixed Ee & and xe Y,

lim R(z, A)E = (t — 1)7'E
and
lim R(z, Az = (t — 1)z,

both uniformly for e T(a).

Proof. The first assertion is an easy consequence of the fact
that F' has no zeros in ]0, 1], so that

[t —1|=¢>0 for all e T(a) and all a€]0, 1] .

Since

tI—A,=(rc—-1)I-——%_ (B, -1I),
T—1

we have that

R 4) = (- )7 5 (2r) B - 1

converges by our choice of a, maps Y into Y and finally that
[|R(t, A,) || £ max |t — 11“1}022“" =2max{|t — 1|7 7e T(a)} .
[}
By an easy calculation

R(T! Aa) - (T - l)_lI: 2 R(Ty Aa)(Ea - I) y

e
(t—-1)
which yields the lemma.

We will also need the following trivial lemma.

LEMMA 4. Let {T,,|acA,i=1,..-, 0} S B(Y) satisfy
[ Tiall = C < o0 for adll acA,i=1,+--,n.

If T;.— T; strongly for 1 =1, -+-, n, then
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T.oToueTho— T\T,--- T,
strongly.

We will now by induction find a sequence {E,} & & such that
for any fixed a€]0, b],

R(\;, U)eB(X) forall ¢=1,---,m and n=0,1,---,
(%) maps Y into Y and such that

(W, = Wl < 3 for m=1,2 .

The theorem then follows from Lemma 2. For n =0 we may
take U, = I.

Now suppose we have found U,, U, ---, U, satisfying ().

Let A,., = aFE,,, + (1 — a)l, where E,., €& is to be chosen.

Since R(t, A,.) makes sense for v¢ T{a) by Lemma 3, we may
define

T, = =S a(l — &R0 — @)™, Ay ) By + (1 — o)l

for » e T(a). We note that U,(\) may be chosen arbitrarily close to
1 -2l - a)™ (U, — M) uniformly for ne T(a) if we just take E,,,
large. Therefore, U,(\)™" exists in B(X), maps Y into Y and is
uniformly bounded in T(a) and & for E,,, large.
By an easy calculation

M~ U= ML —a)™ - A4,.,)U.(\)
S0

E(\, U,i) = Us(NTR(ML — @)™, A,4)

exists in B(X), maps Y into Y and is uniformly bounded in T(a)
and &.
Since

F(U) = H(U) IT R, U*

it is by an easy application of Lemma 4 left to show that for each
zxeY,

RO\, Usi)e — RN, U

uniformly for » € T(a) as E,., increases in &.
Now
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R(\, U,)x — RN, U,
= U,(NR(M1 — a)™, A,.)v — R(\, U
= U.)7[BML — @)™, Aw)e — (M1 — @)™ — 1)7'2]
+ [(M1L — @)™ — UL — R\, Ul .

The first term can be made arbitrarily small by Lemma 3. The
second term can be made arbitrarily small too, for we have already
observed that

u.n)— 1 —M1—a)™ (U, — M) unif. in T(a)
)
U.nv)"'t—0M1l—-a)y™—1)RMN, U, unif. in T(a).
That finishes the proof.

REMARK. If K is a compact subset of Y then we can use the
same U for all ye K. That is proved as in [5].

Similarly, if y,— 0, then there exist U and =z;, x;— 0 such that
y, € F(U)x;.

COROLLARY. Let A be a commutative self-adjoint semi-simple
Banach algebra with a bounded approximate identity {e,}. Let _#,
be the maximal ideal space for A. If feCy . #), the continuous
complex functions on _#, vanishing at oo, and f =0, then there
exists a ge C(_#Z.), 9 =0 such that V' flgec A. If fec A, then g may
be chosen to be in A.

Proof. f—f is continuous since A is commutative and semi-
simple. {f.} = {e.€.} is an approximate identity consisting of non-
negative functions. Let F(z) = 2* and write feCy( ), f =0 as
f = h*g, where h = > a(l — a)"'f, with {f,} S {f.} is in A. Then
h = V'f]g, and we are done.

This Corollary may be contrasted with a theorem of Katznelson

[4] which asserts that if 1/f ¢ A for each nonnegative f in A then
A = C(.z).
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