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A STUDY OF CERTAIN SEQUENCE SPACES OF MADDOX
AND A GENERALIZATION OF A THEOREM OF IYER

CONSTANTINE G. LASCARIDES

In this paper we examine the Kδthe-Toeplitz reflexivity
of certain sequence spaces and we characterize some classes
of matrix transformations defined on them. The results are
used to prove a generalization of a theorem by V. G. Iyer,
concerning the equivalence of the notions of strong and weak
convergence on the space of all integral functions, and also
to generalize some theorems by Ch. Rao.

Let X, Y be two nonempty subsets of the space s of all complex
sequences and A = (ank) an infinite matrix of complex numbers
&nh{n, k = 1, 2, •). For every x — (xk) e X and every integer n we
write

An(x) = Σ
k

where the sum without limits is always taken from k = 1 to k — oo.
The sequence Ax = (An(x)), if it exists, is called the transformation
of x by the matrix A. We say that Ae (X, Y) if and only if Axe Y
whenever x e X.

Throughout the paper, unless otherwise indicated, p = (pk) will
denote a sequence of strictly positive numbers (not necessarily bounded
in general). The following classes of sequences were defined by
Maddox [4] (see also Simons [10], Nakano [8]):

c(p) = ίx: \xk - I |p* > 0 for some l\ ,

cQ(p) ={x: \xk\» >

When all the terms of (pk) are constant and all equal to p > 0
we have l{p) = lp, L(p) = L, c(p) = c> and co(p) = c0, where lp, L , c, c09

are respectively the spaces of p-summable, bounded, convergent and
null sequences. It is easy to see that L(p) = L if and only if 0 <
inf pk ^ suppA < oo and similarly for co(p) = c0, c(p) = c (see [4])
It was shown in [4], [5], [6], that the sets l(p), L(p), c(p) and co(p) are
linear spaces under coordinatewise addition and scalar multiplication
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488 CONSTANTINE G. LASCARIDES

if and only if p e L. The special linear space cQ(l/k) was studied
by Iyer [1], who identified it with the space of all integral functions.

Whenever p e L we shall write H — suppk and M = max(l, H).
Now let E be a nonempty subset of s. Then we shall denote

by E* the generalized Kothe-Toeplitz dual of E, i.e.,

Er = jα: Σ #*#* converges for every x e E > .

The following lemma collects some simple and well-known proper-
ties of dual spaces:

LEMMA 1. The Kothe-Toeplitz duality has the following properties:
( i ) E^ is a linear subspace of s for every Eds.
(ii) EdF implies E^ z> F1 for every E, Fas.
(iii) En ΞΞ (Eψ =)E for every Eds.
(iv) (U EJY = D E) for every family {Eά} with E5ds.

A nonempty subset E of s is said to be perfect or Kothe-Toeplitz
reflexive if and only if En = i?. It is well-known that Eί is perfect
for every E. It is also obvious that if E is perfect then it is a
linear space. The converse is not always true, e.g., c is a linear
space with Kothe-Toeplitz dual lt and therefore not perfect.

Let E(p) be any one of the sets l(p), L(p), c(p), co(p). Then to
contract notation we shall put E(p; 1) = Ef(p), E(p:2) = En(p) etc.
It is obvious that E(p; 1) = E(p; 2n + 1) for every n ^ 0. We now
give the Kothe-Toeplitz duals of the above classes of sequences.

LEMMA 2. ( i ) If 0 < pk <Ξ 1 /or e^erτ/ fc, £/̂ βw l(p; 1) = L(p)
(see Theorem 7 in [10]).

(ii) If pk > 1 /or ê er̂ / fe, ίfeβπ ί(p; 1) = M{p), (see Theorem 1
in [6]), where

'* <coj

PI1 + Qk~ι — l For convenience we shall, in the future, write

(iii) For every p = (pk), we have l^(p; 1) = Moo(p), (see Theorem
2 in [3]), where

M~{p) = ΠJ^ΣIα.

(iv) Also for every p = (pk), co(p; 1) = M0(p), (see Theorem 6 in
[6]), where
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U { Σ |
N>1 Ik

We determine the Kδthe-Toeplitz dual of c(p) in

THEOREM 1. For every p = (pk) we have c(p; l) = co(p; 1)ΓΊ7 where
7 is th space of all convergent series.

Proof. Let a e co(p; 1) Π 7 and | ^ - I \Pk -> 0. Then IΣ* α* and
Σfc #*(%— I) are well defined and therefore Σ * α*&* converges. Whence
co(p; 1) Π 7 c φ ; 1). On the other hand, let aec(p;ΐ). Then e =
(1,1, '")ec(p) implies α e 7 , and co(p)cc(p) implies c(p; 1) IDco(p; 1)
by Lemma 1 (ii).

We continue by characterizing the Kothe-Toeplitz second duals
and discussing the reflexivity of the sets cQ(p), l(p) and L(j>).

We have the following theorems:

THEOREM 2. For every p = (pk) we have co(p; 2) = x19 where

λ i = Π {y sup 1^ I Nr* <
Ik

Proof. Let EN = {α: Σ * l«* I ̂ ~ r A ; < °°} Then co(p; 1) = M0(p) =
U Λ Γ > I ^

 a n ( i therefore by Lemma 1 (iv), we have co(p; 2) ~ M0(p; 1) =
fWiJE& I* i s e a s y to check now that 2?£ = {#: sup* Is/*! JVr*< °o}
for every N^l, whence co(p; 2) = λ :.

THEOREM 3. For every p — (pk) we have L(p; 2) — λ2, where

λ2 = U {α: sup |α, | iSΓ"^ < ool .

Proof. It is easy to see that λ 2 c L ( p ; 2 ) . On the other hand
if aeloo(p;2) — λ2 then there exists a strictly increasing sequence
(k(N)) positive integers such that for k = k(N), \ak\N~rk > N2 and
if we define a sequence x = (%) by % = 0 (Λ ̂  k(N)), xk = N~{2+rk)

sgn ak (k = fc(ΛΓ)), (ΛΓ = 2, 3, •) then for any integer R > 1 we
have, for every N ^ R, \xk\Rrk ^ N~2, when & = Tc(iSΓ). Hence
xe L(p; 1). However, for k — fe(iV), akxk> 1, contrary to α e L(p; 2).

THEOREM 4. ( i ) Lei ί)fc > 1 for every k. Then l{p) is perfect
if and only if pel*.

(ii) Let 0<pk^l for every k. Then l(p) is perfect if and
only if l(p) = lx.
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Proof. ( i ) Let 1 < pk ^ H. Then we have

qk = (l- rk)-1 ^ H(H - I ) " 1 > 1

for every k. It is obvious now that, by Lemma 2 (ii), l(q) a l(p; 1)
and therefore that l(q; 1) ZD l(p; 2), by Lemma 1 (ii). On the other
hand inf qk > 1 implies l(q; 1) = l(p) (see [6] p. 432) and therefore

l(p; 2) c l(q; 1)

Whence l(p; 2) = l(p), i.e., ί(p) is perfect. Conversely if l{p) is perfect
then it is a linear space and therefore p e L .

(ii) The sufficiency is trivial. For the necessity we observe
that l(p; 2) = l(p) implies m = inf pk > 0. For suppose not. Then
there exists a strictly increasing sequence (hi) of positive integers
such that pk. < i~\ We put ak = 0 (& ^ &<), αfc — i~n (k^ki). Then
for every integer N > 1 we have, for i ^ 2N, \ak | iV

rA ^ 2~*" and |αΛ ̂ ~
i"1, where k = fc^ Whence α e ί(ί9; 2) — i(p), contrary to the assump-
tion that l{p) is perfect. Now from 0 < m ^ pk ^ 1 we have lm c
i(p) c ii, i.e., l(p) = ί(p; 2) = I, (since Γm = L by Theorem 7 in [8]).

THEOREM 5. L>(p) is perfect if and only if p e L .

Proof. Sufficiency. Let p e L and α e L ( p ; 2 ) . Then there exists
JV > 1 such that sup* | ak | ΛΓ-r^ = JSΓ < oo. Hence | ak \ N~r* Krι < 1 for
every k and therefore \ak \

Pk ^ iVmax (1, KH) for every k, i.e., a e L(p).
Whence L(p) is perfect.

Necessity. Let L(p; 2) = L(p) and suppose that there exists a
strictly increasing sequence (&;) of positive integers such that pk. > i.
Then the sequence a defined by ak — 0, k Φ kiy ak. — 2, i — 1, 2, 3 ,
belongs to L(£>; 2) — L(p) and this contradicts the assumption that
lco(p) is perfect.

THEOREM 6. The following statements are equivalent:
( i ) inf pk > 0
(ii) L(p; 1) = Zx

(iii) L(p; 2) = L .

Proof. The proof is trivial.

THEOREM 7. T%e following statements are equivalent:
( i ) co(p; 2) = L
(ii) inf pfc > 0
(iii) c0 c co(p) .
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Proof, (i) implies (ii). For we have l± = co(p; 3) = co(p; 1) =
M0(p) and therefore inΐpk>0 (see [6] p. 434). (ii) implies (iii) by
Lemma 1 in [4]). Finally from (iii) and Theorem 2 we have L = c o

n c
φ ; 2 ) c L , i.e., co(p; 2) = L. Whence (iii) implies (i).

THEOREM 8. co(p) is perfect if and only if pe c0.

Proof. For the sufficiency let pec0 and take xeco(p;2). Then
by Theorem 2 we have CN = supA | xk \ N

rk < oo for every integer N >
1. Suppose that x$co(p). Then there exists a strictly increasing
sequence (k(s)) os positive integers and a positive number I such that
~\%k\Pk ^ I for & = k(s), s = 1, 2, ••• . Therefore, for every integer
JV> 1, we have

(JV7)r* ^ JVr* |% I rg sups JV-* |»* I ̂  C^ < oo, (A; = fc(s)) .

Let now NQ be an arbitrary integer bigger than 1 and choose N such
that Nl > No. Then we have N;k < (Nl)rk < CN, (k = Λ(s)), i.e., lim
sups No

rk < oo (k — k(s)) contrary to the fact that rkis) = p^s) —> oo
(s—>oo). Whence a j e φ ) and this proves the sufficiency. For the
necessity let us suppose that co(p; 2) = co(p) and that p $ c0. Then
there exists a strictly increasing sequence of positive integers k3- and
a positive number Z such that pkj Ξ> i (j = 1, 2, •)• We define a
sequence x as follows: % = 0 (k Φ k3), xk = 1 (A: — ̂  ), (j = 1, 2, •).
Then it is easy to see that x e co(p; 2) — co(p) contrary to the assump-
tion that co(p) is perfect. Whence pec0 and this completes the proof
of the theorem.

In the second part of this paper we characterize certain classes
of matrix transformations and we show that certain theorems proved
by K. Ch. Rao (see [9]) are particular cases of our theorems.

We start by characterizing the class (c(p), c) of matrix trans-
formations. We have the following theorem.

THEOREM 9. Let p e L. Then A e (c(p), c) if and only if
( i ) There exists an absolute constant B > 1 such that

C =

(ii) limα f̂c = ak (n—> oo) exists for every fixed k.
(iii) lim% χ f c ank — a exists.

Proof. Sufficiency. Let \xk — l\Pk—>0. I t is easy to check t h a t

(ak) 6 cQ(p; 1). Given e > 0 there exists k0 = k^ε, x) such that
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\xk- I\*ki* < m m (1, e)JS-ι(2C + I ) " 1 < 1

for every k > k0. Therefore, we have

BΊ>\xh - 11< BMr* \xk-l\< (min (1, e)(2C + I ) - 1 ) * ' * < ε(2C + I ) " 1

for every A: > k0. P u t t i n g bnk — ank — ak we have bnk —> 0 (n —> oo,

fixed) and Σ * l&»* I -B~r* ^ 2C. Whence

and

i.e.,

therefore

Ae(c(p),

k

c).

{ank -

lim
n k

Σ M% - i) + ε

Necessity. Then necessity of (ii) and (iii) is obvious. For the
necessity of (i) we observe that i e ( φ ) , c ) whenever Ae(c(p), c)
(since (c(p), c) c (co(p), c)). Therefore each AΛ, defined by An(x) =
Σfc f̂cίCfc for every x e co(p), is a continuous linear functional on cQ(p) (see
Theorem 6 in [6]) which is a complete linear topological space since
pel**. The proof of the necessity of (i) is now a simple application
of the uniform boundedness principle.

COROLLARY 1. Let p e L and denote by (c(p), c; P) the class of
matrix transformations which transform every sequence in c(p) to a
sequence in c with the same limit. Then Ae (c(p), c; P) if and only if

{i)' Condition (i) Theorem 9 holds.

(ii)' \imnank = 0 for every fixed k.

Σ*αn* = 1.

COROLLARY 2. Let p e L. Then A e (co(p), c) if and only if con-
ditions (i) and (ii) of Theorem 9 hold.

COROLLARY 3. (See C. Rao's Theorem (III) in [9]). Ae(co(l/k)> c)
if and only if

( i )* \ank \llk ^ D for every n, k.
(ii)* \\mnank = ak exists for every fixed k.

Proof. It is enough to prove that in the case pk = l/jfe for every
k, condition (i)* and condition (i) of Theorem 9 are equivalent. If
condition (i) of Theorem 9 holds then Σ& \a%k\ B~k ^ C for an absolute
constant B > 1 and therefore \ank\B~~k ^ C for every n, k. Whence,,
for every n, k we have
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\ank \1/k ^ C1/k B ^ B max ( 1 , C ) Ξ D <

i.e., condition (i)*. On the other hand if condition (i)* holds, then
for an integer T ^ max (1, 2D) we have

Whence

\ank I ̂  Dk ^ Tk2~k, for every n, k .

Σ \ank I T~k ^ Σ 2-" < - for all w ,

i.e., condition (i) of Theorem 9 holds.

THEOREM 10. Let pel*. Then i e ( φ ) , L ( p ) ) if and only if
there exists an absolute constant B > 1 such that

( 1 ) T =

Proof. Sufficiency. Let xecQ(p). Then there exists &0 such that
\xk\ < f>~rfe for every k > fc0. Therefore for every n we have

, + S2) ,

where,

k>kn

ankxk

for every n and for every ke [1, k0]. Whence

g Γmax( l , Q)

where Q = (22 Σfc*fc0 lχfcl)3f For the term S2 we have

We observe now that (1) implies

\ank I T~r^ < Brk ^ max Brk = R <

- T(R

n w <Γ V 1/7 I TZ~rk <C rΓrn

0 k>k0

i.e., S2 ^ Γ. Whence Ae (co(p), L(p)).

Necessity. Let Ae(co(p), L(p)). Then we have

N(x) = sup% I An(a?) |Pn < oo

for every xecQ(p). Put /n(aj) = \An(p)\Pn. Then for every w, fn is a
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continuous function on co(p) (see Theorem 6 in [6]) Since co(p) is a
complete metric space (see Theorem 1 in [5] and p. 318 in [7]) and
fn(x) <; N(x) for every n, we have, by the uniform boundedness
principle, that there exists a sphere S[θ, δ]aco(p) with δ < 1, θ =
(0, 0, •••) and an absolute constant K such that

( 2 ) Σ ank
K

for every n and for every xeS[θ, 3]. For every integer m > 0 we
define a sequence (x{m)) of elements of co(p) as follows:

χim) = gjfr* s g n a n k ( i ^ j c ^ m ) , ^ * ) = o (k > m) .

Then x{m) e S[#, S] for every m and by (2)

for every m, n, where B = δ~M. Whence T < oo.

REMARK. It is easy to check that if p e L, p' e L, then we have
Ae (co(p), ίoo(p')) if a n d o n ly if there exists an absolute constant B> 1
such that

Let now Q be the set of all p = (p*) for which there exists
N > 1 such that Σfc Λr-r* < °° Then we have the following

THEOREM 11. Let peQ. Then Ae(co(p), L(p)) if and only if

D = sup |α w * | ( r * + r » ) - 1 <oo .
n,k

Proof. Let condition (i) of Theorem 10 holds. Then we have

for all n, k. Hence \ank\ BrkTr* and if we put C = max(I,2?) we
have D ^ C < oo. Obviously in this part of the proof we do not
require that p e Q. If now p e Q, then there exists N > 1 such that
Σfc JV"~rfc and therefore if D < oo we have for an integer B > ND that

Σ* K* Σ*
Whence condition (1) of Theorem 10 holds and therefore Ae(co(p),
UP)).

COROLLARY 1. (See C. Rao's Theorem (v) in [9]). Ae(cQ(l/k),
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loo(l/k)) if and only if supw,fc |αw f c |
( w + f c )~1 < oo.

THEOREM 12. For every p = (pk) we have 4e(ilίo(ί)),c f l) if and
only if

( i ) CN = supn>k \ank\Nrk < oo for every N> 1.
(ii) lim^α^ = 0 for every fixed k.

Proof. The sufficiency is trivial and so is the necessity of (ii).
The necessity of (i) is proved by an argument similar to the one that
was used to prove Theorem 3 in [3].

Before we proceed to discuss weak convergence in co(p) we prove
a theorem concerning the relation between the classes co(p) and lx.

THEOREM 13. The following statements are true:
( 1 ) lt c cQ(p) if and only if inf pk > 0.
(2) cQ(p) c lt if and only if peQ.
( 3 ) co(p) Φ I, for every p = (pk).

Proof. (1) If inf pk > 0 then cQ(p) = c0 ~D lt. On the other hand
if i i C φ ) but we suppose that inf pk — Q then we can find a strictly
increasing sequence (fc{) of positive integers such that pk. <i~ι (i —
1,2, •••)• It is easy to see now that the sequence xk = 0 {kφk^
xk — 2~rk (k = ki), (i = 1, 2, •••) belong to lλ — co(p) contrary to the
assumption that ^dc^p). Hence (1) is true.

( 2 ) Let peQ, xeco(p). Then there exist N> 1 and kQ — kJJS!, x)
such that Σfc N~~rk < oo and | xk \ ̂  N~~rk for every k > kQ. Whence
xek. On the other hand if c^p) a lt but Σ& N~*k = oo for every
N> 1 then there exists strictly increasing sequence (kN) of positive
integers such that

Σ (N+ l)~r* > N

and if we put xk = (N + ϊ)~~rk for kN^ < k ^ kN then we have
x e co(2>) — Zi contrary to the assumption that co(p) c Zlβ Hence (2) is
true.

( 3 ) If peQ then there exists N> 1 such that Σ * N ~ r * < oo
and (N~rk)ek — co(p), i.e., cQ(p) is in this case a proper subset of Zie

On the other hand if p g Q then by (2) co(p) contains an element
which is not in lγ and hence (3) is true.

In the proof of our next theorem we will make use of the
following

LEMMA 3. L(l/k) = Λfo(l/fc).
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Proof. Let x e L(l/ά). Then by choosing an integer N > 2(J9 + 1),
where D = sup^ \xk\

llk < co, we have

Σ 1% I N~* < Σ 2"& < co, i.e., x e M0(l/k) .
k k

Conversely for x e M0(l/k) we have

\xk\
llk ^ NCllk ^ JVmax(l, C) < oo

for some N> 1 such that C — Σ f c |a?A| < oo. Whence ,τeL(l/&) and
therefore the lemma is true.

We now prove the following.

THEOREM 14. The following statements are equivalent:
(1) A G (looillk), c0);
(2) Σ * K * | J V * - > 0 (rc—oo) /or ever?/ ΛΓ> 1;

(4) ( i ) sup%,fc |αΛfc I Nk < oo for every N > 1,
(ii) lim^α^ = 0 /or ever?/ fixed k.

Proof. By Theorem 3 in [3], (1) implies (2). Now given ε > 0
we choose N > 1 such that ΛΓ"1 < ε. By (2) there exists n0 such
that Σfc \ank I N

k < 1, π > n0, which implies \ank \ N
k < 1 for all k ̂  1,

w > n0. Therefore

for every n > ^ 0 Hence (2) implies (3). It is easy to see that (3)
implies (4) and finally that (4) implies (1) by Theorem 12 and Lemma 3.

This completes the proof of Theorem 14.
We conclude this paper with the study of weak convergence in

In 1948, V. G. Iyer [1] proved an interesting theorem concerning
the equivalence of the notions of strong and weak convergence in
cQ(l/k). Namely

THEOREM I. The notions of strong and weak convergence in
co(l/k) are equivalent.

In the present paper we show that Iyer's theorem is true for a
more general class of cQ(p) spaces, namely for the spaces cQ(p) for
which p e cQ.

Before proceeding any further we make some remarks concerning
the co(p) spaces and give some definitions.

It has been shown by Maddox (see Theorem 6 in [6]) that for
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pelco the space cf{p) of all continuous linear functional on co(p) is
isomorphic to the space M^p) in the sense that every continuous linear
functional on co(p) can be expressed in the form f(x) = Σ f c akxk with
a e MQ(p) and vice versa. Therefore in what follows we can talk of
expressions ^kakxk, ae M0(p), xe co(p) instead of continuous linear
functionals on co(p).

The following definitions are well-known.

DEFINITION 1. Let X be a linear topological space. Then we say-
that a sequence (x{n)) of elements of X converges weakly to an element
x of X if and only if limnf(x{n)) = f(x) for every / e l * (i.e., for
every continuous linear functional on X).

DEFINITION 2. A linear metric space is said to have the Schur
property if and only if every weakly convergent sequence of its ele-
ments is necessarily convergent in the metric of the space. If the
above space is a I?-space then the definition coincides with the one
given in [2].

Note that convergence in metric (strong convergence) implies
weak convergence to the same limit.

We now examine the conditions under which the space co(p) has
the Schur property. It has been remarked that p e L is necessary and
sufficient for the linearity of cQ(p). Furthermore if p e L then co(p)
is a complete linear topological space under the topology induced by
the paranorm g defined by g(x) = sup& \xh\

9hlM for every x = cQ(p) (see
Theorem 1 in [5]).

The following result gives the exact condition for co(p) to have
the Schur property and consequently includes Iyer's theorem as a
special case.

THEOREM 15. The linear topological space cQ(p) has the Schur
property if and only if pec0.

Proof. Sufficiency: Let p e c0, and (x{n)) c co(p) be convergent
weakly to θ, i.e., limnf(x{n)) = 0 for every fec*(p). Then

lim Σ α*«iH) = 0
n k

for every a e M0(p). Whence X= (xnk) e (Λfo(p), c0) (where for convenience
we put x%k instead of x[n)) and therefore by Theorem 12 we have

( i ) CN = supw,fc \xnk I Nrk < oo for every N > 1,
(ii) limw xnk = 0 for every fixed k.

We shall prove now that gM(x{n)) —>0 (n—> °°). Suppose, on the
contrary, that
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lim sup gM(x{n)) > 0 .
n

Then there exists a subsequence (y{s)) of (x[n)) and a positive number I
such that

(1) g " ( y { 9 ) ) ^ 2 1 s = 1 , 2 , ••• .

We write s(l) — 1 and let k(ΐ) ^ 1 be such that

\ysωkω\Pkω > I,

where y{s) = (yak) for every s. Obviously such an integer k(ΐ) exists
because of (1). Now pec0 implies that there exists k(l) such that
pk < 2"1 for every k > ifc(l). By (ii) there exists s(2) > s(l) such that

max

Whence there exists k(2) > k(l) + Λ(l) such that

Puw < 2 - S |y.(2,*(«,lp*(2) > ϊ .

Continuing this way let k(i — 1), s(i — 1) be defined such that,

i~ I ) " 1 , |y.(i-i)t(ί-i) I**14-" > ί

Then there exists fc(i — 1) > k(ί — 1) such that pk < i""1 for every
k> k(i — 1) and s{i) > s(i — 1) such that

m a x _ I ys{i)k \Pk < I .
k(ί-l)+k(i-l)

Whence there exists k(i) > k(i — 1) + k(i — 1) such that

l2/.(ίϊ*(ίϊlPfcί<) > I

With this method we construct two strictly increasing sequences
(k(ϊ)), (s(i)) of positive integers such that

Vkϋ) < i~\ I y.wtw \Pk{i) > If i = h 2, .

Now we choose an integer N > 1 such that Nl > 2. Then we have

CN = sup ] xnk i Nr* ^ sup I ys{i)k{i) \ Nr^
n,k i

^ sup
i

i

contrary to condition (i). Whence we must have
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lim sup gM(x[n)) = 0 ,
n

i.e., that x{n)-+θ strongly.

Necessity. Suppose now that the space cQ(p) has the Schur
property. If p & c0 then there exists a positive number I and a
strictly increasing sequence (&(i)) of positive integers such that
Pkd) ^ I for i = 1, 2, . Consider the sequence

where eA(<) denotes the sequence with 1 in the k(ΐ)th place and 0
everywhere else. Then for every integer N> 1 we have

( i ) supί>& I xik I Nrk = supί JVr*«> < iSΓ1/z < oo,
(ii) linii xik = 0 for every fixed fc,

i.e., x{i)-+θ weakly in co(p). On the other hand for every pair of
integers m, n (m Φ n) we have

i.e., the sequence (x{i)) is not a Cauchy sequence in co(p) and there-
fore not convergent. Whence we have a contradiction to the fact
that co(p) has the Schur property.

COROLLARY. (Theorem I). The space cQ(l/k) has the Schur
property.

Note that by Theorems 8 and 15 co(p) has the Schur property
if and only if it is perfect.

Finally, I am grateful to my supervisor Dr. I. J Maddox for
drawing my attention to the problems examined in this paper, for
his constructive criticism of this work and for his help and guidance
in general. I also wish to thank the referee for several valuable
comments and suggestions.
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